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We obtain the band condition for relativistic quarks moving in one-dimensional periodic poten-

tials using the transfer matrix method. Using a strong electrostatic type of potential in the Dirac
equation does not give confining properties, while Lorentz scalar potentials do. We give an analytic

form for the wave function which results when the potential is taken to a delta function limit, and

discuss the discrepancy between this result and that obtained by "solving" the Dirac equation for a

delta function potential.

I. INTRODUCTION

With the widespread realization that quarks, as the con-
stituents of nucleons, can be expected to play a role in the
physics of the nucleus, a number of models have been
developed which seek to define that role. Bag models ei-
ther expand the bag from a nucleon bag to a nuclear bag
and look for clustering effects to define nucleonic struc-
tures, or else allow 6,9, . . . quark bags when 2, 3, . . . nu-
cleon bags overlap. Potential models introduce potentials
which tend to confine quarks to individual sites, but
which are not completely confining and thus permit
quarks to tunnel from one nucleon site to another. Soli-
ton bag models describe hadrons as quarks moving freely
in the interior of a small bag which are coupled in an
essential way to pion fields in the bag exterior. Each of
these classes of models is, of course, a simplified approach
to a very complicated many quark problem in quantum
chromodynamics whose solution is beyond our present
technology. Focusing on some particular aspect of the
nuclear problem can be expected to offer us some insight
on that aspect, but not a great deal of insight into other
features.

This paper adopts a particularly special model of the
potential type —a one-dimensional periodic lattice of "nu-
cleons. " There are a number of papers which have intro-
duced periodic one- and three-dimensional potential
models, see for example, Goldman and Stephenson, ' or
crystalline structures of soliton bags, see Achtzehnter,
Scheid and Wilets. It is a straightforward application of
the usual analysis, which depends only on the periodicity
of the Hamiltonian, to show that the solutions of the
Dirac equation in this case have the familiar Bloch wave
form.

Our purpose in studying the simplest such one dimen-
sional model available for relativistic quarks —the classic
Kronig-Penney model adapted to the Dirac equation —is
threefold.

(i) We wish to further investigate the merits of electro-
static and Lorentz scalar potential models as models of
confinement, a point we recently studied in the context of

a single nucleon.
(ii) We wish to study and clarify the discrepancy be-

tween the results obtained by first solving for a square
barrier potential and then taking the delta function limit,
and those obtained by solving the Dirac equation with a
delta function potential. This discrepancy has been noted,
in the case of electrostatic potentials, in the solid state
literature.

(iii) We want to lay the basis for studying random lat-
tices and surface states in one dimension before moving
to three dimensional problems.

There are two basic ingredients in our calculation: the
solution of the Dirac equation in the unit cell, and the
connection of solutions from one cell to another which we
accomplish by the transfer matrix method. Since our
work builds on the classic nonrelativistic Kronig-Penney
model, in Sec. II we review this model, which serves to in-
troduce the transfer matrix method. Then in Sec. III we
show how the general transfer matrix method may be
adapted to the Dirac equation.

Section IV is devoted to the solution of the Dirac equa-
tion in the unit cell. We first discuss the rectangular bar-
rier and the form the Klein paradox takes in these cir-
cumstances. Then we take the delta function limit of our
result, and contrast this with the results obtained by solv-
ing the Dirac equation with a delta function potential.
We also obtain the formal general solution to the Dirac
equation for a general potential in which we can take the
limit that the potential becomes a delta function and ob-
tain a result which agrees with that obtained by taking the
limit of the square barrier potential. Since we find that
solving the Dirac equation and then taking the delta func-
tion limit gives a unique result we suggest that the direct
solution of the Dirac equation with delta function poten-
tials should be regarded as unphysical —a point to which
we return in subsequent sections.

In Sec. V we combine the results of Sec. IV and the
methods of Sec. III to obtain the band structure in our
various models. We discuss the form exhibited by the
Klein paradox in this case, and examine the paradoxical
results obtained by using the 5 function as a potential in
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the Dirac equation.
Section VI is devoted to the computation of the energy

of the one dimensional model system.
Our conclusions are collected in Sec. VII.

matrix is not. )

The periodicity requirement then demands that the
solution in the first and (N+1)th cells be identical, i.e.,
that

II. REVIEW OF THE TRANSFER MATRIX METHOD
AND THE NONRELATIVISTIC

KRONIG-PENNEY MODEL

BN+1

A1

B1

But we know that

(2.8)

1 d g + V(x)g(x) =E(x)g(x),2' (2. 1)

where V(x+l)= V(x) and we have set R= 1. It con-
venient to define U(x) =2m V(x) and k =2mE, so that
the Schrodinger equation becomes

d2$
+[@ —U(x)]/=0 . (2.2)

dx

The nth unit cell is defined as the region (n —1)l &x & nl,
and we take periodic boundary conditions with period
I. =Xl. N is the total number of unit cells, and the
boundary conditions on P are

g(x)=P(x+L) . (2.3)

In any unit cell, the solution may be written as the linear
combination of independent elementary solutions Pz, Pz
which are defined in the range 0 & x & l.

P(x) =A„P~ [x —(n —1)l]+B„Q~[x (n —1)l]—
for (n —l)l &x & nl . (2.4)

The transfer matrix T relates the A„,B„,

Our analysis is based on the well known one dimension-
al model for crystals which was first formulated by
Kronig and Penney. This model is nonrelativistic and
must be recovered when we take the nonrelativistic limit
of our results. We propose to use the transfer matrix
method in our analysis of the relativistic case, and as this
method and indeed the Kronig-Penney model itself may
not be totally familiar to nuclear physicists, it is appropri-
ate to briefly review the transfer matrix approach to the
Kronig-Penney model. We follow the approach of James
which is suitable whatever the potential structure in the
unit cell.

We begin with the Schrodinger equation for a single
particle in a periodic potential

AN+1 AN A1
=TNT (2.9)

N+1 N

Thus T =1, so that the eigenvalues of T must be Nth
roots of unity. Moreover, it is clear from (2.6) that
det T =1, so that we can write the eigenvalues of T as
e +' whe-re 8=(2np/N) for some integer p. It is cus-
tomary to introduce a pseudo-wave-number ~=p(2~/L),
and write O=al. The eigenvalue condition that deter-
mines the band structure is then

2 cos~l =Tr T . (2.10)

We can illustrate the method by considering the case
where the potential has the form shown in Fig. 1—a po-
tential step of height Up/2m and width a, with its left-
hand edge at x =0+e, followed by a potential free region
of length b, which extends a distance e into the next cell.
Clearly a +b =1. The elementary wave functions P„(x)
and Pe(x) may be chosen to be arbitrary linear combina-
tions of those which start as e+ 'in the r-egion (O, e).

Writing

IkX

k.ike'
e

—IkX
1 ikx cr

—ik (2.1 1)

(t~ g Ag ge' +Bg g——e

in the region (O, e), we see that

where o, is the usual Pauli matrix, for the Wronskian ma-
trix of the exponential solutions, and

Fp —— (2.12)
B

for the matrix of coefficients of the solutions

(2.5)

and is simply computed by matching solutions and their
first derivatives in the nth and (n + 1)th cells at x =nl.

W(0) = Wk(0)FQ .

Similarly,

W(l) = WI, (l)FI,

(2.13)

(2.14)
T= [W(0)] 'W(l), (2.6)

where

We«)

Pg (x) Pg(x)
(2.7)

F, =WFp, (2.15)

where F& is the similar coefficient matrix in the region
near x =l. Elementary quantum mechanics then shows
that

is the Wronskian matrix of the solutions. (Although the
Wronskian determinant det W is constant, the Wronskian where
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M= Wk (a)Wx(a)Wx '(0)Wk(0)
—ika o.=e 'cosKa

i K k . i K k+ ——+—sinKa ————sinKa
2 k K 2 k K

(2.16) dimension it suffices to use two component spinors P.
The 2)& 2 Dirac matrices a„,p anticommute and are trace-
less Hermitian matrices with square unity. We may thus
choose then two of the Pauli matrices. There are two
standard choices:

(i) The Dirac representation

i K k i K k

2 k K
sinKa cosKa ———+—sinKa

2 k K

(2.16a)

K=(k —Uo)' (2.17)

is the matrix connecting the plane wave coefficients be-
fore and after the barrier. Here K is the wave number in
the potential region,

Ax Ox ~ Ia ~z (3.2)

&x =Oz~ I~ =x ~ (3.3)

which is particularly convenient for massless particles.
Note that the matrix

which is convenient when considering the nonrelativistic
limit, and

(ii) the Weyl representation

Thus
1D= (o„+o,) (3.4)

T =Fo Wk (0)Wk( l)~F0 (2.18)

2cos~l =Tr[Wk '(0) Wk(l)M/],

which may be written as

i kin
2 cosirl =Tr(e '~)

(2.19)

(2.20a)

and the arbitrary coefficient matrix Fo does not enter the
band condition

which satisfies D+ =D, D = 1, effects the transformation
between the Dirac and Weyl representations of the spi-
nors.

In this section we will establish the analog of James's
general analysis for the Dirac equation, and we will
preserve generality by not using any explicit representa-
tion of the Dirac matrices. Equation (3.1) may be rewrit-
ten in the standard form for linear first order equations

or

2 cosirl =Tr[ Wk (1)Wk '(a ) Wx (a ) Wx. "(0)] . (2.20b)
where

(3.5)

In this way we obtain the Kronig-Penney result for the al-
lowed bands G =ia„[(E—V, ) —(m + V, )P] . (3.6)

K'+k'
2 cos~l =2 coskb cosKa- sinkb sinKa,

Kk
(2.21)

which in the 5 function limit (a ~0, Uo ~ co but
Uoa=2mS, kept constant) becomes the perhaps more
familiar band equation

According to the general theory of linear differential
equations the first order equation (3.5) for the two dimen-

sional vector g=(~") has two linearly independent solu-

tions. In the unit cell we select two independent solutions
P~ (x) and Ps(x) and form the matrix

m5
cos~b =coskb+ sinkb,

k
(2.22)

4.,a
Q(x) = [gz (x),fz(x)] =

l, d I, B
(3.7)

which was also obtained by Kronig and Penney. In con-
trast to what happens with the Dirac equation, it should
be emphasized that this same result is obtained if we solve
the Schrodinger equation in the unit cell with a delta
function potential.

Now we discuss the analogous solution of the Dirac
equation for a barrier as the initial step in solving the
Dirac equation in a periodic potential.

which plays the role the Wronskian matrix played in the
discussion in the preceding section.

The general solution in the nth cell may be written as a
linear combination of

P„(x —[n —1]l), Ps(x —[n —1]l),
viz. ,

P( x) =A(x —[n —1]l)M„, (3.8)
III. THE TRANSFER MATRIX METHOD

FOR THE DIRAC EQUATION

The one dimensional Dirac equation has the form

'I

where W„=(~") is the vector of coefficients.
n

Continuity of the upper and lower component solutions
at x =nl then requires that

(E —V, )/+i a„—P(m + V, )/=0,a
Bx

(3.1)

where we have introduced a Lorentz scalar potential
V, (x) and an electrostatic type of potential V, (x) which is
the time component of a four-vector potential. Both po-
tentials are assumed to be periodic with period l. In one

n + ] = TL) M n

where

To ——0 '(0)O(l )

is the Dirac transfer matrix.

(3.9)

(3.10)
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It is a straightforward calculation to show that

detQ = (TrG)detQ
Bx

(3.11)

IV. THE PENETRATION OF DIRAC PARTICLES
THROUGH A BARRIER

A. The square barrier
and because (3.6) implies that Tr G =0, we see that

detA =const (3.12)

and thus that

detTD ——1, (3.13)

2 cos~l =TrTD, (3.14)

and for the special case that there are zero potential re-
gions around x =nI,

2cosKl=Tr[Ak '(0)IIk(l)MD] . (3.15)

Qk(x) is the solution matrix of (3.5) for the plane wave
solutions e' uk+ and e ' uk, and ~D is the match-
ing matrix relating the coefficients in the expressions

=0+ ) ~oe //k, ++Boe //k, — (3.16)

just as for the Schrodinger equation.
The analysis of the preceding section leading to the gen-

eral eigenvalue condition (2.10), and the specific form it
takes when there are zero potential regions around x =nI,
(2.19), may now be applied mutatis mutandis to the
present case.

The general band condition for the Dirac equation is

z, =( —~,o), xcz, , v, =v, =o

Rn=(o, a), x &Rn, Ve ——U„V,= U,

R„,=(a, m), xez„,, v, =v, =o.
(4.1)

In regions I and III the solutions are linear combina-
tions of e —+'

uk+, where uk+ are eigenvectors of

We now develop the solution for the Dirac equation for
a potential of the form shown in Fig. 1, where we may
now set e=O and allow the potential to extend from —(x)

to + ~ without loss of generality. However, we now have
to decide whether this potential is to be regarded as the
time component of a Lorentz vector which we shall call
an electrostatic potential, or whether it is to be regarded
as a Lorentz scalar. We have argued elsewhere that the
appropriate representation of the confining potential for
nuclear physics calculations involving quarks is to choose
it as a Lorentz scalar. We will return to this point later
but for the moment we will use the notation of the preced-
ing section which allows both electrostatic and scalar po-
tentials simultaneously.

Just as we did in Sec. II we can divide the line into
three regions, where now

by

p(x =l —) =&/e' uk ++B/e //k, — (3.17)
Go =i a„(E—mP),

Qk(x) =(e' gk+, e '
//k ) = /k(0)e

(4.2)

(4.3)

(3.18)

It is also possible to write down a general analog of Eq.
(2.20a), but this requires a little more analysis to show
that it is independent of the particular choice of represen-
tation of the Dirac matrices and hence of the particular
representation of the solution uk+. The clue is to realize
that we may write

gg
——Ak(x)Wr,

where I"=I,III, and

(4.4)

is the solution matrix, and, if uk+ are normalized so that
uk+uk+ ——1, it is also a unitary matrix which diagonalizes
Go.

Thus we may write the general solution in regions I and
III as

nk(x) = (uk+e', uk e '"")= (uk+, uk )e (3.19)

so that

Qk '(0)Qk(l) =Ok '(0)Ilk(0)e
iklcr=e (3.20)

Thus we may rewrite (3.15) as

ikla
2 cos~l =Tr(e '~D ), (3.21)

in perfect analogy with (2.20a).
In the special case that the potentials V, and V, have

an identical square barrier structure, the analog of (2.20b)
is also a correct representation of the energy band condi-
tion, as we shall see in the next section. FIG. 1. A representation of one cell in the periodic lattice.
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Ap

is the coefficient vector.
In a similar way we may write

III +K(x)~II ~

where

(4.5)

(4.6)

is continuous across the boundaries of the regions as a
consequence of the matching conditions (4.10) and (4.11).
Thus we can consistently define transmission and reflec-
tion coefficients for the barrier.

In the zero potential region, an explicit calculation in
either the Dirac or Weyl representation shows that

(4.18)

QK(x)=(e' "uK+, e ' "uK ) . (4.7)

K =(E —U, ) —(m+U, ) (4.8)

and u~+ are the eigenvectors of

GI ——ia, [(E—U, ) —(m + U, )p], (4.9)

K is now the wave number in the barrier region and is
given by

in accord with our intuition that e' uk+ represents a
current to the right, and e ' "uk represents a current to
the left. The proportionality constant depends on the nor-
malization of the state, and in Eq. (4.15) the normaliza-
tion u +u = l is chosen in each representation.

In the finite potential region the analogous equation
holds if the wave number K is real ~ However, if K is
imaginary the expression for j in terms of A and B is
more complicated and will not be reproduced here.

To obtain the transmission and reflection coefficients in
a systematic way, we follow Saxon and Hunter and intro-
duce the M matrix by

with eigenvalues +iK.
Continuity of the solution at x =0 demands that

A III Ag
(4.19)

~II=&K '(0»k(0)~r

and continuity at x =a demands that

~III +k ( )+K(II)~II ~D~I

(4.10)

(4.11)

so that w =
I
~» I' »d ~=

I
~» I' ~ may be ex-

pressed in terms of the elements of /8 (remembering
det /i'=1),

with the matching matrix across the barrier identified as (4.20)

Qk '(——a)QK(a)flK '(0)Qk(0) . (4.12)

By the general result (3.12) on the constancy of detQ, it is
immediate that H+w =1. (4.21)

Conservation of the current can be shown to imply unitar-
ity of W, which in turn implies

de~I~ ——1 .
In terms of MP,

(4.13)

(4.22)
A change in the representation of the Dirac matrices in-
duces a change in the eigenstates

I
Qk+ =DQk+ (4.14) (4.23)

or

Ak(x) =DQk(x) (4.15)
Now it is necessary to become specific. If we introduce

the parameters

where D is a unitary matrix, such as that of Eq. (3.4).
It is then straightforward to demonstrate that

k KA=
E+m E —UE+rn + Ug

(4.24)

(4.16)

j(x)=P (x)a„g(x) (4.17)

so that the matching matrix is invariant under a change in
representation for the spinors.

The current

the wave function matrix in the Dirac representation is

Q,k(x) =% ~ ~ e (4.25)

where N is a normalization constant. The matching ma-
trix is independent of N, even if N is k dependent. The
matching matrix is then
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—ika cr~D ——4e 1
1

iKa cr

A —A 1
1

A

—ika cr=e

i A
cosKa + ——+—sinKa

2 A, A

i A A,
sinKa

2 A. A

A A,
sinKa

2 A, A

i A
cosKa ———+—sinKa

2 A, A

(4.26)

E=m+e (4.27)

and working to lowest order in e/m, U, /m, U, /m.
We find that

k~(2m@)'

K~[2m (e—U, —U, )]'

(4.28a)

(4.28b)

and

(4.28c)

Note that the replacement A/A, ~K/k transforms the
Dirac matching matrix to the form of the Schrodinger
matching matrix.

We can investigate the nonrelativistic limit of our result
by setting

filled negative energy state can then tunnel through to ap-
pear as a positive energy particle outside the barrier which
is repelled to —Do, leading to a reAected current exceed-
ing the incident current. The empty negative energy state
is an antiparticle which contributes to the transmitted
current.

Arguing in this way, we see that we should expect that
the particle in a filled negative energy state in the region
of the barrier could tunnel through and appear as a parti-
cle on either side of the barrier. Thus, even for very
strong electrostatic-type potentials we should expect a
current on the "wrong" side of the barrier, showing that
the particles cannot be confined by an electrostatic type
barrier, however strong.

This expectation is confirmed by this analysis. For the
case of interest U, =O and K is real (K=+U, for very
large U, ), and

Thus in the nonrelativistic limit we obtain the result that
the equivalent nonrelativistic potential is the sum of the
electrostatic and the scalar potentials as we would have
expected.

K can become imaginary, but (A/A, +A, /A)sinKa and
cosKa are always real, so the transmission and reflection
coefficients become

cos Ka+ —,sin Ka+ — + sin Ka
1 A

4

'2

1+———— sin Ka1 A A.

4 X A

(4.31)

2

cos Ka+ ——+—
~

sinKa
~

1 A A,

4 A, A

(4.29)
Now for very large U„ the transmission coefficient is
bounded above and below by

2

/

sinKa
/

1 A A,

4 A, A
2

cos Ka+ ——+—
~

sinKa
~

1 A
4 k A

(4.30)

B. The Klein paradox for a square barrier

In the classic discussion of the Klein paradox' a poten-
tial step is considered and it is shown that if U, =0 and
U, ~E —m the transmission coefficient is negative and
the reflection coefficient exceeds unity. In hole theory
this is interpreted by noticing that the potential step raises
the negative energy states to be at the same energy as the
positive energy states outside the barrier. The particle in a

Much more interesting is the limit when the potentials be-
come very strong, which leads us to a discussion of the
Klein paradox for this potential.

1&M &
1 A A,1+—
4 A, A

1

1+—,
'

(A,
' —A)

(4.32)

This shows that as U, ~ 00, M remains finite, in agree-
ment with the physical argument presented above. We
note that in the massless limit A=A, =+1, and

u =1 (massless limit), (4.33)

K =iKi, (4.34a)

so that there is no expectation of modeling confinement of
quarks using potentials of the electrostatic type in the
Dirac equation.

No such difficulty occurs with Lorentz scalar poten-
tials. In this case (U, =0, U, ~E —m) the wave number
in the barrier is imaginary. Write
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where

~ =[(m+U, )2 Ex~in (4.34b)

strong Lorentz scalar potentials,

M =sech U,a, (4.37)

is now real; correspondingly, A=i A& and

cosh K&a +—
4

2

A)
sinh K a

1+— + sinh K&a
4 X A)

Now as U, ~ ao with a fixed, A&~1 and K~U, so

(4.35)

as U, ~oo.
It should be emphasized that, while we found that an

electrostatic potential in the Dirac equation was an inap-
propriate model for confinement, this does not imply that
exchange of vector particles cannot create a confining
potential —multiple vector exchanges can generate scalar
potentials which in the Dirac equation can model confine-
ment, as we saw above.

C. The delta function limit

1++(A,+A, ') e

16 —2U, a
e

(A+A, ')

(4.36a)

(4.36b)

One way to approach the delta function limit of the
barrier is to solve the Dirac equation for a square barrier,
and then allow U, or U, to become infinite at the same
time as a~0, keeping

U, ,a =S, , =const .

which does indeed approach zero as U, ~oo, showing
that the Lorentz scalar potential does provide an accept-
able model for confinement in the Dirac equation. For
future reference we note that, in the massless case for

We refer to S, , as the strength of the delta function. Us-
ing (4.26) we can then immediately write down the match-
ing matrices in the 5 function limit. For example, for an
electrostatic type of potential

e

cosS, + —(X+X ')sinS,

——(A,
' —A, )sinS, cosS, ——(A, +A, ')sinS,

(4.38)

Using these relations we may compute the discontinuity
in the wave function at the position of the 6 function.
The results have a very simple form. In the electrostatic
case

(4.39). The result given in the literature is

g(0+ ) =e ' "P(0—),
where

(4.41)

p(0+)=e ' "1((0—),
and in the scalar case

P(0+)=e ' " g(0 —) .

(4.39)

(4.40)

X, , S,
2 2

' =tan-'

For the scalar potential we find the analogous result

P(0+ ) =e ' "g(0—),

(4.42)

(4.43)
We see from these equations that, although the current

j„=ga„P is continuous at the position of the delta func-
tion, the density g g is discontinuous in the scalar case,
but continuous in the electrostatic case. In contrast gP is
continuous in the scalar case, but discontinuous in the
vector case. That the scalar 6 function potential gives a
continuous gP but a discontinuous g g should not be
surprising because the same situation pertains in the bag
model, " which is equivalent to confinement in a scalar
spherical well. '

In solid state literature, the solution of the Dirac equa-
tion for a one dimensional array of electrostatic delta
function potentials has been discussed extensively. It has
been noted that if one attempts to solve the Dirac equa-
tion with a 5 function potential directly, rather than tak-
ing the limit of the solution for a finite potential as we did
above, one obtains results which differ from those of Eq.

where

X, , S,
2 2

=tanh (4.44)

5(x)8(x)= —,5(x) . (4.45)

A simple "derivation" of Eq. (4.45) is

8(x)5(x)=0(x) 9(x)=— [8 (x)]d 1 d
dx 2 dx

9(x)= —,5(x),1 d
2 dx

Note that both of these results reduce to the preceding
case in the limit that the 5 function is weak (S, , ~O).
The results (4.41) and (4.42) essentially depend on the def-
inition of the product 5(x)0(x) by the relation
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Although this definition is apparently reasonable, it is in-

compatible with the initial value problem approach to the
differential equation, as it makes the value 1/r(0+ ) depen-
dent on t/(0+ ) itself, which has not yet been defined. We
thus discard the solution (4.41)—(4.44) as unphysical.

Because of these ambiguities it is desirable to verify
that Eqs. (4.39) and (4.40) are independent of how the 5
function limit is taken in the potential after the Dirac
equation has been solved. This can be done by returning
to the one dimensional Dirac equation (3.5), and noting
(by analogy with the time dependent Schrodinger equa-
tion) that it has the formal solution

g(x) = 1+ f G(x')dx'

+ f dx' f dx "G(x')G(x")+ . . 11(xo)

X

=P„exp G(x')dx' g(xo),
Xp

(4.47)

where P is the spatial ordering operator defined by

P„[A (x)B(y)]=A(x)B(y)8(x y)+B(y)A—(x)8(y —x) .

(4.48)

Now suppose that either Vz(x) or Vs(x) (but not both) is
very sharply peaked in the region ( —e,e) around x =0,
and apply (4.47) to x =+6, xo = —E to obtain

t//(E) =P„exp f G(x')dx' P( —e) (4.49)

For small e, only the strongly peaked potential contributes
significantly to the integral in (4.49), and this gives a term
proportional to either a„or a„P according to the type of
potential which is large. This dominant term commutes
at spatially separated points, so we may set P = 1 for this
term and obtain, after taking the limits that e goes to zero
and the potential magnitude becomes infinite

P(0+ ) =exp( —ia„S,)g(0—) (4.50)

but note that the product M is not well defined as a distri-
bution.

Equations (4.43) and (4.44) imply that there is an infi-
nite jump in the wave function when S,=2, while for
larger values of S, (when X, becomes complex) there is a
discontinuity in both magnitude and phase of the wave
function. These results do not occur when the 5 function
limit is taken after the solution of the wave function.
Moreover, we can find no physical reason for a singularity
at S, =2. Thus we argue that the solution of the Dirac
equation for a delta function potential produces spurious
results, and should be discarded in favor of taking the 6
function limit in solutions of the equation.

If we look at the Dirac equation as specifying an initial
condition problem by which specifying 11|(x) at x =Xo
determines P(x) at other values of x, we can see a difficul-
ty when a 5 function potential is included at say x =0.
This potential specifies that the wave function P(x)
should have a discontinuity at x =0 which is proportional
to P(0). However, g(0) is not well defined. The prescrip-
tion (4.45) is equivalent to the definition

(4.46)

in the electrostatic case, and

11(0+ ) =exp( —i a /3S, )g(0 —) (4.51)

in the scalar case, where S, , =lim f V, , (x)dx is the
strength of the 6 function potential.

Equations (4.50) and (4.51) are identical to (4.39) and
(4.40), demonstrating that the discontinuity in the wave
function is independent of the particular representation of
the 6 function used to obtain the result, as long as the
solution to the Dirac equation is obtained before the 6
function limit is taken.

The uniqueness of this result, and the fact that it can be
obtained in general, give us confidence in using it, or the
equivalent matching matrices (4.38a) and (4.38b) as the
basis for the discussion of the Dirac-Kronig-Penney
model in the next section.

V. THE DIRAC-KRONIG-PENNEY MODEL

Now we simply have to insert the results for ~z ob-
tained in the preceding section into Eqs. (3.15) or (3.21) to
determine the band structure of the Dirac-Kronig-Penney
model. We note that Kronig and Penney considered both
the finite square well potential and the delta function lim-
it in their original paper, so it is appropriate to use the
term Dirac-Kronig-Penney to refer to both the square bar-
rier case and its delta function limit.

The result (2.20b) can be immediately transcribed to
give an alternative form of eigenvalue condition (3.15) or
(3.21) valid for the square barrier potential:

2cosal=Tr[I4(/)IIg (a)II~(a)IIx '(0)] . (5.1)

From this equation, or (3.21) and the form of /Pz in Eq.
(4.26), we obtain the general eigenvalue condition for the
Dirac-Kronig-Penney model,

A A.
2 cos~l =2 coskb costa — —+—sinkb sinKa,

A
(5.2)

where ~=2vrp/L for some integer p.
In the nonrelativistic limit described by Eqs. (4.28), the

Dirac-Kronig-Penney eigenvalue condition (5.2) reduces
to the Kronig-Penney eigenvalue condition (2.21). How-
ever, since we are considering a model for the binding of
light quarks in a nucleus, we are much more interested in
the form taken by (5.2) in the relativistic region. In fact,
the limit of interest is

m «E«U, , (5.3)

In this case there are no forbidden bands, as we may
have anticipated, since we saw in Eq. (4.33) that the
transmission coefficient for a single barrier becomes unity
in these circumstances. The barriers are transparent to
the quarks, and there are no band gaps.

The absence of band gaps is the manifestation of the

In these circumstances it is desirable to consider the cases
U, »E, U, =O and U, »E, U, =0 separately.

In the first, electrostatic potential, case, K= —U, is
real, A = 1, k= 1, and (5.2) becomes

costi =coskb cosKa —sinkb sinKa =cos(kb +Ka) . (5.4)
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Klein paradox in this case, and again shows that an elec-
trostatic type of potential cannot model confinement.

If we take the large U, limit, but not the limit E »m,
the eigenvalue condition becomes

cos~l =coskb cos U, a +—sinkb sin U,a,
k

(5.5)

showing that forbidden bands can occur for heavy quarks
in this limit.

Now we turn to the scalar potential, for U, »E,m,
K = + iU„A = +i and so the eigenvalue condition be-
comes

m
cos~l =coskb coshU, a+ sinkb sinhU, a,

k
(5.6)

which can exhibit allowed and forbidden bands. If we
take the limit in which the potential strength becomes in-
finite, the allowed bands become degenerate on the values
of k determined by the transcendental equation

k
tankb +—=0 .

m
(5.7)

This is, however, just the condition for the energies of
quarks confined to a region of width b by an infinite sca-
lar potential —or a one dimensional bag. Thus we see that
a strong scalar potential effectively confines quarks to
their individual cells.

The massless limit of (5.6) is

cosKl =coskb coshU, a, (5.')

~coskb~ &sechUa (5.9)

explicitly showing how the bands narrow as U, becomes
large, and that they are centered on the points
k =(2n +1)(~/2b).

For the delta function potential we can obtain the
eigenvalue condition simply by the replacement Ua ~S in
(5.5) and (5.6). This gives

in which case the allowed bands are determined by the
condition

responding value of ~, which takes the values ~=~p/Nl,
for integer pe(O, N), and we can write

E„,= QE(x)
~/t

d~E ~ (6.1)

Now change variables to k:
k«)= '" =—f '"dkE(k)

77 min dk
(6.2)

where (k;„,k,„) is the first allowed band. The function
v(k) is determined by the solution of the eigenvalue condi-
tion (2.10)

~=l 'cos '( —,'TrT) (6.3)

k

0.619

and d~/dk is proportional to the density of allowed states
in k space. It is more useful to integrate (6.2) by parts:

(E)=—E(k)~(k) f ——f dk ~(k)
min 7l' min E(k)

k

=E(k,„)——f„dk ~(k) . (6.4)
min E(k)

To compute the binding energy we must subtract the
binding energy of a quark in an isolated one dimensional
bag. The quark energy levels in the bag are given by the
solutions of (5.8).

As an example of illustrating the order of magnitude of
the effects involved, we consider a system of bags of
width b = 1 fm, represented as zero potential regions,
separated by a potential barrier of width a and height U
proportional to a. The proportionality between barrier
height and width is adopted to simulate a rising potential
as the quark leaves the attractive center. ' The propor-

E
cos~b =coskb cosS, +—sinkb sinS,

k

for electrostatic delta function potentials, and

m
cos~b =coskb coshS, +—sinkb sinhS,

(5.10)

(5.11)
0.309

for Lorentz scalar delta function potentials. Note that for
weak delta function potentials, and in the nonrelativistic
limit, both of these equations reduce to the original
Kronig-Penney eigenvalue condition (2.22).

VI. THE BINDING ENERGY
OF THE MODEL SYSTEM

In the noninteracting quark approximation, the binding
energy of the one dimensional model system may be cal-
culated by the method originally used by Kronig and Pen-
ney. The allowed states fill the lowest k band, and the
equivalent band at the same energy corresponding to neg-
ative values of k. The states may be identified by the cor-

0
1.0 1.5 2.0 a ( frn j 2.5

FIG. 2. Allowed values of k (in GeV/c) as a function of the
unit cell size are shown as the cross-hatched area. The average
energy per quark [Eq. (6.4)] is shown as the heavy line. For this
example, b = 1 fm and U = Upa with Up = 1.65 GeV/fm.
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tionality constant was chosen to be 1.65 GeV/fm for our
example. The quarks are taken to be massless, and the
potential is assumed to be a Lorentz scalar. In Fig. 2 the
allowed bands are shown cross-hatched as a function of
the size of the unit cell, and the average energy is plotted
as the solid line.

As the wells move apart from a configuration in which
they touch, the bandwidth narrows dramatically, and the
midpoint of the band drops from wl2b when a =0, and
then slowly moves back towards that value at infinite
separation.

The behavior of the band is reflected in the energy.
The system is not bound when the nucleons are very close
together, and has an equilibrium binding energy of about
53 MeV/quark at a cell size of 1.4 fm. At this point the
band gap is only 166 MeV/c, indicating a tight binding
situation.

tion of the equation.
(iii) The transfer matrix method is readily adapted to

the solution of the Dirac equation for a one dimensional
periodic potential.

(iv) A Lorentz scalar potential exhibits confinement in
the Dirac-Kronig-Penney model, while an electrostatic
type of potential does not.

(v) A model with a fixed bag size, and a barrier between
wells whose height is proportional to its width exhibits sa-
turation behavior.

These results are sufficiently encouraging to suggest
that this model be further developed. Possible extensions
are to random lattices and surface states in one dimension,
and through the Green's function method to three dimen-
sions. '
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