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A potential consisting of two ellipsoidally deformed Gaussian potentials is suggested to be used
for a two-center shell model of deformed and arbitrarily orientated nuclei ~ The eigenenergies of the
two-center Hamiltonian are calculated with a set of Nilsson wave functions concentrated around the
individual nuclear centers. The two-center shell model is applied to the system "C+' O~ Si,
where the ' C nucleus is assumed to have an oblately deformed shape. Consequences for reactions
between deformed nuclei resulting from the level diagrams are discussed.

I. INTRODUCTION

Two-center shell models (TCSM's) have an extensive
range of application in nuclear physics. In this field of
physics they were introduced, in practice, by the Frank-
furt group. ' Besides the application for nuclear fission
and for reactions between heavier heavy ions (for a review,
see Ref. 4) they were also used for the description of light
heavy ion reactions within molecular reaction
theories.

Up to now the calculations in the TCSM were done
with two-center potentials, which are rotationally sym-
metric about the internuclear axis. ' Such potentials are
suitable for the description of two spherical or deformed
nuclei with intrinsic symmetry axes which lie along the
internuclear axis. The resulting rotationally symmetric
shapes of the TCSM potential are favorable for the
description of fission processes, but not for heavy ion re-
actions between deformed nuclei ~ In the latter case all
orientations of the intrinsic symmetry axes with respect to
the internuclear axis are possible and have to be treated
properly.

In this paper we present a new TCSM for arbitrary
orientations of the intrinsic symmetry axes of the de-
formed nuclei. We suggest building up of the TCSM po-
tential by means of two ellipsoidally deformed Gaussian
potentials centered at the centers of the nuclei. TCSM po-
tentials of spherical Gaussian type have been suggested by
Hasse' for the description of colliding spherical nuclei.
The proposed TCSM potential for deformed nuclei has
several advantages: For each relative distance and orien-
tation of the deformed nuclei a continuous and realistic
two-center potential can be obtained. Also, the single-
particle Ham iltonian can be conveniently diagonalized
with a set of basis functions consisting of Nilsson func-
tions centered at the nuclear centers of mass. Within this
basis set all the matrix elements of the two-center poten-
tial can be calculated analytically by solving usual in-
tegrals of Gaussian type in Cartesian coordinates.

Although the new TCSM is applicable for the descrip-
tion of the scattering of heavier nuclei and for the calcula-

tion of potential energy surfaces for deformed nuclei
within the formalism of Strutinsky, we have considered
here, as an example, the application of the new TCSM to
the scattering of an intrinsically oblately deformed ' C
nucleus on a spherical ' 0 nucleus. This heavy ion system
should be seen in relation to the observation and descrip-
tion of molecular single-particle effects in systems like

been recently shown that structures observed in the inelas-
tic cross sections and y-ray yields of these scattering sys-
tems' ' '' can be understood as due to avoided level
crossings of molecular single-particle states (nuclear
Landau-Zener effect). ' Therefore, the influence of the
'-C deformation on the molecular single-particle states is
a quite interesting problem and should be studied for
these light heavy ion reactions.

In Sec. II we discuss the Hamiltonian of the TCSM for
deformed nuclei, and present the method for solving the
eigenvalue problem in Sec. III. The model is applied to
the system ' C+ ' 0~2"Si in Sec. IV, where we show
level diagrams as functions of the relative distance and the
orientation of the oblately deformed ' C nucleus.

II. THE HAMILTONIAN OF THE MODEL

The neutron single-particle Hamiltonian of the TCSM
consists of the kinetic energy operator and a potential for
the mean interaction,

hTcsM + V(r p s)P
2M

2

V(r, p, s)= g [V;+C;(VV;Xp) s] . {21

The potentials V; are centered about z =Z
~

and Z2,
respectively, where the two-center distance is given by

The potential is assumed to be built up as a linear super-
position of two potentials including the spin-orbit poten-
tial,
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R =
~
Z, —Z2

~

. These potentials are assumed to be func-
tions of Gaussian form, which have ellipsoidal equipoten-
tial surfaces,

"oi

Vi ———Vo; 1+ g a2'„'u;" exp( —u; ), i =1,2
n=1

where

Here, 5;& (p=1,2, 3) are the deformation parameters. The
coordinates ( x,y, z ) with i = 1 and 2 are those of two in-
trinsic coordinate systems centered at z=Z1 and Zz,
respectively, and rotated by the Eulerian angles
0;=(i));,0;,t(i;), as shown in Fig. l. If we introduce the
coordinates (x, ,x z,x 3) and (xi,xz, x3) for (x,y, z )

and (x,y, z), respectively, the transformation between the
coordinate systems is given by

3

x
&
——g R& (II;)(x —5 3Z;), i =1,2

where R&„(Q;) are the elements of the transformation
matrix depending on the Eulerian angles Q;.

The parameters of the potential (2) are those of the po-
tentials (3) and the spin-orbit parameters C;. They de-
pend continuously on the internuclear distance R and the
Eulerian angles 0;. The parameters Vo;, az'„', and k; de-
fine the shapes of the potentials V; and the parameters 6;„
(i =1,2; @=1,2, 3) their ellipsoidal deformations. The
spherical case (5;„=I) was already studied by Hasse'
with the same TCSM potential. In case of a rotationally
symmetric potential about the z axis, the Eulerian angles
can be chosen to be zero and the transformation (5) is not
needed. For nuclei with rotationally symmetric shapes
about the intrinsic z axes, the deformation parameters in
Eq. (4) can be related to those used in the Nilsson model, 23

6; i
——5;3=(1+—,5;)/N,

5;3 ——(1 ——,5; )/N,

where

In general, the sum over n in Eq. (3) runs only over a very
few values of n and is needed to generate the correct ratio

between the inner part of the potential and its surface
range. Choosing a3'„' ——I/n. , one obtains potentials which
are similar to those of Woods-Saxon type.

The parameters Vo;, az'„', A,;, 6;„, and C; can be deter-
mined by the single-particle spectra of the nuclei for
R~oo and of the united system for R~O. For overlap-
ping nuclei the parameters have to be interpolated be-
tween their limiting values. An example for a special
choice will be given in the application of the model to the
system ' C+ ' O in Sec. IV. The parameters can be
correlated by assuming the condition that the volume of a
certain equipotential surface of V1+ Vz is conserved for
all values of R and 6;; namely,

d~6 Vo —V1 —V2 ——vo, (9)

where 0 is the Heaviside step function, Vo a fixed poten-
tial value near the Fermi level, and vo the volume en-
closed by the equipotential surface Vo. The volume in-
tegral in Eq. (9) can be solved only numerically and is car-
ried out by a Monte Carlo integration method.

The potential (2) in the form (3) has several advantages.
First of all, with this potential a smooth and realistic tran-
sition can be described from the potentials of the separat-
ed deformed nuclei with arbitrary oriented axes to the po-
tential of the united system. The potentials (3) show the
correct behavior ( Vi ——0) for large distances of the parti-
cles from the centers, in contrast to the oscillator-type po-
tentials of the TCSM of Maruhn and Greiner. The po-
tential (2) yields bound and continuum states. All the ma-
trix elements of the TCSM Hamiltonian (1) can be calcu-
lated analytically if a basis set of deformed oscillator wave
functions is chosen which are centered at z =Z1 and Z2
for larger relative distances R and at the central point
z =(Z~+Z2)/2 for small values of R.

III. SOLUTION OF THE TCSM PROBLEM

The eigensolutions t(~ of the single-particle Hamiltonian
(1) can be expanded into a set of space and spin functions
centered at z =Z1 and Z2 and quantized with respect to
the corresponding intrinsic coordinate axes:

2

Wv g g v«Isbn (xi~&yi «zi )~s
i = 1 n, s

(10)

The functions P„' are chosen as the normalized eigenfunc-
tions of the three-dimensional oscillator

P'„'(x,y, z ) =P„(x,, A", )P„(x 3,A2')P„(x;'3 A3 ),

where we abbreviate the quantum numbers by

n (n] n2 n3} (12)

R

FICx. 1. Schematic picture of the coordinate systems used for
the definition of the TCSM potential.

The functions P„are the wave functions of the one-
dimensional oscillator,

P„( Ax)=(2"n!v 7rA) ' H„(x/A)exp[ —x /(2A )] .

(13)

Here, H„are the Hermite polynomials of order n, and
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TABLE I. Parameters of the potentials of ' C, ' O, and Si, and the oscillator energy %co used for
the basis set. The parameters are defined by the potentials given in Eqs. (22) and (24).

13C

16O

29S1

V, (MeV)

50
54.0
45.0

a (fm )

0.2036
0.0899

A, (fm)

3.30
2.30
3.15

—0.3 0,09
0.09
0.10

Rco (MeV)

9.0
12.0
9.0

A is the oscillator length. The oscillator lengths Az' are
free parameters and can be fixed for the potentials (3) in
an optimum way as we show later.

The functions (t '„'X,' are orthogonal and normalized for
same values of i,

where

~(),&)(g ~) (y())
~

y(&))

S(1,2)(g) (y(1)
~

y(2))

(16)

((t„"g,"
~

(()„'X,")=5,5,6,6„, i =1,2 . (14)

The overlaps between the functions with i =1 and 2 de-
pend on R and the difference angle 0, between the Euleri-
an angles 0& and A2,

Integrals of the form (16) are carried out by transforming
the intrinsic coordinates x „via Eq. (5) into the laboratory
coordinates x& and then solving the Gaussian integrals in
the Cartesian coordinates xz. For the matrix elements
over the spin states, we use the following transformation
of these states to the laboratory states 7, with s =+ —,':

((()'''y'"
~

()(,
' 'g' ) —~(' (/ /)g(' )(g) (15)

S

With this relation we obtain the spin-matrix elements (17)
as

(X, ~X, ) =gD,', *(Q,)D,', (0 )=D,', *(0),
S

(19)

51'

where A=((t, 8,$) denotes the difference angles between
the directions of the intrinsic coordinate systems 1 and 2.

Matrix elements of the Hamiltonian hTcsM with the
basis functions (()„'X," can be evaluated as follows
(ij =1,2):
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FIG. 2. The single-particle energies of ' O varied as a func-
tion of fico used for the basis set including all the oscillator states
up to the fourth shell (N =3). The value Ace=12 MeV has been
taken in the further calculations.

FIG. 3. The shell model potential and the experimental and
calculated single-particle energies of ' 0 and Si.
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TABLE II. The characteristic quantities of the lowest bandheads of ' C, when the states are ordered

in bands: Eq~ and E~~ are the energies of the bandheads, measured with respect to the ground state and

to the negative value of the separation energy of the 1plq2 valence neutron ( —4.95 MeV), respectively,

their spin I, spin projection K on the body-fixed symmetry axis and parity vr, the inertia parameter

A /2J of the rotational energy and decoupling parameter d, the single-particle energy e~, calculated ac-

cording to Eq. (23), and the quantum numbers of the corresponding spherical state for zero deforma-

tion.

El~
(MeV)

0.0

3.09

3.85

Eac
(MeV)

—4.95

—1.86

—1.09

1 1——+2~2'
5 5——+2' 2'

A /2J
(MeV)

1.00

1.18

0.518

d
(MeV)

0.226

0.282

A=K
(MeV)

—4.97

—1.82

0.85

Spherical
state

1Pl

2sl

1 dgy2

2 2

&0"&l" lhTcsMIP' '&l'&= 0',"' +&&+&2 0"' &&l'~l&l'&+ &'',
" 2 &k&&&aXP& 0',")&X."I~ IX."'& .

2m k=1
(20)

The space integrals may be solved by the method used for
the overlaps (16), which leads to lengthy, but analytical,
expressions. For the spin-matrix elements we take the
transformation (18) into account and obtain

sl, s2

(21)

Finally, the matrix (20) of the Hamiltonian is diagonal-
ized with due regard to the partly nonorthogonal basis
functions. Further details of the method can be found in
Ref. 27.

and ' ' 0+ ' Mg, ' using the asymmetric TCSM of
Maruhn and Greiner. These calculations were restricted
to the case of the rotational symmetry of the potentials
about the internuclear axis. The TCSM potential suggest-
ed in Sec. II allows us to overcome this restrictive condi-
tion. Therefore, as the first example for the new poten-
tial, we have chosen a system consisting of a spherical and
deformed nucleus. In the following we present calcula-
tions of the two-center level diagrams for the system
' C+ ' 0, assuming that the ' C nucleus is oblately de-
formed and the ' 0 nucleus is spherical.

IV. APPLICATION TO THE SYSTEM ' C + ' 0
In our former treatments we have calculated TCSM

level diagrams for the asymmetric systems ' ' C+ ' ' 0
0—

1d 3/2

1d g/2

25 )/2
2s q/2

—5—
1/2 1p1/

-4Q

—50

x, z (fm)
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FIG. 4. The shell model potential of ' C is shown along the x
and z axes. The deformation parameter is 6= —0.3.

FIG. 5. Single-particle energies of ' C as a function of the de-
formation parameter 6. The value of 6= —0.3, used in the fur-
ther calculations, is indicated by a dashed line. On the right-
hand side the "experimental" single-particle energies are shown.



2150 GERHARD NUHN, WERNER SCHEID, AND JAE YOUNG PARK 35

jkx V= —Vo(1+ar )exp( —r /k )

4 Vp~ 2 2 2+ [(1+ar )exp( —r /A, ) ]1.s .
M~p dr2

(22)

16 13C

A. Shell model potentials for ' 0, Si, and ' C

In the limits R~O and R~ac the parameters of the
TCSM potential (2) can be determined by the neutron
single-particle energies of the corresponding nuclei. In
our example, these nuclei are the Si nucleus for R~O
and the ' C and ' 0 nuclei for R ~ oo. First, we consider
the ' 0 and Si nuclei, which are assumed to have spheri-
cal shapes. The single-particle states of these nuclei are
described by a spherical potential and a spin-orbit term:

FIG. 6. Schematic picture of the ' 0+ ' C system. The an-

gle 0 defines the orientation angle between the symmetry axis of
the oblately deformed ' C nucleus and the internuclear axis.

The energy ~p appearing in the spin-orbit term is set as
A~p ——413 ' MeV. In order to solve the eigenvalue
problem, we have chosen the oscillator states (11) as basis
set up to the fourth or fifth shell (N =n, +nz+. n~ =3 or
4) and varied the oscillator length A(A, =A& ——A&). Fig-
ure 2 shows the lowest single-particle energies of ' 0 as a
function of fico=% /(MA ) for N =3. We note that the
best value for Ace is obtained as Ace=12 MeV in this case.
The same variational procedure is carried out in all calcu-
lations presented here.

Figure 3 shows the potentials and the experimental and
calculated neutron single-particle energies of ' 0 and Si.
The experimental single-particle energies are taken from
Refs. 29 and 30. The potential parameters Vp, a, k, and ~
are determined by fitting the experimental single-particle
energies around the Fermi level. The calculated energies
of the deepest bound states lie as usually too high and give
too small binding energies. The values of the parameters
of the potentials and the energy quantum A~ used for the
basis oscillators are listed in Table I. Calculations with
different basis sets up to the fourth and fifth shells (N =3
and 4) have shown that the basis set including all states up
to the fourth shell is already sufficiently large enough to
represent the lowest eigenenergies correctly.

The ' C nucleus can be considered to consist of a ' C
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FIG. 7. The parameters (a) Vp;, (b) 6, (c) A.;, and (d) a& of the TCSM potential for ' 0+ ' C as a function of R for the orientation
angles 6t=0 (solid curves), 60' (dashed curves), and 90' (dotted-dashed curves) of the symmetry axis of "C.
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core and a weakly bound valence neutron. Whereas the
' C nucleus is strongly deformed with an oblate shape,
this deformation is reduced for ' C by the extra particle.
Therefore, the spectrum of ' C can be described either by
weak-coupling models with spherical single-particle states
or by strong-coupling models where the ' C core provides
a deformed mean potential for the valence neutron (for
literature, see Refs. 31—33). We have used the latter pro-
cedure in the present work.

Table II gives the energies and spins of the three lowest
' C states which are assumed to be the heads of the lowest
rotational bands. The energies of the rotational states can
be calculated by the formula given by Eisenberg and
Greiner:

EIK en=K+(iri /2J)[I(I +1)—2K

+5~ ig2d( —1) +' (I+ —, )] . (23)

carried out. For simplicity, we have assumed the poten-
tial to be in the form of Eq. (2) with

Vi ———Vo& (1+a
&
r )exp( —r /k, ), (2&)

V, = —Vo, exp[ —(5' x' '+5yy' '+5,'z' ')/k', ], (26)

where

x'= —(z —R)sinO+x cos9,

z'=(z —A)cosO+x sing .

(27)

As shown in Fig. 6, the centers of the ' 0 and ' C nuclei
are fixed at the coordinate origin and at z =R, respective-
ly. The intrinsic z' axis of the ' C nucleus is rotated by
the angle 0 around the y axis with respect to the z axis.

Here, e& is the single-particle energy, d the decoupling pa-
rameter, and K and 0 the quantum numbers of the com-
ponents of the total and single-particle angular momenta
along the body-fixed axis, respectively. In order to obtain
the values of the neutron single-particle energies ez ~, we
have set the energy of the ground state of ' C to be equal
to the negative value of the neutron separation energy, i.e.,
El &&2 & &&2

———4.95 MeV. The single-particle energies
are obtained according to Eq. (23) by using the experimen-
tal energies of the ' C states. The resulting "experimen-
tal" single-particle energies, as listed in Table II, are used
to fit the shell model potential. We assumed the follow-
ing shape of the deformed potential:

-20—

—60—

16p 13
( 23S(

Q 0

600
- —90

= 5fm

V= —Voexp[ —(5„x +5yy +5,z')/k ]

2 Vo]c
I %exp[ —(5„x'+5yy +5,z')/A. ] &&pI s,

0

(24)

—20—

40

where 6 =6~ and 6, depend on the deformation parame-
ter 5 according to Eqs. (6) and (7). The parameters
VO, X,6,~ fitting the "experimental" single particle ener-
gies and %co of the basis set (fico„=fico~ = ficu5„,
fico, =irico5, ) are given in Table I. Figure 4 shows the po-
tential of ' C along the x and z axes, and Fig. 5 the
dependence of the eigenvalues on the deformation param-
eter 6 and a comparison with the "experimental" single-
particle energies. The obtained oblate deformation pa-
rameter of 5= —0.3 for ' C is smaller than the one
known for ' C, indicating that the weak-coupling models
can also explain the experimental spectrum of ' C.

0

-20—

I

0
z (fm)

R=7 frn

l

10 20

B. The TCSM potential for ' C + ' O~ Si

The parameters of the potential, found for R~O and
R ~ oo as tabulated in Table I, have to be interpolated for
finite values of R. This interpolation cannot uniquely be

FIG. 8. Cut of the TCSM potential of ' 0+ ' C along the in-
ternuclear axis (z axis) for the relative distances R = 5, 6, and 7
fm and the orientation angles 0=0 (solid curves), 60 (dashed
curves), and 90' (dotted-dashed curves) of the symmetry axis of
' C. The ' O nucleus is centered at z =0, the ' C nucleus at
z =R.
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f(R =O, O)=0, f(R~co, O)=1. (29)

The values of the parameters are not uniquely determined
at R =0 by the parameters of the Si potential. We
choose the following partition of the parameters between
the two potentials V& and V2..

Vo, (R =0)=35 MeV, Voz(R =0)=10 MeV,

k, (R =0)=kq(R =0)=3.15 fm,

6(R =0)=0,
C, (R =0)=C~(R =0)=C( Si) .

(30)

The transformation between the coordinates x,y, z and
x',y', z' is given by Eq. (27).

The potential parameters Vo;, k;, a &,6,6~,6, and spin-
orbit parameters C; are functions of R and 0. The defor-
mation parameters are expressed in terms of 5(R, O) ac-
cording to Eqs. (6) and (7). First, we tried to reduce the
interpolation by introducing a single unknown function
f(R, O) as follows (i =1,2):

3 (R, O) =3 (R =0)[1 f (R,—O)]+3 (R ~ oo )f (R, O),
(28)

where 3 stands for the parameters Vo;, A;, a&, 6, and C;,
respectively, and the function f (R, O) depends on R and O

and satisfies the boundary conditions

The parameter a~(R =0) is then fixed by Vo, (R =0) and
the form of the Si potential. The chosen ratio between

Vo, (R =0) and Voz(R =0) leads to single-particle ener-

gies for small values of R as they are found for srv. all

quadrupole deformations in the Nilsson model (see Sec.
IV C).

The function f (R, O) is determined by the volume con-
servation condition (9) with Vo ———10 MeV. This is pos-
sible up to a critical value R, (O) with R, (O=O ) = 5.75 fm
and R, (O=90') =6.50 fm. For R &R, (O) we have set the
parameters Vo; and 6 equal to their asymptotic values and
the parameters A.;, a &, and C; varied according to Eq. (28)
by using again the volume conservation condition (9) with

Vo ———10 MeV. The resulting parameters of the two-
center potential are shown in Fig. 7 as a function of R for
different angles 0.

Figure 8 shows the two-center potential along the z axis
for the relative distances R =5, 6, and 7 fm and the orien-
tation angles 0=-0, 60', and 90' of the symmetry axis of
' C. Figure 9 presents the equipotential surfaces for
R =4, 6, 8, and 10 fm and a fixed orientation angle of
0=60. It is seen that the potential is nearly independent
of the ' C orientation for relative distances R & 5 fm. For
larger relative distances, R ~ 5 frn, the barrier between the
potentials of ' C and ' 0 is smallest for 0=90' as expect-
ed. Only in the case of 0=0 the potential is rotationally
symmetric about the internuclear axis (z axis).

— 10
—10

20 -10 20

—-10
R=4 f rn

@=E)0o

R=8 fm

8 =EiG

—10 —'l0

-5 -10 -15

I I I I I I

-10 0
l I I I I I I I I l I

2O
-10 20

' x(fmj

—-10
R=b fm

@ =E)0

R=10 fm

z(fm) 1 Q=QQ

F)G. 9. Equipotential surfaces of the TCSM potential of ' O+ "C with V= —5, —10, —15, and —20 MeV in the x-z plane for
relative distances R =4, 6, 8, and 10 fm and an orientation angle 0=60'.
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level crossings occur for 0 &R & oo. The reminder of the
crossings of levels with different values of 0 for 0=0 are
the additional avoided crossings. For example, the lowest
id~&2 (II= —,

'
) level has no crossing for 0&0, but several

avoided crossings. At the points of avoided crossings,
transitions between the corresponding levels can preferen-
tially take place with large transition strengths. They can
be considered as Landau-Zener —type promotion processes
for loosely bound neutrons.
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FIG. 12. The single-particle level diagram of the TCSM for
' 0 + ' C—~ Si as a function of R for 0=90 .

els are twofold degenerate because of the invariance of the
Hamiltonian with respect to a reflection on the plane
spanned by the nuclear symmetry axis of ' C and the in-
ternuclear axis. The levels are denoted by their asymptot-
ic (R ~ oo ) quantum numbers for 0=0'.

It is quite interesting to note that the 1d»2 levels of
' 0 are lowered for 0=90', whereas the 1p&&2 level of "C
is nearly unaffected by the orientation angle. Orientations
with extreme values of the energy difference between two
levels are preferentially found at the angles 0=0 and 90'.
For example, it is seen in Fig. 11(b) that the energy differ-
ence between the id5~2 (fl = —, ) level of ' 0 and the lp, ~z

level of ' C drops from 4.3 MeV at 0=0' to 1.6 MeV at
0=90'.

For 0=0' the potential is rotationally symmetric and,
therefore, the levels with different values of the magnetic
quantum number 0 can cross each other. This is dif-
ferent for 0&0 as shown in Fig. 12 for 0=90, where no

V. CONCLUSIONS

The new TCSM we have developed in this paper can be
used to predict and interpret reactions between deformed
nuclei. The dependence of TCSM levels on the orienta-
tion of the deformed nuclei leads to enhancements of
selected single-particle reactions for certain relative orien-
tations of the intrinsic axes.

In a microscopic molecular reaction theory based on the
states (10) of the new TCSM, three types of transition ma-
trix elements between the molecular single-particle states
are essential for the reactions: the radial matrix elements
( —0/BR), the rotational matrix elements dependent on
the total angular momentum operator, and the matrix ele-
ments measuring the orientation of the intrinsic nuclear
axes and which are dependent on the angular momenta of
the nuclei (fragments) ( —I&, I2). In the case of the
' C+ ' 0 reaction, the last matrix elements have to be
calculated as (g;

~

2/c)8
( tt~ ) and measure the change of

the molecular states with the orientation of the symmetry
axis of ' C. Similar arguments as used for the enhance-
ment of transitions due to the radial coupling at avoided
level crossings (Landau-Zener effect) can be applied for
the avoided level crossings as a function of the orientation
angles of the nuclei. Therefore, we expect enhanced tran-
sitions at these avoided crossings as a new effect.

In order to study the consequences of the new TCSM
for reactions between deformed nuclei in more detail, a
microscopic molecular reaction theory has first to be
developed which uses molecular single-particle states be-
tween deformed nuclei. Such a theory has not yet been
formulated in nuclear physics to our knowledge, but is
needed for the interpretation of reactions between light
deformed and polarized nuclei (see, for example, Ref. 34).
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