Beta decay of ³⁹Cl

G. Wang, E. K. Warburton, and D. E. Alburger Brookhaven National Laboratory, Upton, New York 11973 (Received 20 February 1987)

The β decay of ³⁹Cl, produced in the ³⁷Cl(t,p)³⁹Cl reaction at $E_t = 3.1$ MeV, has been investigated with a Ge-NaI(Tl) Compton-suppression γ -ray spectrometer. Nineteen γ -ray transitions were observed, including 10 previously known. Precision energy measurements were carried out on six of the strongest lines. In the proposed decay scheme a weak new β -ray branch is established to the 2950-keV level of ³⁹Ar, and the populations of ³⁹Ar levels at 2093 and 2433 keV are accounted for by γ -ray decays from higher excited states. Spin-parity assignments are given.

I. INTRODUCTION

Only two previous studies^{1,2} have been made of the β decay of the $J^{\pi} = \frac{3}{2}^{+}$ ground state of ³⁹Cl [$T_{1/2} = 55.6(2)$ min (Ref. 3)], the more recent being that of Engelbertink, Warburton, and Olness in 1972. Samples produced in the ³⁷Cl(t,p)³⁹Cl reaction at $E_t = 3.0$ MeV were measured² with Ge(Li) and NaI(Tl) detectors in singles and in coincidence. A decay scheme was proposed that included 10 γ -ray transitions and involved six excited states of ³⁹Ar. Among the unanswered questions was that γ rays of 2093 keV were observed, but that the formation of the $\frac{5}{2}^{-2}$ 2093-keV level appeared to be too intense to be accounted for by first-forbidden β^{-} decay, and γ -ray feeding of this state was not observed.

Our interest in a reinvestigation of ${}^{39}\text{Cl}(\beta^{-}){}^{39}\text{Ar}$ was stimulated by calculations simultaneously underway on the structure of ${}^{39}\text{Ar}$, reported in the following article.⁴ That work utilizes the recently developed spherical shell model interaction SDPF which uses a full (2s, 1d, 1f, 2p)configuration space.⁵ Since ${}^{39}\text{Cl}$ has N, Z = 22, 17 the allowed Gamow-Teller (GT) beta decay ${}^{39}\text{Cl}(\beta^{-}){}^{39}\text{Ar}$ (see Fig. 3) should be describable within the model space ${}^{16}\text{O}(2s, 1d){}^{21}(1f, 2p){}^{2}$ and as such can be calculated with the SDPF interaction.

The first-forbidden β^- decay modes of ${}^{39}\text{Cl}$ involve in lowest order transitions to states within the ${}^{16}\text{O}(2s, 1d)^{22}$ $(1f, 2p)^1$ configuration. The formalism necessary to calculate nonunique first-forbidden decays in the $A \sim 40$ mass region was recently developed⁶ for use with the SDPF interaction and interest in such decays from ${}^{39}\text{Cl}$ was therefore aroused.

The present experimental work reveals further details of the ³⁹Cl decay scheme, answers some of the previous questions, and forms the basis for comparison with the theoretical calculations.⁴ As part of our ongoing program of precision γ -ray energy determinations (see, e.g., Refs. 5 and 7), such measurements were made for ³⁹Ar γ transitions via ³⁹Cl(β^{-})³⁹Ar.

II. EXPERIMENTAL METHODS

Sources of ³⁹Cl were produced in the ³⁷Cl(t,p)³⁹Cl reaction at $E_t = 3.1$ MeV by Van de Graaff bombardment of Ba³⁷Cl₂ targets enriched to 90.4% in ³⁷Cl. The powder samples were deposited as a slurry on thick Ta backings, and the beam currents were generally ~150 nA for 1 h. After bombardment, the powder was scraped off the Ta backing into a small plastic bottle and then transferred to the detector in a fixed geometry. The detector was a Ge-Na(Tl) Compton-suppression spectrometer including an intrinsic Ge detector with an efficiency at 1.33 MeV of 30% relative to a 7.65×7.65-cm NaI(Tl) detector, and a resolution [full width at half maximum (FWHM)] of 2.0 keV at that energy.

To study the complete γ -ray spectrum, each bombardment was made on a fresh target and measurements were made in a pulse-height analyzer during four successive 1h runs, each separately recorded on tape. Previously unobserved transitions could then be assigned to ³⁹Cl decay partially on the basis of their decay rates. Results from different bombardments were combined after making small gain-shift corrections.

The γ -ray efficiency versus E_{γ} was measured with ⁵⁶Co and ¹⁵²Eu sources, following standard techniques. An important part of the analysis was to establish the γ -ray summing corrections in order to distinguish between real γ -ray transitions and the summing effects of strong cascade γ rays. At the two source-to-detector distances used, i.e., d = 7.0 and 14.0 cm, a ⁶⁰Co source was counted and the intensity of the 2506-keV sum peak was determined relative to the 1173- and 1333-keV photopeaks. At d = 7.0 cm the results were $I_{sum}/I_{1173} = 2.60 \times 10^{-3}$ and $I_{sum}/I_{1333} = 2.85 \times 10^{-3}$, while at d = 14.0 cm we obtained $I_{sum}/I_{1173} = 8.4 \times 10^{-4}$ and $I_{sum}/I_{1333} = 9.3 \times 10^{-4}$. Uncertainties in all of these ratios were less than $\pm 5\%$. Extrapolations from these values could be used to calculate the amounts of summing expected for various cascade pairs of γ rays in ³⁹Cl decay.

TABLE I. Gamma-ray energies, relative intensities, and branching ratios (BR) in ${}^{39}Cl(\beta^-){}^{39}Ar$.

J_i^{π}	E_i^{39} Ar level E_i (keV)	E_f (keV)	E_{γ} (keV)	Intensity ^a (relative)	Present	BR (%) ^b Ref. 3	Adopted
$\frac{3}{2}^{-}$	1267.207(8)	0	1267.191(11) ^c	10 000	100	100	100
$\frac{3}{2}$ +	1517.540(8)	1267	250.333(3) ^c	8630(300)	54.1(10)	54.1(12)	54.1(8)
2		0	1517.498(10) ^c	7320(160)	45.9(10)	45.9(12)	45.9(8)
$\frac{5}{2}$ -	2092.749(20)	1267	825.533	1.7(8)	8.9(38)	3.9(8)	4.1(10)
-		0	2092.738(30)	17.3(4)	91.1(38)	96.1(8)	95.9(10)
$(\frac{5}{2}^{-},\frac{7}{2},\frac{9}{2}^{-})$	2342.2(2)	0	2342.1	< 0.2		100	100
$\frac{1}{2}$ +	2358.282(11)	1518	840.775(25)	24.8(6)	5.2(2)	3(1)	5.1(4)
2		1267	1091.056(8)°	451(9)	94.8(2)	97(1)	94,9(4)
		0	2358.205	<1	< 0.2	< 0.3	< 0.2
$\frac{3}{2}$ -	2433.48(3)	1518	915.86(10)	1.0(7)	11(7)	5.3(15)	5.6(15)
2		1267	1166.250(50)	5.71(46)	65(6)	70.7(9)	70.7(9)
		0	2433.488(80)	2.08(13)	24(3)	23.8(9)	23.7(9)
$\frac{7}{2}$ -	2481.49(13)	0	2481.41	< 0.4		82.5(6)	82.5(6)
$(\frac{3}{2},\frac{5}{2})^+$	2503.417(11)	2093	410.690(20)	17.9(4)	4.3(2)	< 7	4.3(2)
		1518	985.861(9) ^c	390(7)	92.8(2)	94(2)	92.8(2)
		1267	1236.190(50)	11.2(5)	2.7(2)	6(2)	2.7(2)
		0	2503.275(70)	1.0(1)	0.24(3)	< 0.3	0.24(3)
$(\frac{5}{2}^{-},\frac{7}{2},\frac{9}{2}^{-})$	2523.74(17)	0	2523.65	< 0.3		100	100
$\frac{3}{2}$ -	2631.56(15)	2093	538.6	< 0.4		81(2)	81(2)
$\frac{11}{2}$ -	2651.1(3)	0	2651.0	< 0.2		100	100
$\frac{5}{2}$ -	2755.5(3)	0	2755.4	< 0.5		56.3(14)	56.3(14)
$\frac{1}{2}$ +	2829.935(20)	2632	198.38	< 0.5	< 0.5		< 0.5
2	,	2524	306.21	< 0.3	< 0.3	< 0.5	<03
		2503	326.52	< 3.0	< 2.8	< 1.1	< 1.1
		2203	396.462(40)	8 2(3)	7.5(3)		7.5(3)
		2358	471.65	< 1.5	< 1.4	< 7.0	< 1.4
		1518	$1312.360(20)^{\circ}$	46.9(11)	43.0(8)	46.3(13)	42.8(8)
		1267	1562.704(25)	53.5(12)	49.0(8)	58.7(13)	49.2(8)
		0	2830.22(40)	< 0.3	< 0.25	< 1.3	< 0.25
$(\frac{3}{2}^+,\frac{5}{2})$	2949.95(10)	2503	446.61(13)	2.56(50)	52(6)	51.4(10)	51.4(10)
		1518	1432.27(15)	2.40(30)	48(6)	48.6(10)	48.6(10)
$\frac{1}{2}^{+}$	3287.0(4)	1267	2019.7	< 0.7		100	100

^aLimits correspond to two standard deviations. ^bThe adopted values for upper limits are the smaller of the two values.

^cValue from precision energy measurements.

FIG. 1. Portion of the γ -ray spectrum from the decay of ³⁹Cl showing newly observed γ rays of 396.5, 410.7, and 446.6 keV.

Precision energy measurements were made on six of the ³⁹Cl γ rays at high dispersion and with various digital offsets, following previously developed techniques.^{5,7} Energy calibration sources included ¹⁵²Eu, ²²Na, ¹¹⁰Ag^m, and ²⁰⁷Bi. In addition to mixed-source runs, separate measurements on ³⁹Cl and on each calibration source were made in order to check the individual spectra for weak γ -ray peaks that might occur in the vicinity of the lines being compared. In a given sequence of runs on a single source the precision E_{γ} measurements consisted of first comparing the γ rays in the 900–1500 keV range with the ²²Na, ¹¹⁰Ag^m, and ²⁰⁷Bi sources, in four or five runs of ~ 25 min each, at various gain settings, and with a 6 mm thick Pb absorber in place. The absorber was then removed and another four or five runs of 25 min each were made comparing the 250-keV γ ray from ³⁹Cl decay with the 244-and 344-keV γ rays from ¹⁵²Eu. Results of the precision E_{γ} determinations, indicated in Table I, are each based on a total of 14-17 comparison measurements with the standard sources.

III. RESULTS

A. Gamma-ray energies and branching ratios

Final data on the complete γ -ray spectrum were obtained at d = 7.0 cm with three sources, measured for a combined total of 12 h. Portions of the summed spectrum are shown in Figs. 1 and 2. In Fig. 1 peaks are identified at 396.5, 410.7, and 446.6 keV that decay with the ³⁹Cl half-life. They were not observed in the previous

FIG. 2. Region of the ³⁹Cl γ -ray spectrum above 2.3 MeV. Various peaks (identified by their energies in keV) are discussed in the text.

J^{π}	E_x (keV)	β branch (%)	$\log f_0 t$	Order ^a (n)	B_n^{b} (fm ²ⁿ)
$\frac{7}{2}$ -	0	7(2)	7.82(12)	1	1.3(4)
$\frac{3}{2}$ -	1267	4.5(16)	7.14(16)	nu	$f = 8.3(30) \times 10^{-2}$
$\frac{3}{2}$ +	1518	83.1(22)	5.65(2)	0	$13.74(6) \times 10^{-3}$
$\frac{1}{2}^{+}$	2358	2.56(5)	6.15(3)	0	$4.34(32) \times 10^{-3}$
$(\frac{3}{2},\frac{5}{2})^+$	2503	2.24(4)	5.97(4)	0	$6.68(54) \times 10^{-3}$
$\frac{1}{2}^{+}$	2829	0.59(1)	5.84(5)	0	$8.85(97) \times 10^{-3}$
$(\frac{3}{2}^+, \frac{5}{2})$	2950	$26.6(32) \times 10^{-3}$	6.84(8)	0 ^c	$0.88(15) \times 10^{-3}$
$\frac{5}{2}$ -	2093	$< 8.6 \times 10^{-3}$	> 8.9	nu	$f < 1.6 \times 10^{-4}$
$(\frac{5}{2}^{-}, \frac{7}{2}, \frac{9}{2}^{-})$	2342	$< 1.2 \times 10^{-3}$	> 9.5	1, 2, or 3	$< 0.2^{d}$
$\frac{3}{2}$ -	2433	$< 6.2 \times 10^{-3}$	> 8.6	nu	$f < 1.1 \times 10^{-4}$
$\frac{7}{2}$ -	2481	$< 2.3 \times 10^{-3}$	> 8.9	1	< 0.8
$(\frac{5}{2}^{-}, \frac{7}{2}, \frac{9}{2}^{-})$	2523	$< 1.7 \times 10^{-3}$	> 9.0	1, 2, or 3	$< 0.8^{d}$
$\frac{3}{2}$ -	2631	$< 2.9 \times 10^{-3}$	> 8.6	nu	$f < 5.3 \times 10^{-5}$
$\frac{11}{2}$ -	2651	$< 1.2 \times 10^{-3}$	> 8.9	3	
$\frac{5}{2}$ -	2756	$< 5.2 \times 10^{-3}$	> 8.1	nu	$f < 9.6 \times 10^{-5}$
$\frac{1}{2}^{+}$	3287	$< 4.0 \times 10^{-3}$	> 5.8	0	$< 10 \times 10^{-3}$

TABLE II. β -ray branches, $\log f_0 t$ values, and Gamow-Teller (B_0) and unique first-forbidden (B_1) transition strengths in the decay of ³⁹Cl ($J^{\pi} = \frac{3}{2}^{+}$).

^aThe degree of forbiddenness; nu denotes nonunique first forbidden.

^bAllowed Gamow-Teller (n = 0) and first-forbidden unique (n = 1) transition strengths (matrix element squared).

^cAssumed.

^dThis is the limit on B₁ in the event that $J^{\pi} = \frac{7}{2}^{-1}$.

work² because of the relatively high Compton continuum. In the region above 2.3 MeV, shown in Fig. 2, the numerous peaks have all been identified. The only real γ rays in the figure belonging to ³⁹Cl decay are those at 2433.5 and 2503.3 keV. About half of the latter peak is actually due to 985.9 + 1517.5 summing at d = 7.0 cm. The net intensity of the real 2503.3-keV γ ray was confirmed in the run at d = 14.0 cm. Aside from the ²²⁸Th and ²⁴Na γ rays, all of the other peaks in Fig. 2 are due to either real or random summing of ³⁹Cl (or in one case, ³⁹Cl + ³⁸Cl) γ rays.

The results of the γ -ray measurements are summarized in Tables I and II and in the decay scheme of Fig. 3. We first consider Table I. Those E_{γ} with uncertainties attached are our measurements. Those without uncertainties were calculated from the level energies. Energies of levels from which γ decays were observed were calculated from a least squares fit to all measured γ energies assuming the level scheme of Fig. 3. Energies of levels for which no γ decay was observed are from Ref. 3. Limits on γ -ray intensities correspond to two standard deviations. The J^{π} assignments are from Ref. 3 or are discussed in the following paper.⁴ There are no serious discrepancies with previous work. We observed nine γ rays not seen previously in ³⁹Cl β^{-} decay. The 447- and 1432-keV γ rays are associated with the decay of the ³⁹Ar 2950-keV level and the β branch to this level is the only new one resulting from this study. Three of the other seven new γ rays (i.e., 411, 826, and 2503 keV) represent new γ branches connecting ³⁹Ar levels previously known to be fed by ³⁹Cl β^- . The 411-keV γ ray is assigned as 2503 \rightarrow 2093 and explains the bulk of the 2093-keV intensity, as discussed in the Introduction. The 826-keV γ ray is assigned as 2093 \rightarrow 1267, and the 2503-keV transition is a weak ground-state decay. The remaining four new γ rays (i.e., 396, 916, 1166, and 2433 keV) are associated with the newly observed 396-keV 2830 \rightarrow 2433 transition and the subsequent decay of the 2433-keV level.

B. β^- branching ratios, $\log f t$ values, and matrix elements

The γ -ray intensities of Table I and the decay scheme of Fig. 3 result in the β^- branching ratios of Table II. These branches result from the listed γ intensities of Table I with two exceptions. The poorly determined intensities for the 2093 \rightarrow 1267 and 2433 \rightarrow 1518 transitions were calculated from the intensities of the more intense branches and the adopted γ -ray branching ratios; i.e., use was made of previous information for these decay modes.

FIG. 3. Proposed decay scheme of ³⁹Cl. All energies are in keV and γ -ray intensities are given relative to $I_{1267\gamma} = 10\,000$. For the ³⁹Ar levels shown, but not directly fed in ³⁹Cl decay, β -ray branching and log *ft* limits are given in Table II.

The β^- branch into the ground state is from the work of Penning *et al.*¹

The log ft values of Table II were calculated assuming allowed decay, $Q(\beta^-)=3438(18)$ keV, $T_{1/2}=3336(12)$ s, and the excitation energies of Table I.

The transition strengths (matrix element squared) for allowed Gamow-Teller (n = 0) and unique first-forbidden (n = 1) decay are defined by⁵

$$B_n = 6166 \left\{ \frac{\left[(2n+1)!! \right]^2}{(2n+1)} \right\} \hat{\chi}_{Ce}^{2n} (f_n t)^{-1} , \qquad (1)$$

where $2\pi \lambda_{Ce}$ is the Compton wavelength of the electron $(\lambda_{Ce} = 386.159 \text{ fm})$. Equation (1) gives

$$B_0 = 6166/f_0 t$$
, $10^{-6}B_1 = 2758/f_1 t \text{ fm}^2$, (2)

where f_0 and f_1 are the Fermi functions calculated with shape factors of unity and $\sim \frac{1}{12}(p^2+q^2)$, respectively. For nonunique first-forbidden decay (designated by nu in column 5 of Table II) comparison to experiment is conventionally made via the f value, which is defined experimentally by $f = 6166/t_p$, where t_p is the partial half-life of the β^- branch in question (see Ref. 8).

A comparison of the experimental results with theoretical calculations is given in the following paper.⁴

This research was supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH00016.

- ¹J. R. Penning, H. R. Maltrud, J. C. Hopkins, and F. H. Schmidt, Phys. Rev. **104**, 740 (1956).
- ²G. A. P. Engelbertink, E. K. Warburton, and J. W. Olness, Phys. Rev. C 5, 128 (1972).
- ³P. M. Endt and C. Van der Leun, Nucl. Phys. A310, 1 (1978).
- ⁴E. K. Warburton, Phys. Rev. C **35**, 2278 (1987), the following paper.
- ⁵E. K. Warburton, D. E. Alburger, J. A. Becker, B. A. Brown,

and S. Raman, Phys. Rev. C 34, 1031 (1986).

- ⁶E. K. Warburton, D. J. Millener, B. A. Brown, and J. A. Becker, Bull. Am. Phys. Soc. **31**, 1222 (1986), and unpublished.
- ⁷E. K. Warburton and D. E. Alburger, Nucl. Instrum. Methods A 253, 38 (1986).
- ⁸D. J. Millener, D. E. Alburger, E. K. Warburton, and D. H. Wilkinson, Phys. Rev. C 26, 1167 (1982).