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Energy and target dependence of projectile breakup effect in elastic scattering of Li
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For a wide range of incident energy I E~,b ——40—170 MeV) and target mass number ( 2 =12—208),
projectile breakup effects in elastic scattering of Li have been investigated in the microscopic
coupled-channel framework; coupling with Li~o. + d breakup process is taken into account by the
method of coupled discretized continuum channels. Li-target interactions are provided by folding
of the M3Y effective nucleon-nucleon potential with nucleon densities of colliding nuclei. The cal-
culation reproduces well experimental data of elastic scattering for all the targets and incident ener-

gies investigated, without any renormalization of the folding real potential. The breakup effect is
found to depend little on the energy and target, which is shown by calculating dynamical polariza-
tion potentials induced by the breakup process. The dynamical polarization potential has a repulsive
real part with strength of about 40% of the folding potential, the imaginary part being negligible,
which explains well the empirical reduction factor of the single-channel double-folding model. The
origin of repulsive nature of the breakup effect is discussed.

I. INTRODUCTION

In recent years it has attracted considerable attention
that projectile breakup processes are very important in
considering scattering of light heavy ions, particularly of
lithium isotopes, by nuclei. ' The ground states and
low-lying excited states of these isotopes have loosely
bound cluster structures, i.e., Li=o. +d and Li=a+t,
and the relative motion between the clusters are easily ex-
cited by external nuclear and/or Coulomb field of the tar-
get nucleus. Since excited states of Li ( Li) at E„~1.475
MeV (2.468 MeV) are unbound against the decay into the
clusters, excitations of those states lead to breakup of the
projectile. The breakup may affect elastic scattering of
the isotopes through virtual processes; i.e., the projectile
virtually breaks up when it comes across the target nu-
cleus and is deexcited to the ground state at the final stage
of reaction. Those breakup effects are considered to be re-
sponsible for the famous anomaly' ' of the renormali-
zation factor (NR ——0.5—0.6) in the double folding (DF)
model' with the M3Y effective nucleon-nucleon (NN) po-
tential' in ' Li scattering. This has been discussed re-
cently in theoretical studies of several groups. ' '' Signi-
ficant effects of Li~a+d breakup on elastic scattering
were first demonstrated by Thompson and Nagarajan'
(TN) for Li scattering by

' C, Ca, and Pb at
E~,b ——156 MeV. Since the method of TN was based on
the adiabatic approximation' for the breakup process and
their interactions are essentially o.-target and d-target op-
tical potentials, the direct relation between the breakup ef-
fect and the anomalous reduction of Nz in the DF model
was still obscure. However, the result of TN that well
reproduced observed elastic scattering suggested that the
breakup effect can be a reasonable candidate for the origin
of N~ ——0.5—0.6. In fact, Mackintosh and co-workers
have shown by their potential inversion method that the
breakup effects of the TN calculation are interpreted as
additional repulsion to the real potential. ' One direct in-

dication of the relation between Li breakup and the
reduction of Nz was shown by Sakuragi, Yahiro, and
Kamimura (SYK) on the basis of a microscopic version
of the method of coupled discretized continuum channels
(CDCC), in which the double folding interactions
from the M3Y internucleon potential were employed for
projectile-target interactions. In the work of SYK, ob-
served elastic scattering of Li by Si at 99 MeV and that
by Ca at 1S6 MeV were reproduced well by the double
folding interactions with Nz ——1.0 when coupling with
breakup channels was taken into account by the CDCC
method; also calculated was the dynamical polarization
(DP) potential induced by the coupling, which provided
evidence of the relation mentioned above. A similar study
has been reported by Gomez-Camacho et al. , where
breakup effects were investigated in elastic scattering of
Li and Li by Ni for an energy range of 12—74 MeV.

To establish an understanding of the renormalization of
the real DF interaction as the virtual breakup effect and
to get more insight into the lithium-nucleus interaction, it
may be necessary to extend the analyses of breakup effects
over a wide range of bombarding energies and for many
target nuclei. In light of these circumstances, this paper
investigates Li breakup effects on elastic scattering by the
CDCC method of SYK in a systematic way over a wide
range of bombarding energy ( E&,b ) and target mass num-
ber ( AT ), say, 30 & E&,b & 170 MeV and 12 & AT & 208,
which almost cover the energy and target ranges of
currently available data for elastic scattering of Li, and
examines whether observed elastic scattering is repro-
duced by the double-folding interaction, with NR fixed at
unity, when coupling with the Li breakup process is in-
cluded by the CDCC calculation. The relation between
the virtual breakup effect and the renormalization of the
DF interaction without breakup is extensively studied
from various viewpoints, as will be summarized below, for
example, through breakup equivalent dynamical polariza-
tion potentials including the dependences on the incident
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energy, target nucleus, and projectile angular momentum.
In the theoretical framework of SYK there is a single

parameter Nl for the imaginary potential strength, as will
be shown below, the value of which is determined in such
a way that observed elastic-scattering cross sections are
satisfactorily reproduced by the CDCC calculation. Good
fits to the data with the single parameter NI are not a
priori guaranteed in this framework and, therefore, suc-
cessful fits by the calculation are not artificial and rather
should be taken to validate the theoretical framework. It
should be noted that when coupling with breakup chan-
nels is omitted, the observed cross section cannot be fitted
at all, not even by modifying the imaginary potential in
the elastic channel. Furthermore, when the CDCC calcu-
lation is performed with real coup/ing potentials alone, ob-
served data cannot be reproduced, as will be shown.
Thus, the optimum value of NI obtained by the CDCC fit
to data and its energy and target dependences is expected
to bear some information about basic interactions (or bare
potentials) for the Li-nucleus system and the reaction
mechanism concerned.

In the next section we briefly summarize essential
points of the method, i.e., the microscopic cx-d cluster
model description of Li internal states, discretization of
unbound continuum states, and coupled-channel equations
including the discretized breakup channels. Double fold-
ing interactions are adopted for projectile-target diagonal
potentials for all the channels, as well as for coupling po-
tentials between the channels. In Sec. III the method is
applied to Li elastic scattering by ' C, Si, Ca, Ca,

Ni, and Pb at bombarding energies of E],b ——34—169
MeV. The calculation reproduces well the measured cross
sections for all the targets and bombarding energies
without imposing any reduction factor to the real poten-
tial, i.e., keeping Nz at unity. The breakup effects are
very large and are essential to reproduce the observed
data. These results provide substantial evidence that the
Li breakup effect is the real origin of the reduction of

N~ found in the single-channel DF-model analyses of Li
elastic scattering. Since the reduction of Nz was almost
constant (0.5—0.6) over a wide range of bombarding ener-

gies and targets, this also implies that the breakup effect
is almost independent of bombarding energy and target
nucleus. However, the breakup effects behave in the an-
gular distributions of elastic cross sections as if the effect
would depend greatly on bombarding energy and target
nucleus. The reason for such appearances will be ex-
plained by the decomposition of the scattering amplitude
into contributions from nearside and farside scattering for
typical cases. Improvements of fits at large angles in the
highest energy scattering are also discussed in Sec. III. In
Sec. IV dynamical polarization (DP) potentials induced by
the coupling with breakup channels are calculated for
several energies and targets. It is shown, almost indepen-
dently of bombarding energy and target nucleus, that the
coupling generates a repulsive real potential which cancels
out, in the nuclear surface region, about 40% of the at-
tractive potential obtained by the simple double folding of
the M3Y interaction. In addition, the coupling causes lit-
tle modification of the imaginary part of the Li-target
potential. These properties of DP potentials support the

above conjecture on the energy and target independence of
the breakup effect. It is also shown that the real-to-
imaginary ratio of the DP potential is quite sensitive to
the strength of imaginary coupling potentials. In Sec. V
the origin of the repulsive nature of the breakup effect is
discussed. Based on perturbation theory, explicit relation-
ships between the strengths of the DP and coupling poten-
tials are derived, which clarifies a reason why the imagi-
nary part of the coupling potentials is important in con-
sidering properties of the DP potential, such as the real-
to-imaginary ratio. The final section is devoted to a sum-
mary of the results.

II. MICROSCOPIC COUPLED-CHANNEL
FORMALISM

Full details of the microscopic coupled-channel formal-
ism including treatment of Li breakup states were
described in Ref. 3. In this section we briefly summarize
essential points of the method.

A. Microscopic a-d cluster model for Li

In the microscopic a-d cluster model, totally antisym-
rnetrized wave functions are written as

go, +~('Li; g. s. ) =,M [4 (a)[(5,+(d)@uI" o'(r)],

for the ground state, and

Pg~( Li; k) =W[g(a)[P, (d)g uI '(k, r)]1~ I

(2.1)

(2.2)

for the e-d scattering state with the asymptotic momen-
tum haik. Here, P(a) and P, +(d) are internal wave func-

tions of alpha and deuteron clusters, and uI(r) represents
the a-d relative motion with angular momentum At;, V
stands for the total antisymmetrization operator among
six nucleons. The ground state is assumed to be a pure S
state (l =0).

ur
' is assumed to satisfy an integrodifferential equation

of an orthogonality condition model (OCM),

+1—A — V + V,rr
2pr

+al f V ff —e &1—Mu~' '=0, (2.3)

which is known to be a good approximation of the
resonating group method (RGM). Here, e is the a-d
c.m. energy and p, is the reduced mass of the u-d system;

is the exchange-overlap kernel. The local potentials
V ff(r) and V,rr (r) are the effective central and spin-orbit
potentials, which are functions of the o.-d relative distance
r and are parametrized by a two-range Gaussian form for
the central part and by a two-range Gaussian derivative
form for the spin-orbit part, respectively. ' uI ~ stands for

[I(I+1) l (l +1)—1(1+ 1)]/2 . —

Since our aim here is just to prepare reliable internal wave
functions of Li, we choose the potential parameters to be
J' dependent in such a way that the energy of the ground
state (e= —1.47 MeV) (with respect to the a-d threshold),
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and that of the 3+ resonance state (a =0.71 MeV) and the
a-d scattering phase shifts for each partial wave, are
reproduced satisfactorily. The parameter values obtained
were given in Ref. 3.

The microscopic wave functions are obtained by insert-
ing ui ', the solution of Eq. (2.3), into Eqs. (2.1) and (2.2).
The wave functions of the ground and 3+-resonance states
reproduce well the elastic and inelastic ( 1+~3+ )

electron-scattering form factors. The calculated value of
the rms charge radius of the ground state is 2.58 fm and
that of the B(E2; 1+~3+) strength is 27.8 e fm, which
agrees well with empirical values of 2.56+0.05 fm and
21.8+4.8 e fm, respectively.

In the CDCC calculations shown below, we "switch
off" V','rr' in Eq. (2.3) to save the computational time;
namely, we neglect deuteron spin after performing the ex-
amination of the wave functions described above and re-
calculate ui using only the central potentials ( V,rr) with
their parameters unchanged. The ground-state wave func-
tion is unchanged by this approximation, whereas the D-
wave resonances (3+, 2+, and 1+) become degenerate at

Woo( Li g s ) =~[4(~)4'(d)tioo(r)]

for the ground state ( i =m =0) wave function, and

( Li; k)=M[/(a)P(d)ui (k, r)]

(2.4)

(2.5)

for the scattering state wave function with angular
momentum Al and momentum Ak.

B. Discretization of the a-d continuum

The total wave function of the Li-target system with
total angular momentum J and its z component M is ex-
panded in terms of the Li internal-state wave functions
as

@=2 MeV with a width of about 1 MeV. The neglect of
deuteron spin greatly reduces the computational time for
the CDCC calculation of Li scattering, while final results
of the calculation differ little from those obtained by the
calculation with deuteron spin. To simplify the formulas
in this approximation, we introduce the following new no-
tations:

max max
0 JM — 1//oo( Li; g. s. )Xoj (Po, R) + g g f [pi ( Li, k)3XiL'(Pk, R) ]JMdk -@o

1=0 L
(2.6)

where AZ. is the orbital angular momentum
(

l

J —1
l

&L & 1+1) between projectile and target.
stands for the ground-state wave function of target nu-
cleus. In the equation, l „and k „are introduced to
truncate the three-body model space. The wave
functions Xoj(Po, R) and XiL'(Pk, R) describe Li-target
relative motions in the incident and breakup channels,
respectively. APo and AP1, are the asymptotic momenta of
the relative motion in the corresponding channels.

The truncated k continuum in Eq. (2.6) is divided into
a finite number of narrow bins as [k; ~, k;] (i =1—N)
with ko ——0 and kz ——k „.Though N could depend on l,
we drop the suffix / for simplicity of notation. For each
bin, any XiL'(Pi„R) within the bin is assumed to be pro-
portional to XiL'(P;, R) with a proportional constant f;i(k)
which is a function of k,

Xil.'(Pk, R)=fii( k)Xil. '(P;, R) . (2.7)

f i(k) =
I

( f'~2)~(ek —~ + 1 n)
l

where e; =e„,. Under the assumption of Eq. (2.7), the to-
tal wave function is written as

Here, AP; is the Li-target relative momentum associated
with a mean energy e; of the ith interval [k; &, k;]. For
a "nonresonant" bin where no a-d resonance exists, we
take f;i(k) = 1, which implies that we assume that the rel-
ative motion between Li and target may not change so
much with k within the interval. This may be a reason-
able assumption when the interval is sufficiently small.
For a "resonance" bin in which an a-d resonance with
width I exists at e =e„„we take

max X
+JM X X X [fil ( ~ ) XilL ( R )]JM +0

1=0 L i=Oor ].

with
IG,.

Qiim( Li) =(1/+iVii) f„fi~( Li, k)fii(k)dk,
i —1

(2.8)

(2.9)
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FIG. 1. Truncation and discretization of the a-d breakup
continua of Li. Here, the spin-orbit potential between a and d,
V,'qf', has been switched off. The number in each box is the
mean energy of the bin. The lowest bin of the D wave (l =2)
stands for the resonance and the rest are the nonresonant con-
tinua.
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X Iiz (R) =QN)IXIL'(P), R),

;I k dk,

where new notations,

o I o( Li)=—IIII o( Li;g. s. )

(2.10)

(2.11)

and k,„=1.5 fm '. These values have been examined
in Ref. 3 and were found to be sufficient for reasonable
convergence of calculated cross sections as well as for S-
matrix elements of elastic scattering. The discretized
model space adopted here is illustrated in Fig. 1, where
the lowest bin of the D wave (1 =2) is the resonance bin
mentioned above and the rest are the nonresonant bins.

X I =0, I =0, L (R) =XI =O, L (Por R)

have been used for the incident channel. The summation
over i in Eq. (2.8) includes i =0 only when 1 =0.

In practical CDCC calculations of Li scattering by tar-
get nucleus, we take 1,„=2 (S, P, and D waves), N =4,

C. CDCC equations with double-folding interaction

Now we introduce the radial wave function X;Iz (R ) by

X )ILM(R) =X iiz (R )I YLM (R) /R (2.12)

The coupled-channel (CC) equations (which we call the
CDCC equations) for X;Iz(R)'s are now written as

fi d fi L (L + 1) w( J) (J) (J)
i + i + Vc,„)(R)—(E —e;) Xiiz(R)= —g (NR+iNI)V). IL; Iz (R)X; Iz (R) .

2pdR ~ 2pR 2
i '1'L '

(i =0—N, 1=0—1,„, ~

J —1
~

+L +J+1) . (2.13)

The real part of the Li-target potentials, V,'Iz; I z (R), is obtained by doubly folding an effective nucleon-nucleon (NN)
interaction, U&N, with the nucleon density distributions of the target and Li:

VIIL)'I z (R)= &+o '[1'isa( Li)i Yz(R)bM
I g UwN(r +R—rj )

I
@o '[I'4'I ( Li)I Yz (R) jJM &

i ELi
jET

= g (ImLp
~

JM)(l'm'L'lJ, '
~

JM)i + I Yz&(R)VIm;I m (R)YL&(R)dR,
m', p'

(2.14)

where

V'Im, 'I'm '( R ) I P T ( r T )P 'Im, 'I'm '( rp )

X UNN(rp+ R —
1 T)drpdrT . (2.15)

Here, pT(rT) is the ground-state nucleon density of target
nucleus with mass number 3, which is defined as

(2.16)

and p;I; I (r&) is the Li density between the states
( Li) and g,'I ( Li), which is calculated with the use

of the Li wave functions obtained above as

(2.17)

In this paper we analyze elastic scattering of Li by ' C,
Si, Ca, Ca, Ni, and Pb. The ground-state nu-

cleon densities of Si, Ca, and Ni are taken to be the
same as those adopted in the double-folding model study
of Ref. 11, whereas Hartree-Fock densities are adopted
for Ca and 8Pb. As for ' C, we use the density calcu-
lated with the 3o,-RQM wave function. All these densi-
ties have been examined as to whether they could repro-
duce the observed electron-scattering form factors and the

rms radii.
As for the effective nucleon-nucleon interaction, UNN,

we use the spin- and isospin-singlet (S =T =0) com-
ponents of the M3Y interaction' with a pseudopotential
which simulates the contribution from single-nucleon
knock-on exchange. ' The explicit form is

—4r 2. Sr

IINN( r) =7999 —2 1 34 —Joob(r )
4r 2.5r

(2. 18)

where a11 energies are given in MeV and lengths in fm.
The strength Joo of the pseudopotential varies with bom-
barding energy, ' but the variation is small (less than 7%%uo

in volume-integral value) over the energy range
E/Ap ——5—30 MeV (Ap being projectile mass number) of
interest here. Therefore, we ignore the energy dependence
and use a fixed value of Zoo ——262 MeVfm, which is
evaluated at E/Az ——10 MeV. '

In Eq. (2.13), NR is kept fixed at unity throughout the
CDCC calculation. On the other hand, the imaginary
part of the diagonal and coupling potentials is simply as-
sumed to have the same geometry as that of the corre-
sponding real part. Xl is the strength factor of the imagi-
nary part, which is taken to be common to all the poten-
tials in the CDCC equations. Since the projectile breakup
processes are peripheral phenomena, especially for heavy
ions, the present assumption for imaginary potentials may
be sufficient for discussions about essential features of
breakup effects on elastic scattering. In this paper we do
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not intend to clarify the origin of the imaginary part; in-

stead, we determine the strength of the part NI
phenomenologically, for each scattering datum, in such a
way that the CDCC calculation reproduces the observed
cross section for the elastic scattering. It should be
stressed that Nq is the single parameter in the present
theoretical frame.

Projectile breakup by Coulomb interaction is ignored
here for simplicity. The usual Coulomb potential
Vc,„&(R) for the uniform-charge-density shape with a ra-
dius Rc ——1.2(6'~ +A'~ ) fm is assumed commonly for
all the channels in Eq. (2.13). Effects of Coulomb break-
up on elastic scattering are expected not to be significant,
except at low incident energies comparable with Coulomb
barrier height.

The single-channel case of the present CDCC frame-
work corresponds to the case of Nz ——1 of the DF model
in which the imaginary potential shape is taken to be the
same as that of the folding real potential, although a more
flexible shape is allowed to be used in the DF model.
Thus, it is possible to discuss direct relations between pro-
jectile breakup effects and the reduction of Nz from 1.0
to 0.5—0.6 in the DF model.

III. RESULTS

A. Coupled-channel calculations

Coupled-channel calculations including the breakup
channels of Fig. 1 (which we call CDCC calculations)

have been performed for Li scattering by
' C at 50.6, 99,

123.5, 156, and 168.6 MeV, by Si at 46, 99, 135, and 154
MeV, by Ca at 50.6, 88, 99, and 156 MeV, by Ca at 34
MeV, by Ni at 50.6, 73.7, and 99 MeV, and by Pb at
36, 42, 50.6, 73.7, 88, 99, and 156 MeV. The calculated
elastic cross sections are grouped according to bombard-
ing energy and shown by the solid lines in Figs. 2—7. In
general, the CDCC calculation with Nz ——1 successfully
reproduces the experimental data" for all the targets
and bombarding energies investigated here. These results
imply that the projectile breakup effect accounts well for
the reduction factor of NR ——0.5—0.6 required in the
single-channel DF-model studies of Li scattering. Going
into details, a fit to the data for Ca at 88 MeV is excep-
tionally poor, which may, however, be due to an uncer-
tainty of experimental data since these data were known
to have suffered from some experimental difficulties.
For the higher energy cases in Figs. 6 and 7, pronounced
deviations of the calculation from the data are observed at
large angles, which may be due to a rather crude assump-
tion for the imaginary potential in Eq. (2.13), since, at
higher energies, cross sections at large angles are sensitive
to details of the potential at the nuclear interior. An im-
provement of fits at those angles will be discussed later.

Listed in Table I are the optimum values of Ni deduced
from the fit to experimental data with the CDCC calcula-
tion. No significant dependence on energy and target is
seen, although smaller values (NI =0.4—0.5) are required
for ' C and Ca targets and for low energy data on the

Pb target. For Pb one should not take the small
values of NI at low energies seriously, since the fit to the
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FIG. 2. Angular distributions of the elastic scattering of Li
by Ca at E&,b ——34 MeV and by Pb at 36 and 42 MeV. The
upper angular scale is only for 'Ca target and the lower scale
for the others. The solid and the dotted lines show the results of
the CDCC calculation and the single-channel one, respectively,
with X& kept fixed at unity. The experimental data are taken
from Refs. 30 and 31.
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FIG. 3. The same as Fig. 2 for Li scattering by ' C, Ca,
Ni, and Pb at 50.6 MeV and by Si at 46 MeV. The data

are taken from Refs. 13 and 32.
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TABLE I. Optimum values of Nz and Ni for the CDCC
calculations, the value of X~ being fixed at unity for all cases.
J~, is the grazing angular momentum for each scattering. ) 0-1

Target

12C

28si

"ca

"Ca

Ni

Ei~b
(MeV)

50.6
99

123.5
156
168.6

46
99

135
154

50.6
88
99

156

34

50.6
73.7
99

Ng

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00

1.00
1.00
1.00

0.50
0.50
0.48
0.47
0.47

0.62
0.62
0.65
0.59

0.60
0.60
0.64
0.68

0.50

0.60
0.60
0.60

11
15
18
20
21

14
23
27
29

17
24
26
33

19
25
30
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42
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73.7
88
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1.00
1.00
1.00
1.00
1.00

0.40
0.40
0.60
0.62
0.60
0.62
0.60

8

13
18
29
35
38
53

FIG. 5. The same as Fig. 2 for 99 MeV Li scattering by '2C,

Si, Ca, Ni, and Pb. The data are taken from Ref. 11.
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FICr. 4. The same as Fig. 2 for Li scattering by Ca and
'Pb at 88 MeV and by "Ni and Pb at 73.7 MeV. The data

are taken from Refs. 33 and 34.
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FIG. 6. The same as Fig. 2 for Li scattering by Si at 135
and 154 Mev and by Ni and Pb at 156 MeV. The data are
taken from Refs. 35—38.
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B. Nearside/farside decomposition

10

1

-1
10

-2
10

12C 123.5 MeV

12C 156 MpV

Following Ref. 40, we decompose the amplitude for
elastic scattering, f(0), into components of nearside and
farside scattering,

f (0)=ft (0)+fF(0» (3.1)

where each of f~(0) and fF(0) is composed of the
Coulomb part and the nuclear part, respectively, as

10

-2
10

(0) f(Coul)(0) +f(nucl)(0)

(0) f(Coul)(0)+f(nucl)(0)

(3.2)

(3.3)

-1
10

-2
10

-3
10

I

20

I I

40

6, (deg)

I t

60

Here, fz '""(0) [fF '""(0)] is the nearside (farside) com-
ponent of the Coulomb scattering amplitude, which is ex-
pressed with analytic functions. The nuclear part of the
nearside and farside components is expressed with the cal-
culated S-matrix elements for elastic scattering, SI, as

f~"F' (0)= g (2L + 1)
2k

X exp(2iot. ')(1 —SL )Qt-'(cos0),

FIG. 7. The same as Fig. 2 for ~Li scattering by '~C at 123.5,
156, and 168.6 MeV. The data are taken from Refs. 29 and 38.

data is not perfect around grazing angles that may be due
to neglect of Coulomb excitation effects in the calculation.
Namely, those bombarding energies are comparable with
Coulomb-barrier height for the Li- Pb system and con-
siderable effects, e.g. , long-range absorption, will be ex-
pected from the Coulomb excitation of the projectile by
the target, which has been neglected in the present calcu-
lation.

The dotted lines in Figs. 2—7 show the result of a
single-channel calculation using the same values of Nz
( = 1) and Nt as those for the corresponding CDCC calcu-
lation. Significant effects of breakup channels on elastic
scattering are seen by the differences between the dotted
and solid lines. It is known that a large fraction of the
difference stems from the coupling to the D-wave reso-
nance channel, although non-negligible contributions arise
from the nonresonant breakup channels. It should also be
stressed that couplings among the breakup channels are
quite important for proper estimation of the breakup ef-
fects.

Upon a first examination of Figs. 2—7, one might con-
sider that the breakup effect on elastic scattering varies
greatly with bombarding energy and target nucleus. For
light targets, for which the angular distribution shows the
Fraunhofer diffraction pattern, the breakup effect reduces
the cross section from dotted lines to solid ones, while for
heavy targets —the angular distribution being of the
Fresnel type —the cross section increases with the breakup
effect. However, for both targets the cross sections reflect
the repulsive nature of the breakup effect, which can be
understood naturally with nearside/farside (N/F) decom-
position of scattering amplitudes, ' ' as shown below.

(3.4)

where Qt+ '
( QL ) is the nearside (farside) component of

the Legendre polynomial, and o.z
' is the Coulomb phase

shift.
Figures 8(a) and 8(b) show the N/F decomposition of

the scattering of Li by Si and ~Pb at 99 MeV. Both
the single-channel and CDCC result have been decom-
posed, where SL in Eq. (3.4) is given by the single-channel
and CDCC calculation, respectively. The dotted and
dashed lines show individual contributions from the near-
side and farside scattering, respectively, and the solid line
shows their coherent sum. In the single-channel case for
the Si target, the Fraunhofer crossover ' between the
nearside and farside occurs around 0, =15' and the far-
side dominates the scattering for angles larger than the
crossover point, which is called the farside tail. ' The tail
has been reduced in the CDCC calculation. Hence, the
decrease of the cross section for those angles from the sin-
gle channel to the CDCC, as seen in Fig. 5 for the Si
target, is now understood as the result of the decrease of
the farside tail. Conversely, the nearside component in-
creases by the breakup effect, which leads to strong in-
terference between the nearside and farside scattering over
a wide range of angles around the crossover point, the
coherent sum of which (solid line) reproduces the experi-
mental data very well. For the Pb target, the breakup
effect also causes an increase (decrease) in the nearside
(farside) component. However, the scattering by the tar-
get is dominated by the nearside for most angles of in-
terest here, which is due to the strong Coulomb repul-
sion. ' Thus one may understand why the breakup effect
causes the increase of cross section as well as the damping
of oscillations at large angles for this target, as seen in
Fig. 5.

Since an attractive real potential plays the role of a con-
verging lens, a reduction of attractive potential strength
causes a decrease of the farside amplitude and an increase
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FIG. 8. The nearside/farside decomposition of the calculated Li scattering (a) by the -'"Si target and (b) the 'Pb target at 99 MeV;
both the single-channel result (upperj and the CDCC one (lower) are decomposed into the nearside component (dotted lines) and the
farside one (dashed lines); the coherent sum of them is shown by the solid lines.

of the nearside amplitude. ' Therefore, both the decrease
of the farside-dominant cross section for the Si target
and the increase of the nearside-dominant one for the

Pb target in Figs. 8(a) and 8(b) reflect a reduction of at-
tractive (real) potential strength by the breakup effect. In
fact, the results of the CDCC calculation can be simulated
well by a single-channel calculation with the DF poten-
tial multiplied by a factor (%~ =0.5—0.6), which is well
known as the anomalous renormalization factor in the
single-channel DF model for Li scattering. '

With the above consideration kept in mind, one may
easily understand that, for other targets and/or bombard-
ing energies in Figs. 2—7, the change in the cross section
from the dotted to solid line reflects the repulsive nature
of the breakup effect.

C. Improvement of fits at higher-energy scattering

At higher incident energies, fits to experimental data at
large angles are rather poor (see Figs. 6 and 7), even with
including the breakup effect in the CDCC calculation, al-
though large effects of breakup channels are still evident.
In the present theoretical framework we have simply as-
sumed the geometrical form of the imaginary potentials to
be the same as that of the corresponding real potentials
[cf. Eq. (2.13)]. As shown above, this assumption has
been sufficient for discussions about the significant effects
of breakup channels. However, this may be somewhat too
simple to get excellent fits up to the large angles in high-
energy scattering. At those energies, cross sections at
large angles are very sensitive to details of the potential at
the nuclear interior, which is indeed supported by the fact
that observed large-angle scattering in Fig. 6 displays

nuclear-rainbow-like enhancements. '

It turns out that much better fits to the data at those
angles are obtained with a modified CDCC calculation,
the only difference from the previous calculation being
that the imaginary potential in the incident channel is re-
placed by a phenomenological one with a Woods-Saxon
shape, other potentials being unchanged. As will be
shown in Sec. IV, the impoI'tant effect of coupling with
the breakup channels is production of a real potential of
repulsive nature, and the contribution to the imaginary
part is negligibly small ~ This repulsive effect of the cou-
pling can be simulated simply by a renormalization of the
real potential in the single-channel DF calculation by
Nz —0.6. Thus it will be reasonable to limit the modifica-
tion of the imaginary potential to the incident channel,
keeping the breakup effect fixed, and to adopt the imagi-
nary potential obtained by the single-channel DF-model
fit to the elastic-scattering data as the new imaginary part.

The dashed line in Fig. 6 shows an example of such a
modified CDCC calculation of the scattering by Si at
E~,b ——135 MeV. The parameter values for the new irnagi-
nary potential are the following: 8'o ——27.46 MeV,
RI ——1 7A T fm, where 3T

——28, and al ——0 908 fm,
which have been obtained by the single-channel DF-model
analysis of the same scattering. '

IV. DYNAMICAL POLARIZATION POTENTIAL

In order to confirm the repulsive nature of the breakup
effect quantitatively, we calculate the dynamical polariza-
tion (DP) potential due to the breakup channels in the
form of the wave-function-equivalent local potential. The
real and imaginary parts of the potential are defined as
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b, V (R)=R g g (Ng +iNr ) V ooJ;rL(R)X;rr (R)IX ooJ(R)
i&0 1L

(4.I)

b, W '(R) =Im g g (N~ +iNr ) V oojrr. ,(R)X IrL(R)IX oo'J(R)
i~O iL

(4.2)

where Nz is kept fixed at unity and NI is taken to be the
optimum value for the corresponding CDCC calculation
listed in Table I.

Before discussing the properties of the DP potential, it
should be noted that in heavy-ion scattering like the
present case elastic scattering is almost insensitive to the
potential at the nuclear interior due to a strong absorptive
potential, except for a few cases of high energy scattering
discussed in the preceding section. As a measure useful
for defining such an insensitive region in the nuclear inte-
rior, we adopt the change of the modulus of the elastic S-
matrix element by less than l%%uo against the switching off
of the DP potential in the region. In such an insensitive
region, the modulus of the incident-channel wave func-
tion,

~
Xooj(R) i, has been found empirically to be less

than about 10% of its maximum value in the asymptotic
region. Thus, we adopt the value of R satisfying the rela-
tion

of the DP potential due to the breakup channels is com-
pletely different from that of the familiar type of the po-
tential due to excitations of phononlike states of nuclei;
the latter type of the potential is usually dominated by an
absorptive imaginary part (b, V=O, b, W&0). The ex-
istence of such a new type of DP potential has also been
suggested in Refs. 3, 18, and 43.

B. Energy and target dependence

Secondly, we examine the incident-energy dependence
of the DP potential. Since the potential is almost in-
dependent of J in the peripheral region, we calculate it for
a specific J around Js„ for each incident energy. Figure
10 shows the real and imaginary parts of the DP potential
for the scattering by Si at E~» ——46, 99, and 135 MeV

L L

as a measure for defining the insensitive region.

A. Angular momentum dependence

30—

20—

I I

6L~ +28' 99 MeV
Fut l-CC

NR =1.00-
Ny =0.62

We first examine the angular-momentum dependence of
the DP potential. In Fig. 9 we show the real and imagi-
nary parts of the DP potential, AV' and AW' ', respec-
tively, at the nuclear surface region in the case of J =0,
10, 21, 25, and 28 of Li+ Si scattering at E]&b =99
MeV. The position of the boundary between the internal
(insensitive) and peripheral regions depends on J, but we
illustrate in Fig. 9 the boundary only for J =21 for sim-
plicity; the approximate positions for other J's are, for ex-
ample, R =4 fm for J =0 and R =6 fm for J =28. Since
the grazing angular momentum ( Js„) is 23 in the present
case, the DP potentials for J =0 and 10 in the figure do
not take part in the scattering at all, due to strong absorp-
tion, although we show them in the figure for comparison.
The figure shows that the DP potential is almost indepen-
dent of J around Jg, in the peripheral region. For such J,
the potential really has a repulsive real part (hV'J'~0)
whose strength amounts to up to about 40% of the real
DF potential, Voo(R), of the incident channel. In other
words, Voo(R)+b, VIJ'(R) may almost l-independently be
approximated well by —0.6Voo(R). This is just the origin
of the reduction of Nz in the single-channel DF model
for Li scattering. The figure also shows that the imagi-
nary part, AW' ', is negligibly small in the peripheral re-
gion for J around Jg, . This property, 6V & 0 and 5W=O,
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FIG. 9. Angular-momentum ( J) dependence of the DP po-
tential induced by the coupling with breakup channels for
Li + Si at 99 MeV. 5 V' '(A8" ') is the real (imaginary) part

of the potential for J =0 (dotted), 10 (short-dashed), 21 (long-
dashed), 25 (solid), and 28 (dotted-dashed). The folding real po-
tential of the elastic channel with NR ——1 ( Voo) is shown for
comparison. The insensitive region shown is for J =21.
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FIG. 10. Bombarding-energy dependence of the DP poten-
tial, the real and imaginary parts of which are shown in the case
of the Pb target (upper) for E~,. b

——50.6, 99, and 156 MeV, and
in the case of the Si target (lower) for 46, 99, and 135 MeV.
The folding real potentials of the elastic channel with Xz ——1,
( Voo) are shown for comparison.
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and for the scattering by Pb at E~,b
——50.6, 99, and 156

MeV. For both targets, the potential changes slightly as
the incident energy changes, which explains well the fact
that the renormalization factor of Xz ——0.5—0.6 occurs
almost independently of energy in the single-channel DF-
model studies of Li scattering. '

Next we examine the dependence of the DP potential
on target nucleus. We calculate the potential for ' C, Si,

Ca, Ni, and Pb targets at an incident energy of
E~,b ——99 MeV, which corresponds to the CDCC calcula-
tion shown in Fig. 5. J has been chosen again to be the
one around Jg, for each target; note that Jg, is 15, 23, 26,
30, and 38 for ' C, Si, Ca, Ni, and Pb targets,
respectively. The solid and dashed lines in Fig. 11 show
the real and imaginary parts, respectively, of the DP po-
tential for those targets. For comparison, the real DF po-
tentials in the elastic channel are also shown by the dotted
lines. For the cases of Si, 40Ca, ~Ni, and 208Pb targets,
the potentials are similar to each other, which satisfies ap-
proximately the relationships of AV (R)——0.4Voo(R)
and b, IV' '(R)=0 in the peripheral region. This result is
consistent with the target independence of the renormali-
zation factor X& ——0.5—0.6 required in the DF-model
studies. ' ' For ' C, however, the ratio of
—b, V' '(R)/Voo(R) is about 0.2—0.3, which is somewhat
smaller than that for other targets, whereas a weak but
non-negligible imaginary part of absorptive nature,
AW' '(R) &0, is induced. The exceptional nature of the
potential for ' C may have some relation to the neglect of

I I I I I I I I I

3 4 5 6 7 8 9 10 11 12

R(tm)
FIG. 11. Target-nucleus dependence of the DP potential.

The solid (dashed) lines show the real (imaginary) part of the po-
tential in the case of "'Pb, "Ni, Ca, "Si, and ' C targets from
top to bottom. The folding real potentials of the elastic channel
are also shown by the dotted lines.

the strong coupling to the target (' C) excitation in the
present CDCC calculation, and seems to correlate with
the fact that, for ' C, the optimum value of Xl for the
CDCC calculation is somewhat smaller ( (0.5) than that
for the other targets ( )0.6), as seen in Table I. In fact,
as we will see below, the qualitative feature of the DP po-
tential largely depends on the strength of imaginary cou-
p/i ng pote' tiaIs.

C. Effects of imaginary part of coupling potentials

All the coupling potentials, as well as the diagonal ones,
are complex in the present CDCC framework [cf. Eq.
(2.13)]. It should be emphasized that the successful re-
sults of the CDCC calculation shown in Figs. 2—7 have
been achieved by using complex coupling potentials with
Xz ——1.0 and Al —0.6. If we switch off the imaginary
part of the coupling potentials in the calculation, we can-
not reproduce experimental data at all. In order to
demonstrate the important role of the imaginary part of
the coupling potentials, we compare in Fig. 12 two kinds
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FIG. 12. Angular distribution of Li + Si scattering at 99
MeV; the solid (dashed) line is given by the CDCC calculation
with complex (real) coupling potentials with NR ——1.0 and

N~ ——0.62 (NR ——0.0). Diagonal potentials of all the channels
are taken to be complex by keeping NR ——1.0 and N& ——0.62 in

both calculations. The dotted line is the result of the single-
channel calculation.

of CDCC calculations for the Li+ Si scattering at 99
MeV, one with real coupling potentials (X~ ——1.0 and
Xz ——0.0) and the other with complex ones (XR ——1.0 and
Xq ——0.62). In both calculations all the diagonal poten-
tials are set to be complex with NR ——1.0 and Nz ——0.62.
It is obvious from the comparison that the complex cou-
pling potentials with Nz —0.6 are indispensable for proper
fitting to the data; no matter how widely we changed the
value of Nz for the diagonal potentials, no satisfactory fit
was obtained as long as we used real coupling potentials
alone. Thus, we see that the imaginary part of the cou-
pling potentials is very important in considering the ef-
fects of Li-breakup channels. A similar importance of
the imaginary coupling potentials has been found recently
in Ref. 6 for Li scattering by Ca at 89 MeV.

These results suggest that the imaginary part of the
coupling potentials is closely related to the qualitative
features of the DP potential. This is indeed confirmed in
Fig. 13, which shows the DP potentials corresponding to
the two kinds of CDCC calculations given in Fig. 12.
The switching off of the imaginary part of the coupling
potentials causes an essential difference in the qualitative
feature of the DP potential; the strength of the repulsive
real part (5V & 0) has been much reduced, while a consid-
erable absorptive imaginary part (b, IV & 0) has grown,
which can hardly account for the empirical renormaliza-
tion ( —40%) to the real folding potential. Thus, for a
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FIG 13 The real and imaginary parts of the DP potentials
given by the CDCC calculation with complex coupling poten-
tials (solid lines) and with real coupling potentials (dashed lines)
for J =25 of Li+ Si scattering at 99 MeV. The real folding
potential of the elastic channel is also shown by the dotted line.

V. DISCUSSION

Finally, we try to answer the following questions: Why
the qualitative feature of the DP potential is sensitive to
the imaginary part of the coupling potentials, and why
such a special type of DP potential is generated by the
coupling of the breakup process?

A basic role of imaginary coupling on DP potential

proper estimation of Li breakup effects, it is quite impor-
tant to use complex coupling potentials with a consider-
able amount of the imaginary part.

As shown above, the essential feature of the DP poten-
tial is very sensitive to the real-to-imaginary ratio of the
complex potential. In the present CDCC framework, we
have determined the ratio (i.e., Xz/X~ with Nz kept
fixed at unity) phenomenologically in such a way that the
CDCC calculation reproduces the observed elastic scatter-
ing. Through the CDCC analyses in this paper, experi-
mental data tell us that Nz must be 0.5—0.6 almost in-

dependently of the incident energy and target nucleus (cf.
Table I). This implies that the DP potential of 6Li break-

up depends slightly on the energy and target, having a
repulsive real part (b, V= —0.4VOO) and a negligible imag-
inary part (b, W'=0). This result is absolutely consistent
with the result of the single-channel DF-model stud-
ies' ' that the real part of the empirical Li-nucleus po-
tential is systematically shallower in the surface region
than the DF model potential by about 40—50%, irrespec-
tive of bombarding energy and target nucleus.
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may easily be understood by the following consideration.
In general, the DP potential can be written symbolically
as

(5.4a) and (5.4b) (in the case of hv =0) in the form

b, U= /hU/e' (5.7)

b, U = g UpJGJ+ Ujo, (5.1)
j+p

where 6&+' is a Green's function in the jth channel. Upj
is the complex coupling potential between the incident
channel (i =0) and the jth channel, which in the present
framework is given by Upi ——(N~ +i'�)Vpi, Vp~ being the
real coupling potential. Hence, Eq. (5.1) is rewritten as

b, U =(N~+iNg) g Vp~GJ+'Vjp
j&p

(5.2)

Now we define a DP potential induced by the real cou-
pling potential ( Vpz) by

b, u =tv+i hu = g Vp~GJ+'V, p,
j&0

where Av and Aw are the real and imaginary parts, respec-
tively. Then, the real and imaginary parts of AU, say, 6 V
and A8' respectively, are written as

b, V=[(NR NJ )bv—2N~Nq b—,w],

b. W = [(Nz Nr )huv+—2N+Nr»] .

(5.4a)

(5.4b)

6 V=O, A8'=Nzhw ~0 . (5.5)

Precisely speaking, Au itself also depends on the complex
factor Nz + iN& implicitly through 6& ', because the
multistep transitions among nonelastic channels are
caused by U J.= (Nz +iN& ) VJ, not by V

~
When the . mul-

tistep transitions are less important, Au may be weakly
dependent on Nz and Nz and, as a result, AU depends on
them only through the factor of (N~ +i' ) in Eq. (5.2);
i.e., the (NR, Nz) dependence of AV and b, W is given ex-
plicitly by Eqs. (5.4a) and (5.4b), respectively (since our in-

terest here is the effect of the complexity of the coupling
potentials, not of the diagonal ones; hence, in the present
discussion, Nz and Nz for the latter are regarded to be
fixed at some realistic values, such as N& ——1 and

NE ——0.6.)
As is well known, if the coupling among nonelastic

channels is negligible (i.e., second-order perturbation
theory is valid), the potential hu is almost pure imaginary
with an absorptive nature; namely, Av=0 and Aw &0. In
such a case, we can discuss the qualitative features of 6 V
and A8' through the ratio of a=N&/Nz in the following
limiting cases:

(i) In the case of real coupling alone, i.e., a=0 (N~ =0),
the DP potential of "conventional type" is induced,

where
~

b, U
~

=N~(1+a )
~

gatv
~

and tan6=(a —I)/2a.
That is, the ratio a of the imaginary coupling to the real
one essentially determines the phase 5 of the complex DP
potential. This is an answer to the first question men-
tioned above.

In the second-order perturbation theory, the " Li-type"
DP potential (b, V& 0, b W'=0) has been realized for a = 1

[see Eq. (5.6)], while this type of the potential has been
generated with +=0.6 in the practical CDCC calculation
discussed before. For Li breakup, multistep transitions
among breakup channels are known to be fairly strong
and a perturbative treatment of the coupling needs some
improvements. Thus in the following we will modify the
above assumption, Av =0 and Aw ~ 0, so as to include the
multistep effects. If the effects are taken into account
correctly, b, v in Eq. (5.3) will have a positive value of
non-negligible magnitude. In fact, we have already seen
in Fig. 13 that a sizable, repulsive potential (6V& 0) is
generated even when we use the real coupling potentials
alone. Here note that Av and b, w are nothing but AV and
A8' themselves, respectively, in the case of NR ——1 and
Nz ——0 in Eqs. (5.4). Since b v and b, tv are of opposite sign
with each other (cf. Fig. 13), b, W in Eq. (5.4b) will ap-
proximately vanish for a value of Nz between zero and
unity, it being about 0.6 in the actual case (cf. Table I and
Figs. 9—11). On the other hand, b, V remains positive for
the value of Nz —0.6 since Av and Aw are of opposite
sign. It is due to this mechanism that the DP potential
induced by the Li-breakup process has a particular prop-
erty (AV&0, AW=O) with Nz ——1.0 and Nr=0. 6. This
is an answer to the second question mentioned above.
These properties of the DP potential induced by the
breakup channels have been suggested preliminarily in
Ref. 43 in the two-channel model, but no exphcit relation-
ships between b, U and Nz or Nr, like Eqs. (5.4a) and
(5.4b), have been discussed there.

Finally, we emphasize that application of the above dis-
cussion should not be limited to the case of Li breakup.
The basic role of the imaginary part in coupling potentials
is quite general as far as we stand on the present CDCC
framework. Recently, Kamimura and the present author
have reported that, in the collisions of ' C with ' 0 and
' C at E~,b/A& —10—20 MeV, the repulsive DP potentials
similar to the Li case are really induced by the coupling
with the ' C excited states (including ' C~3a breakup
channels), where the DP potential depends seriously on
the incident energy in this case, since the value of Nz in-
creases with the incident energy. Such properties of the
DP potential can be reasonably understood from the con-
sideration discussed above. This will be given elsewhere. "

(ii) In the case of a strong-imaginary coupling such as
a= 1 (Nq N~), —— VI. SUMMARY AND CONCLUSION

(5.6)

which is just the type seen in the case of Li breakup. The
meaning of these results becomes clear if one rewrites Eqs.

In this paper we have investigated the Li~a+d virtu-
al breakup effect on elastic scattering of Li over a wide
range of bombarding energy (E&,b =34—169 MeV) and for
many target nuclei (' C, Si, Ca, Ca, Ni, and Pb),
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which almost covers the energies and targets of currently
available data for elastic scattering of Li. The breakup
process is treated by the method of coupled discretized
continuum channels (CDCC), in which the breakup states
in the a-d S wave ( I =0), P wave (l = 1), and D wave
(1=2) with a-d relative momentum up to k =1.5 fm
are taken into account (Fig. 1). The internal wave func-
tion of Li in the ground state as well as those in the
breakup continuum states are calculated on the basis of
microscopic a-d cluster model. Projectile-target diagonal
potentials as well as coupling interactions which generate
projectile excitations are given by the folding of M3Y NN
interaction with nucleon density distributions of colliding
nuclei. The calculation reproduces well the measured
cross sections for all the targets and bombarding energies
(Figs. 2—7) without imposing any reduction factor to the
real DF potential, i.e., keeping Nz at unity. The breakup
effects are very large and are essential to reproduce the
observed elastic scattering data; when the couplings with
the breakup channels are omitted, there is no way to
reproduce the observed cross section as long as N~ ——1

persists. Furthermore, it is shown that the dynamical po-
larization (DP) potential induced by the coupling with the
breakup channels is a repulsive potential which cancels
about 40% of the attractive folding potential in the nu-
clear surface region. These results provide evidence that
the breakup effect is the real origin of the renormalization
factor Nz ——0.5—0.6 in the single-channel DF-model
analyses of the elastic scattering. Since the renormaliza-
tion factor in the DF model was found to be almost con-
stant (NR ——0.5—0.6) for the energies and targets investi-
gated so far, this also implies that the breakup effect is al-
most independent of bombarding energy and target nu-
cleus. In fact, this is directly confirmed by the calculated
DP potential (Figs. 9—11), the essential properties of
which (b, V= —0.4VOO and b, W=O) are shown to be al-
most independent of bombarding energy and target nu-
cleus as well as of angular momentum. As shown in Figs.

12 and 13, the calculated results are quite sensitive to the
strength of imaginary coupling potentials, and reasonable
agreement with the data require the values of
NI ——0.5—0.6 (see Table I) almost independently of energy
and target. These features can be understood qualitatively
by the perturbation-theoretic consideration. Thus, in
some sense the present analyses provide a justification for
the phenomenological determination of the imaginary in-
teraction, giving information about basic interactions of
Li-nucleus systems in the present bombarding energy re-

gion. Further fundamental justifications can be obtained
by more microscopic treatment of the imaginary part of
internucleus interactions. In particular, it may be chal-
lenging to investigate whether microscopic coupled-
channel theories such as those based on the nuclear
matter approach for internucleus interactions are able to
reproduce the energy and target independences of basic in-
teractions that have been found phenomenologically in the
present work. Further experimental investigations for
Li-nucleus scattering, as well as those for other heavy ion

systems, are also desirable at much higher energy regions.
Also, polarization phenomena will provide more informa-
tion for the Li-nucleus interaction.
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