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A covariant version of light front perturbation theory is obtained as a limit of the covariant time-
ordered perturbation theory developed recently by the author. The graphical rules for the covariant
light front perturbation theory are essentially the same as Weinberg's infinite momentum frame
rules; however, they involve a redefinition of the original Weinberg variables. The new definitions
guarantee that the contributions of individual diagrams to the S matrix are invariant. A set of man-

ifestly invariant three-particle integral equations is derived. These equations are obtained from a
model field theory which describes the interaction of a charged scalar particle g with a neutral sca-
lar particle P according to the virtual process ~ttj+P. The solutions of the integral equations lead
to amplitudes for P+t(j~g+P and P+g~2P+P which satisfy two- and three-particle unitarity.
The integral equations are free of the spurious singularity in s, the square of the invariant c.m. ener-

gy, which has been an undesirable feature of earlier relativistic three-particle equations. This singu-

larity is known to be responsible for spurious bound state solutions.

I. INTRODUCTION

Quantum field theories are commonly analyzed by
developing perturbation series for the S matrix. In the
most popular version of perturbation theory, the various
terms of the series are represented by Feynman diagrams. '

In these diagrams the total four-momentum is conserved
at each vertex, the intermediate particles are off-the-mass
shell, and propagators are associated with internal lines.

Each Feynman diagram with n vertices corresponds to
n! diagrams of an older version of perturbation theory,
sometimes referred to as old-fashioned perturbation
theory or time-ordered perturbation theory (TOPT). Each
of the n! diagrams of TOPT looks like a Feynman dia-
gram with a particular ordering of the vertices; however,
the rules are quite different, i e., the total three-
momentum is conserved at each vertex, the intermediate
particles are on-the-mass shell, and energy denominators
are associated with intermediate states. Also, the integra-
tions that arise with Feynman rules are four dimensional
while those of TOPT are three dimensional.

Feynman diagrams are more widely used than TOPT
diagrams, because there are fewer of them and they are in-
dividually covariant. There have been improvements
made on TOPT which make it more attractive. Wein-
berg has developed a version of TOPT which has fewer
diagrams, while Kadyshevsky and the author have refor-
mulated TOPT so that the contributions of individual dia-
grams to the S matrix are invariant.

Weinberg arrived at his graphical rules by considering
the infinite-momentum limit of TOPT diagrams. More
specifically, he studied these diagrams in a Lorentz frame
moving at a high velocity in a direction opposite to the to-
tal three-momentum P. In such a frame all particles
move with large velocities more or less in the +P direc-
tion. Many of the TOPT diagrams vanish in this limit,
and moreover, the energy denominators which occur in
the old-fashioned rules are replaced by invariant s denom-

inators, where s =P, the square of the total four-
momentum. In spite of the appearance of the s denomi-
nators, the contributions of individual Weinberg diagrams
to the S matrix are not invariant, except in certain special
cases.

It has been shown that the Weinberg infinite-
momentum limit can be interpreted as a change of the
space-time variables (x,x ', xq) and the energy-
momentum variables (p,p', pt) to the light-cone variables
(x+,x,xt) and (p,p+, p~), where x+ ——x +x',
p+ ——p +p', and x& and pz are transverse with respect to0

the arbitrarily chosen one axis. In the new variables, x+
and p play the roles of the "time" and "energy, " respec-
tively. In this framework it becomes clear' ' that the
Weinberg rules are related to the front form of relativistic
dynamics originally proposed by Dirac, ' and that they
can be derived by quantizing fields at equal values of t+
rather than at equal times. For this reason the perturba-
tion theory given by the Weinberg rules, or variations
thereof, is often referred to as light front perturbation
theory (LFPT).

The connectedness structure of LFPT is similar to that
found when TOPT is applied to nonrelativistic problems.
Accordingly, summing series of LFPT diagrams leads to
integral equations which are analogous to those encoun-
tered in few particle potential problems. Few particle
equations which sum series of LFPT diagrams are often
called Weinberg equations. The original Weinberg equa-
tion is a light-front ladder approximation for the relativ-
istic two-body problem. Since in LFPT the integrations
are three dimensional, Weinberg equations have fewer
variables than equations of the Bethe-Salpeter type. ' '

An extensive study of two-body Weinberg equations has
been made by Namyslowski and his co-workers. ' ' They
have introduced a variation of the original light-front
variables which involves invariant projections of four-
vectors on tetrads, where a tetrad is a set of four mutually
orthonormal four-vectors. In contrast to the original
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Weinberg equation, their two-particle equations are man-
ifestly invariant.

Using LFPT, Namyslowski and Weber' have examined
the effect a disconnected third particle has on a two-
particle system. Their results indicate that LFPT can be
truncated so as to preserve the cluster property. ' In this
context the cluster property states that the dynamics of a
two-body subsystem of a three-body system should be
unaffected by the presence of the third particle when in-
teractions with the third particle are negligible.

Other applications of LFPT to two- and three-particle
systems have been made in the context of quantum chro-
modynamics (QCD). An account of the advantages of
such an approach to QCD has been given in a series of pa-
pers by Brodsky, Lepage, and collaborators. ' In par-
ticular, it has been shown' ' that the nonperturbative,
large distance interactions in few-quark systems can be
accounted for by turning Weinberg equations into so-
called evolution equations.

As mentioned above, LFPT is not the only variation of
TOPT. Kadyshevsky has developed an approach in
which an invariant time direction is established by intro-
ducing a timelike, unit four-vector, denoted here by A, .
This leads to a reformulation of TOPT in which individu-
al diagrams make invariant contributions to the S matrix.
The number of diagrams is the same as in TOPT; howev-
er, the graphical rules are quite different. Besides the par-
ticles described by the underlying quantum fields, there
appear so-called quasiparticles or spurions. The total
four-momentum of the particles and quasiparticles is con-
served at each vertex, the intermediate particles are on-
the-mass shell, and propagators are associated with inter-
nal lines. The appearance of the quasiparticles makes
these diagrams much more complicated than those of
Feynman, TOPT, or LFPT.

Recently the author has shown how to reformulate
Kadyshevksy's approach so as to eliminate the quasiparti-
cles. This leads to a covariant version of TOPT whose
graphical rules are the same as those of TOPT except for
the replacement of three-momentum conserving 5 func-
tions by invariant three-dimensional 5 functions and the
use of invariant denominators rather than energy denomi-
nators. The invariants that occur in the denominators are
of the type A, P, where P is the total four-momentum of a
state. This covariant time-ordered perturbation theory
(CTOPT) becomes identical to TOPT in a special set of
Lorentz frames, called A, frames. A k frame is one in
which A, =(1,0). If A. is chosen parallel to the total four-
momentum of the system, a A, frame is the same as a c.m.
frame.

In the development of CTOPT the spacelike surfaces
given by A, .x =~, where ~ is an invariant time parameter,
play an important role. It is not difficult to show that in
the limit in which the components of X become infinite,
all of these spacelike surfaces become light fronts. This
limit is taken by writing A, =(AD, A, ) and letting

~

A,
~

~ oo

subject to the constraint X =A,0—~

A,
~

= l.
Here we will see that taking this infinite-A, limit of

CTOPT leads to a covariant version of LFPT. The
graphical rules for this theory can be stated in a form
identical to that given by Weinberg. The difference lies

in the definition of the variables that are used to label the
particle lines. For an on-the-mass shell particle with
four-momentum p in a state with total four-momentum
P, the original Weinberg variables are g=p+/P+ and
q=pi, while the new definitions are g=g p/g P and
q =pi —rlPi. Here g is a lightlike vector that k is propor-
tional to in the infinite A, limit. Clearly the g s are invari-
ants, and we will see that dot products formed from the
two-vectors q are also.

The new meaning for the Weinberg variables is impor-
tant, as it guarantees that the contributions of LFPT dia-
grams are individually invariant. Also, integral equations
obtained by summing series of LFPT diagrams are now
manifestly invariant, a highly desirable feature that the
original Weinberg equation lacked.

The infinite-k limit will be carried out here in the con-
text of a model field theory which describes the interac-
tion of the quanta P of a charged scalar field with the
quanta P of a neutral scalar field according to the virtual
process ~~/+/. This model was used in the develop-
ment of CTOPT. Since the diagrams for P-it scattering
are similar to those that arise in models of pion-nucleon
scattering in which the elementary virtual processes are
B~'+~ (B,B'=N, b, . . . ), it is of interest to obtain in-
tegral equations for P-g scattering. Here we will obtain a
three-body model for this process by summing all LFPT
diagrams with

~
P), ~ g, P ), and

~ $,2$ ) intermediate
states. We will see that with this model, the amplitudes
for p+g~p+g and p+$~2$+lt can be obtained by
solving a linear, three-dimensional integral equation
which, as a result of the use of the new definition of the
Weinberg variables, is manifestly invariant. In fact, all of
the ingredients of the equation are invariants.

The three-body equations we will develop are similar to
those Aaron, Amado, and Young derived a number of
years ago by imposing two- and three-particle unitarity on
a relativistic isobar model, but with some important
differences. First of all, the equations developed here look
exactly the same in all Lorentz frames, i.e., they are mani-
festly invariant. It is not only in the c.m. frame that they
acquire a concise or practical form. Secondly, they satisfy
the cluster property' without introducing a spurious
singularity in the s variable for the three-body system.
It has been shown that this singularity is responsible for
spurious bound-state solutions, so getting rid of it
represents more than an aesthetic achievement. As far as
this author knows, up until now no one has succeeded in
developing invariant, three-dimensional, three-body in-
tegral equations which satisfy the cluster property without
introducing this spurious s singularity.

The outline of the paper is as follows. In Sec. II the in-
finite A. limit of CTOPT is taken and it is found that this
leads directly to a covariant version of LFPT in terms of
the variables (p+, pi). It is then shown that transforming
to new variables leads to graphical rules just like those of
Weinberg. It is demonstrated that the transformation
properties of the new variables are such that individual di-
agrams give invariant contributions to the S matrix. The
three-particle equations are derived in Sec. III, and it is
verified that they satisfy the cluster property without the
occurrence of a spurious singularity in the three-particle s
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value. In Sec. IV it is shown that the amplitudes obtained
from the three-particle equations satisfy two- and three-
particle unitarity. This analysis leads to an expression for
the production amplitude which is similar to that as-
sumed in isobar models. Finally, Sec. V gives a discus-
sion of the results and suggestions for future work.

II. THE PERTURBATION THEORIES

The various perturbation theories will be analyzed here
in the context of a simple field theory which describes the
interaction of a neutral scalar particle P with a charged
scalar particle g by means of the elementary virtual pro-
cess

The energies of the particles are given by

(k2+ 2)1/2 E ( 2+ 2) I/2 (2)

For the perturbation theories of interest the S matrix
for a transition a~p can be written

Sp =5p (2m)—i5 (P.p P)Q—p Tp (3)

where P and Pp are the total initial and final four-
momenta, respectively. The quantity Qp is a product of
external factors —one for each particle in the initial and
final states. The factor for a P particle is
(2n )

/ (2E& ) ', while for a P particle it is
(2m) / (2cok )

'/ . The T-matrix element Tp is a
Lorentz invariant function of the incoming and outgoing
momenta.

The perturbation theories can be summarized in a set of
graphical rules for constructing Tp~. The theories differ
only in the way the lines are labeled and in the precise
form of the various factors. The labels and factors are
given in Table I. The CTOPT rules are derived in Ref. 6,
while those of LFPT will be obtained here. The general
graphical rules are given below.

(a) Draw all possible ordered diagrams for the transi-
tion a~P. That is, draw each nth order Feynman dia-
gram n. times, ordering the n vertices in every possible
way in a sequence running from right to left, with lines
for the particles in the initial state a and the final state p

entering on the right and leaving on the left, respectively.
Label each line as indicated in Table I.

(b) Include an internal line factor for each internal line.
(c) For every vertex except the last, include a vertex fac-

tor. The factor for the last vertex is already included in
(3). Associate a bare coupling constant go with each ver-
tex.

(d) For every intermediate state, i.e., a set of lines be-
tween two adjacent vertices, include a denominator factor.
In Table I, the intermediate state is indicated by y.

(e) Integrate the product of these factors over all inter-
nal line labels, and sum the result over all diagrams to ob-
tain T~.

In CTOPT a timelike unit vector A, =(AO, A, ), with the
properties

A, =1, Ao&0 (4)

plays an important role. In particular, it occurs in the
definition of the invariant three-dimensional delta func-
tion 5~ that appears in the vertex factors. This 5 function
is defined by

5g(y)—= d x e'~ "5(A, x),1

(2m)
(Sa)

1 3 A,
Y —yo&

0 0
(Sb)

(Sc)

It follows from (Sa) that for any four-vector y, 5~(y) is
an invariant function of A. and y, i.e., 5~(y) =5~ (y'), where
k' and y' are obtained from A. and y, respectively, by a
Lorentz transformation. Integration over xo yields (Sb).
In (Sc) y~ is the three-vector part of y in a A, frame, i.e.,
one in which A, =(1,0). We will indicate components
evaluated in these frames by a subscript A, .

The vertex factors for CTOPT involve 5~(AP), where
b,P is the total four-momentum leaving the vertex minus
the total four-momentum entering the vertex, with all of
the particles on the mass shell. Because of (Sc) the total
three-momentum in a A, frame is conserved at each vertex.

TABLE I. Labels and factors for the various perturbation theories.

Covariant
time-ordered

perturbation theory
Light-front perturbation theory

Light-front variables Weinberg variables

Line
labels

Internal
line
factors

Vertex
factors

Denominator
factors

(2n) (2' )

or
(2~) {2cop )

(2m. )35'( AP)

1

k-P +i e—A, .P~

(p+, p~)

(2~) (2p+ ) '0(p+. )

(2m. )'5(AP+ )5 (APg )

P +is—Pa y

(g, q)

(2m ) (2q ) '0( q )

(2~)'5(AXg)5 (AXq)

Sa+l6 —Sy
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The denominator factors for CTOPT contain P and

Pr, the total four-momentum for the initial and inter-
mediate states, respectively. When the invariant X.P is
evaluated in a A, frame, it yields Eq, the total energy in
this frame. Clearly, in a A, frame CTOPT is identical to
TOPT. A formal proof that the S matrix calculated with
CTOPT is the same as the one obtained from Feynman
diagrams is given in Sec. II of Ref. 6. This proof shows
that the S matrix is independent of the arbitrary external
vector A. , which is a necessary requirement for covariance.

In order to illustrate the CTOPT rules and to make a
couple of important points, we give below the contribu-
tion to the T matrix which arises from the diagram in
Fig. 1.

surfaces are replaced by the spacelike surfaces A, x =r,
where ~ is an invariant time parameter. When p~ ao, the
spacelike surfaces become light fronts.

By using (8) and the Lorentz transformation from a
general frame to a k frame [Eqs. (30) of Ref. 6], we can
write

po~= —(e'p +e 'p

u p„= 2(e&p+ —e-&p ),
(9)

(10)

Pzi =Pi ~

where p is any four-momentum and we have introduced
the notation

where

d p (2n)5g(P. +p")
(2n. ) 2E~„A. P +ie k.—(Pp+p" +P )

P =p +k, Pp ——p'+k' . (6b)

It is important to note that in the diagrams we deal with
here, all of the lines flow from right to left, i.e., in con-
trast to Feynman diagrams we do not imagine that the p"
line in Fig. 1 is flowing "backwards in time. "

The integration in (6a) can be easily carried out by us-
ing (5c) and the fact that d p"/E& is an invariant. We
do not bother to give the result, but do point out that be-
cause of the 5q function,

A+ ——Ho+A u,
Az ——A —A.uu .

Combining (9) and (10), we find

A. .P =u P~+e

with

P= gp„,

P~= gp. ~

P+= gp +,

(12)

(13)

(14)

(15)

(16)

(17)

A, =(coshp, —u sinhp),

p&0, u-u=1,
(8)

and letting phoo. That this limit should lead to LFPT
can be seen quite simply. In TOPT the spacelike surfaces
t=const play a privileged rule, while in CTOPT these

Pa~=py~=Pp~

where Pr~ is the A, frame total three-momentum in the in-
termediate state, i.e., Prq ——P~~+p~+P~~. The fact that
the k-frame total three-momentum is the same in every
state (initial, intermediate, and final) is a general feature
of CTOPT.

We will now show that the rules of LFPT can be ob-
tained by parametrizing A, in the form

where the sums are over all particles in a state (initial, in-
termediate, or final). From (7) and (14) it follows that for
the denominator factor of CTOPT we have

A, .P APr ——e ~—(P P) . —
a y

According to (5c), (10), and (11),we can write

5),(b P) =2e ~5[6,(P+ —e ~P )]5 (b,P~ ),

(18)

(19)

where AP+ and Apz are the changes in the plus-minus
and transverse components of the total four-momentum at
a vertex. In the Nth order of perturbation theory, we
have N —1 vertex factors and N —1 sets of intermediate
states, so the e ~ factors in (18) and (19) cancel out.
Upon letting p~ ao, we obtain the vertex and denomina-
tor factors in the second column of Table I.

From the arguments of the new vertex factors it is clear
that the natural variables are (p+, pz). The integrations
can be easily transformed from p=(p u, pz) to (p+,pj )

by using
k

p+ ——[(p.u) +p~+m ]' +p u,

d'p«, =dp+d'pi 4 +

(20a)

(20b)

FICx. l. A contribution to P-tt scattering in CTOPT.

According to (20a) p+ must lie in the interval (O, ac ),
which accounts for the step function 8(p+ ) in the internal
line factors. This completes the justification for the en-
tries in the second column of Table I.

It should be noted that in computing the denominator
factors we can express the minus component of a
particle's rnornentum in terms of its plus and transverse
components by using
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2 2Pnl+~n
(21)p —=

n p„+
which follows from (12) and (13) and the fact that the
particles are on the mass shell. Also, since the plus and
transverse components of the momentum are conserved at
each vertex, we have

s=P (31)

The sum in (30) is over all the particles in the state.
Using (27), (22), (23a), and (25), we find

s~ —s~ =P+ (P P—) (32)

where s is the square of the total energy in the c.m. sys-
tem for the state of interest, and is given by

P +=P +=P +=P+,a y P

P j ——P ~
——Pp~=Pq,

(22a)

(22b)
and

5(EXg)5 (AXq)=P+5(bP+)5 (APE), (33)

q =p+ /P+, (23a)

(23b)

where g is the lightlike vector

k=40(1 —u»
and

(24)

q=p~ —'9Pi . (25)

It is important to keep in mind that P+ and Pi are fixed
throughout any process [see (22)], and therefore

Pal (26a)

where a, P, and y refer to the initial, the final, and any in-
termediate state, respectively. We see that the conserva-
tion of the total A,-frame three-momentum in CTOPT has
been replaced in LFPT by the conservation of the plus
and transverse components of the total four-momentum.

In order to obtain the entries in the third column of
Table I, we introduce variables g and q that are covariant
generalizations of the variables introduced some time ago
by Weinberg. We define for each particle

where AXg and b Xq represent the changes in the total g
and total q at a vertex. Since there are as many denomi-
nator factors in a diagram as there are vertex factors, the
P+ 's in (32) and (33) cancel out. Integrals can be
transformed from the (p+, pi) variables to the (g, q) vari-
ables by using

Qp+P p&/p+ —Pg J q/g

8(p+)=8(t)) .

(34)

(35)

This completes the justification for the entries in the third
column of Table I.

We conclude this section by emphasizing an important
feature of LFPT. In Fig. 1, conservation of the r)'s and
(26a) require that for the p" particle, t)"=—1; however,
the step function 8(g") forbids this, and therefore the dia-
gram makes no contribution to the S matrix. In general,
diagrams give no contribution whenever a vertex has lines
coming in from the right, but has no lines going out to the
left, or vice versa. This is so because q conservation re-
quires that the sum of the t)'s of these lines vanish, and
this is forbidden by the requirement that all q's be posi-
tive.

g q„=o, (26b) III. THREE PARTICLE EQUATIONS

where the sums are over all of the particles in a state (ini-
tial, final, or intermediate).

From (12) and (13) it follows that the scalar product of
any two four-vectors can be written in the form

A B = —,(A+B +A B+ ) —Ai. Bi .

Using this, (23a), and (25), we find

q.q'= (p RP) (p' t—1'P'»— —

(27)

where (i),q) and (q', q') are the variables for the particles
whose four-momenta are p and p', while P and P' are the
total four-momenta for the states (initial, intermediate, or
final) in which these particles occur. It should be noted
that the particles can occur in different states. According
to (23b) and (28), i) and q q' are invariants.

From (28), (26a), and (15), it follows that

go go(k, p»
with

(36)

In this section we will derive a set of three-particle
equations for P fscatterin-g which, since the basic in-
teraction is (1), can be thought of as an analog of pion-
nucleon scattering. The equations will be obtained by
summing all diagrams with

~
f),

~
1(,p), and

~ f,2p) in-
termediate states.

In order to make the equations more general and to al-
leviate convergence problems with the integrals, we will
assign a cutoff function to the vertex shown in Fig. 2. In
this figure we show all three labels for each of the parti-
cles (see Table I). The graphical rules with the cutoff
function are the same as those given in Sec. II, except for
the replacement of the bare coupling constant according
to

and

q+m =2p.P —qs
7l

2 2qn+~n =S

(29)

(30)

k+
k++p+

Qk

Qk+ gp

(37a)

(37b)
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(qj, , qk)

(k, kg) (g, q)

(v+, v ) (I-q', —q ') (t-q' —q, —q' —
q ) (I-q, —

q )

FIG. 2. The P-P vertex. FIG. 3. A crossed Born term for (t-g scattering.

p=k). —Pk). +p). ) (37c)

'9 qk —'9kq
(37d)

9k+ Qp

where (37b) and (37d) are obtained with the aid of (23a)
and (25). We will see that the assumption that the cutoff
function depends only on the momenta through g and p
preserves the cluster property. Furthermore, since the g's
and dot products of the q's are Lorentz invariants, we will
assume that the cutoff actually only depends on g and p,
thereby making it an invariant function. We will continue
to denote it, however, as in (36). By following the analysis

that leads to (30), it is straightforward to show that

2+ 2 2+ 2

=2m +2(L(, —(p —k)1— (38)

so we can, if so desired, write the cutoff as a function of
(p —k) .

We begin summing diagrams by considering only those
with

~
g, P) and

~
$,2$) intermediate states, i.e., we ig-

nore the one-g reducible diagrams for now. Within this
set the lowest order diagram is given by Fig. 3. Using the
LFPT rules with the Weinberg variables, we find its con-
tribution to be

Bo(g', q'; r), q;s ) = 8(1 —rI' —g)
1 —7l —3

with

I Igo, ,q+, q' go, q'+ q
1 —g'' 1 —g' 1 —g' 1 —g

(39a)

q +p (q+q) +m q +p (39b)
1 —q' —g

where s3 is the s value for the
~
P, 2P) intermediate state. Here, and in what follows, we assume that s, without any sub-

script, is a free complex parameter, unless stated otherwise. In particular, we do not identify it with the initial state s
value as in Table I. This will give us a completely "off-shell" theory.

It should be noted that the diagram obtained by reversing the order of the vertices in Fig. 3 has three g particles in the
intermediate state and hence an s value whose lower bound is (3m) . Since s3 & (2p+m), it is reasonable to assume that
the diagram with the opposite ordering to Fig. 3 is negligible at low and intermediate energies if we assume that p and m
are the pion and nucleon mass, respectively.

Applying the graphical rules to Fig. 4, we find the contribution

g(&")g(1 &") Bo(g', q', rI",q";s)Bo(rI",q";g,q;s)
2(2~)' q"(I —q" ) s —sp(g", q") (40a)

with

2 2 2 2q+p q+m (40b)+1-9 '

where s2 is the s value for the
~ P, P ) intermediate state.

It is now obvious how to sum the series of diagrams in
Fig. 5. This series leads to a two-particle integral equa-
tion with the potential given by (39) and the propagator
identified from (40) as

(1—g) '[s —s2(g, q)]

( 7)", f")
(q' q')~

p
/

(I-q', -q ') (I-q",

y(7) Q)

-q" ) (l-g, -q )

FIG. 4. A fourth order contribution to P-P scattering.
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q=O )

FIG. 7. Chain approximation for the P propagator.

FIG. 5. A series of one-t( irreducible diagrams for p-p
scattering.

In order to obtain a three-particle theory, we must include
diagrams such as Fig. 6. This leads us to consider the
series of diagrams in Fig. 7, which gives the dressing of
the 1t particle in the so-called "chain approximation. "'
We find

D(m )=0.
Assuming this is so, we can choose Z so that

(43)

of the two vertices makes no contribution.
In order to determine the parameters Z and mo we can

proceed in exact analogy to the renormalization of the Lee
model. From (42) and (40b), it follows that X(s) is a real,
analytic function of s with a right-hand cut (RHC) for
real s ) (p+m), so, for real s ((p+m), X(s) is a real
monotonic function of s. By choosing mo small enough
we can always find a solution of

Z
D(s)

1 X(s) X (s)2+
s —mo (s —mo) (s —mo)

D(s) ~ s —m
s~m

(44)

= [s —m,' —X(s)]-', (41)

where D(s) is the renormalized tt propagator, Z is a re-
normalization constant to be determined, mo is the bare f
mass, and X(s) is the self-energy, which in our approxi-
mation is given by

2
1 8(7I)9(1—r)) go '9 qXs=

2(2~)3 rl(1 —ri ) s —s2(rl, q)

It should be noted that in order to obtain sensible results
at our level of approximation we must use the physical tt
mass m in the expression for X(s). It is interesting to ob-
serve that (42) is also obtained if we use the Feynman
rules, since in LFPT the diagram with the other ordering

(q, q )

(I-q, —q)

(q", q ")

(q, q )

(I-q, -q ") (l-g, —q ")

FIG. 6. A diagram that contributes to the dressing of an in-
termediate P particle.

FIG. 8. Chain approximation for the P propagator in the
presence of a noninteracting P particle.
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which leads to

Z '=1 —X'(m )&1. (45)

but with ( s —m 0 )
' replaced by

Now we consider the series of diagrams in Fig. 8 which
describe the dressing of the 1( particle in the presence of a
noninteracting p particle. We find a series just like (41)

1 1

1 —g s —sq(g, q)

1

(P k—) rn—

with m ~m0, and X(s) replaced by

(46)

p, 9(q')8(1 —g —q')
G'g 0 g

2(2m )' g'(1 —g —q')

where

I

,q'+ q
1 —g

s —s~(g, q;g', q')
' =X[(P—k)~], (47)

s =P =P+P —PJ

kg+@
k+ ——gP+, kq ——q+ qPq, k

k+

(48a)

(48b)

It seems intuitively clear that the equalities in (46) and (47) are valid, but it is important to verify them as they indicate
that truncations of LCPT do not violate the cluster property. To verify (46) we only need to use (27) and (48). We can
verify (47) by making the transformations

I
II g

7l
1 —g

(49a)

I

q =q'+ q, (49b)
1 —g

assuming 0 & g & 1, and comparing with (42).
We are now in a position to sum all diagrams with

~
1(,p) and

~
g, 2p) intermediate states. We find that this sum is

given by the iterative solution of an equation which can be written symbolically as

z
ro =&o+&o—~o

D

We renormalize the quantities that occur in this equation as follows:

Y(ri', q', 7),q;s) =ZYD(g', q', g, q;s),
B(ri', q', g, q;s) =ZB0(ri', q', ri, q;s),

g(g p}=Z gp(g I }

(50)

(51)

(52)

(53}

This takes account of the renormalization of external lines and the coupling constant. Our approximate equation for the
one-f irreducible P )amplitude is -then given by

1 B(''""')Y("";,;)Y(ri', q', n, q;s)=B(g', q', g, q;s)+ f ~ J d~q" ~ 'q'~ 'q ' ~ 'q '~'q', s =p~+ie, (54)

where

&I2 2

(P —k") =(1—g"} s — „—q" (55)

It is important to note that this equation satisfies the cluster property without introducing the spurious singularity in
s that occurs in other relativistic three-particle equations.

Our job is now to find the contribution of the one-1tj reducible diagrams to the p-p amplitude. The series of diagrams
we are summing is topologically equivalent to the series that arises in finding the t9- V amplitude in an extension of the
Lee model in which the elementary processes are V~~N +0 and 8'~~V+0, where V, N, and S'are fermions and 0 is a
scalar boson. The one- W reducible diagrams in this extended Lee model are topologically equivalent to the one-jb reduci-
ble diagrams under consideration here. The analysis of Ref. 27 shows that we can take account of these processes by
adding to the potential B in (54) the separable potential

2S —Pl p

Our complete P-P amplitude is then given by the solution of the equation

(56)
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1
I/

2 „V(g',q', q",q",s)X"(r)",q";q, q;s)X(q', q', g, q;s) = V(g', q', g, q;s)+ f ~ f d2q" ~ 'q '~ 'q ' ~ 'q '~'q', s =p2+iz,
2(2'�) D[(P —k") +i@]

where

V(g', q';g, q;s) =8 (g', q';g, q;s)+ W(g', q';ri, q;s) .

(57)

(58)

As a result of the separability of W it is not difficult to separate the one-P irreducible and one P-reducible contribu-
tions to X. The manipulations are identical to those given in Sec. VII of Ref. 28. The result is

X(q', q';g, q;s) = Y(g', q'; ri, q;s) + (rl', q', s)y(vl, q;s)
D(s)

where

1 ' dq' 2, Y(g, q;ri', q';s)g (g', q')
y(g, q;s)Z ' '=g(g, q)+, f ", f d'q' "' '" ' ', "', s =P'+is,

2(2~)' D [(P k'—)'+i@]
D(s)Z ' =s —mo —X(s),

(59)

(60)

(61)

The parameters Z and mo are determined by

D(s) ~ s —m
s~m

X .2(2~) q
6(g' —ri)6'(q' —q)
D[(P k) —+is]

q'9q
( )

Y( ' ' s)
D[(P —k') +is]D[(P —k) +is]

(62)

(63)

It is not difficult to show that X(s) sums the diagrams of Fig. 9; thus it represents an approximation to the f self-
energy which includes the effect of

~
P, P) and

~
P, 2P) intermediate states. In other words I/D(s) is the g propagator

calculated at the three-particle level of approximation. The vertex function y(q, q;s) also includes the effect of all
~
P,P)

and
~ P, 2P) intermediate states. Some typical diagrams that are included are shown in Fig. 10.

IV. UNITARY AND THE PRODUCTION AMPLITUDE

Here we shall sketch how the unitarity relations for the P-g amplitude can be derived directly from the integral equa-
tion (57). It is important to verify that this equation, which is based on a truncation of LFPT, leads to solutions which

FICy. 9. Contributions to the @ self-energy. FIT&. 10. Contributions to the vertex function.
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satisfy two- and three-particle unitarity exactly. This verification will also give us an expression for the g+P —+/+2/
production amplitude.

We will see that the solution of (57) has a RHC for real s & (p+m) . This cut arises because of cuts in IlD(s) and
V(g', q';g, q;s). We recall that 1/D(s) has a simple pole with unit residue at s =m as well as a RHC for real
s & (p+ m ) [see (44) and (42)]. Using this, (55), (40b), (41), (47), and (53), we can show that

1 1
disc

D[(P —k) ] D[(P k—) +is]
1

D [(P —k) —ie]
27Tl 277l5[s —

sz (ri, q) ]—
1 —g D [(P k—) +is]D [(P k)—i@—]

, ~g, 8(i)')8(1 —ri —il')
d'g d g, , gri'( 1 —i) —v]')

From (39), (52), (53), and (58), we find

1

2(2n. )

I I

q'+, "
q 5[s —si(i)' q'ri q)l .

1 —g 1 —q

(64)

. 8(1—il' —i))disc V(g', q', ri, q;s) = 2mi— , g, q'+ q g ",,q+ ",qI —g' —g 1 —g 1 —g 1 —g' 1 —g'

(65)

where we have assumed the singularity in 8' is outside the range of interest. It can be shown that in any case this
singularity does not contribute to the discontinuity in X.

Since sz and s3 are the s values for the
~
P,P) and

~
P, 2P ) intermediate states, we have

sz & (p+m), s3 & (2p, +m) (66)

thus the first term on the right-hand side of (64) gives rise to the two-particle cut in X, while the second term, as well as
(65), lead to the three-particle cut in X.

Not only does disc V vanish when s is below the g-2P threshold, but also when s is "on-shell. " This can be seen as fol-
lows. By using (27) it is straightforward to show that

(1—i)' —ri)[s —sz(ri', q', ri, q)]=(p' —k) —m, s =sz(ri', q')

=(p —k') —m, s =sz(i), q),
where k is given by (48b) and p is given by

(67a)

(67b)

p+ =(1 g}P+, pi= ——q+(1 —i))Pi, p
pz+m

(68)

with similar expressions for k' and p'. It is elementary to show that the right-hand sides of (67a) and (67b) cannot van-
ish, so

disc V(il', q', 71,q;s}=0,
when

s =s i ( ri ', q' ) or s =s z ( il, q ) .

(69)

(70)

By using the procedure given in Sec. VI of Ref. 28, it is not difficult to show that when both relations in (70) are satis-
fied, we have

'd" d " 'd "' ddiscX(71', q', ii, q;s) = f „ f f „, f,X( )', qi'; )",qi"; +is@)
o ii" 2(2n ) o i)"' 2(2m. )

&(disc
1 + disc V(i)",q";g"',q"', s)

D[(P —k") ] D[(P k") +i@]D[(P— k"') +is]—
XX(g"',q'";g, q;s+ie), s =P (71)
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By looking at the iterations of (57) it is easy to see that

X*(ti,q;t)', q';s') = X(g', q', r), q;s) = X( rl, q; r)', q'; s),
which when used in conjunction with the real, analytic character of D (s) as well as (64) and (65), leads to

Im X( r)', q', ri, q; s)

(72)

g

2(2~)

2(2~)

5[s —s 2 (ri",q" ) ] X*(ri",q";r)', q', s +it)X(ri",q";ri, q;s +i@)

g 2 rls g( 1
rr rgb

)

X T*(t)",q",ri'", q"';ri', q';s +i E)T(ri",q",ri"', q"';ri, q;s +i e), s =P2 .

(73)

The production amplitude T is given by

T(ri",q",ri"', q"';ri, q;s) =F(t)",q",ri'", q'";ri, q;s)+F(ri"', q'";ri",q";r),q;s),
with

(74)

F(ri,q, r),q;r), q;s+ie)=g ',q" + ' q'" ' ' '" ', s =P
1 —tl"' '

1 —ti"' D[(P k"') +.r—E]
(75)

Here (t)",q") and (t)'",q'") refer to the P particles in the
final

~
g, 2P) state.

Equation (73) is the unitarity relation for the P-P elastic
scattering amplitude. Because it is written in terms of the
Weinberg variables, it may look a little unfamiliar; howev-
er, it can easily be brought to the standard form' by
transforming back to ordinary momentum variables. Fi-
nally, the expression for the production amplitude given
by (74) and (75) can be checked by summing the diagrams
for P+g~2P+g in which only

~
P),

~ P,P), and

~
g, 2P) intermediate states occur. The production ampli-

tude has the form assumed in an isobar model.

V. DISCUSSION

We have shown that it is possible to obtain the graphi-
cal rules of LFPT by taking a limit other than the infinite
momentum limit of Weinberg. The limit we have taken
involves the unit four-vector A. which provides the invari-
ant time direction for CTOPT. In the infinite k limit the
spacelike surfaces A, .x =r, where r is an invariant time
parameter, all become light fronts. Since CTOPT is man-
ifestly covariant, this limit gives a manifestly covariant
version of LEPT. This is in contrast to Weinberg s origi-
nal version of LFPT which was obtained as a limit of
TOPT.

It is worth noting that the LFPT obtained here can be
derived in a somewhat different manner. As pointed out
previously, CTOPT reduces to TOFT in a A, frame, i.e., a
frame in which A. =(1,0). Since the parameters of the
Lorentz transformation from a general frame to a A. frame
can be taken to be P=A, /Ao and y=A, o, it is clear that the
A.-frame momenta become infinite in the infinite A. limit.
Therefore Weinberg's analysis can be carried through

directly in such a frame. This leads back to the results of
Sec. II. In particular the new Weinberg variables
described by Eqs. (23)—(26) arise in a completely natural
way.

It should be noted that Namyslowski has also con-
sidered variables of this type in his analysis of light front
dynamics, and has stressed the fact that they provide a
manifestly invariant form for the cluster decomposition
property.

As pointed out previously, an important advantage of
the variables described by Eqs. (23)—(26) is that their use
leads to few-particle equations that are explicitly Lorentz
invariant. These variables play a role analogous to the
nonrelativistic Jacobi relative momenta, in terms of which
nonrelativistic few particle equations are manifestly
Galilean invariant. In fact, the relativistic equations
developed in Sec. III look very much like their nonrela-
tivistic counterparts. This reflects the existence of a sub-
group of the Poincare group which is isomorphic to the
Galilean symmetry group of nonrelativistic quantum
mechanics in two dimensions. The variables used here
provide a natural way of exploiting this isomorphism.

The similarity between relativistic few-particle equa-
tions expressed in terms of the new Weinberg variables
and their nonrelativistic counterparts makes the deriva-
tion of discontinuity and unitarity relations quite straight-
forward. The formal procedures are identical to those of
nonrelativistic quantum mechanics. ' ' The only differ-
ence worth noting is the shift in emphasis from the total
energy variable to the invariant s variable. It is interest-
ing to note that the method used by Aaron, Amado, and
Young to derive relativistic three-particle equations
from unitarity will lead back to Eq. (54) if the amplitudes
are assumed to be functions of the variables given by
(23)—(25), and the unitarity relation and the production



35 COVARIANT LIGHT FRONT PERTURBATION THEORY AND. . . 237

amplitude are assumed to be given by (73)—(75).
It should be noted that it is not quite correct to say that

the three-particle equations developed here are covariant.
The reason is that the equations depend on the arbitrary
unit vector u through its appearance in the g's and q's
[see Eqs. (23)—(25), (12), and (13)]. It is true, however,
that the equations are invariant in form, since everything
is expressed in terms of the ri's and dot products of the
q's.

Few particle equations obtained from Kadyshevsky's
perturbation theory, as well as the author's CTOPT, also
depend on an external vector, namely, the timelike vector
A, which provides an invariant time direction. With these
theories it has been shown ' that if the contributions
from the ordered diagrams corresponding to a Feynman
diagram are combined, the dependence on A. disappears
on-shell, and the Feynman result is recovered. This is as
it should be, otherwise the S matrix would depend on an
arbitrary four-vector, and hence would not be covariant.
Since the results obtained here arise from the infinite-A,
limit, the dependence on g also disappears when the con-
tributions from ordered diagrams are combined and
evaluated on shell. It should be noted that it has been
proved by Casher that the light front scheme is covari-
ant, so this is also as it should be.

Of course the integral equations developed here do not
include all of the ordered diagrams corresponding to a
Feynman diagram, and moreover are off shell, so the
dependence on g remains. If the diagrams obtained by
reordering the vertices of the diagrams summed by these
integral equations are negligible, then the on-shell ampli-
tudes obtained from the solutions of these equations
should have negligible g dependence. This point is
currently under investigation. In this connection it should
be noted that Karmanov has investigated the use of an
external vector in a relativistic formulation of few particle
wave functions and has analyzed to some extent their
dependence on the external vector.

As pointed out previously, the diagrams summed in
Sec. III to obtain the three-particle equations have a topol-
ogy similar to the topology of the diagrams that arise in a
model for n-N scattering in which it is assumed that the
elementary virtual processes are B~'+m ( B,B'
=N, h, . . .). Accordingly, it will be possible to use the
techniques presented here to develop an invariant, three-
dimensional, three-body isobar model for the m.-N system,
which, moreover, is solvable. It is important to do so, as
there is a possibility that some of the low lying resonances
seen in m.-N elastic scattering are due to the opening of the
production threshold, and are not true particle reso-
nances. Since it is difficult to explain some of these res-
onances in terms of quark models, this conjecture is cer-
tainly worth investigating.

The three-particle equations of Sec. III only take into
account

~
f),

~ g, p), and 1(,2(t ) intermediate states. It
is natural to ask if it is possible to do better than this. Re-
cently it was shown that exact two- and three-particle
equations for m-N scattering can be derived from a m.-N-b
field theory with static fermions by using projection
operator techniques. If the one-fermion irreducible part
of the three-body interaction that appears is neglected, a
closed set of coupled nonlinear integral equations for all of
the quantities of interest is obtained. While these results
are very encouraging, the assumption of static fermions
raises a question as to their general validity. Since the
internal lines in the diagrams considered here are associat-
ed with intermediate states, it should be possible to use the
projection operator techniques of Ref. 36 to derive exact
two- and three-particle equations starting from a covari-
ant field theory. The fact that the topology of LFPT dia-
grams is similar to those that occur in nonrelativistic
theories is further cause for optimism. If it can be shown
that the static model results continue to have some validi-
ty in the relativistic regime, then it will be possible to in-
vestigate three-particle models for the m.-N system which
go beyond the isobar model.
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