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Recent experimental cross sections for the reaction Cr(d, 2n) Mn are in marked disagreement
with the standard statistical-model analysis. We have, therefore, analyzed the data with an ap-
proach that emphasizes direct-reaction contribution to the cross section. This is done in two steps.
In the first step, the compound-nucleus formation cross section is defined such that only the internal
part of the target nucleus is allowed to absorb the deuteron, thus leading to the formation of ' Mn*.
The contribution of the external part is interpreted as going to direct reaction. The calculation of
the internal part then proceeds by statistical evaporation of two neutrons to produce "Mn. In the
second step, the dominant part of the direct reaction, i.e., the deuteron breakup, followed by the cap-
ture of the proton, is considered. This quantum mechanical, breakup fusion process forms Mn*,
which then evaporates one neutron to produce ' Mn. The sum of the cross sections from these two
processes fits the data quite well. The consistency of this twofold treatment is confirmed by our
finding that the total reaction cross section for the deuteron is accounted for by summing the above
two fusion cross sections with the additional direct-reaction cross sections that do not contribute to
the production of Mn.

I. INTRODUCTION

Recently excitation functions were measured' using foil
activation methods for two reactions: Cr(p, n) Mng'

and Cr(d, 2n) Mng' . These data were then analyzed by
the statistical model (SM) approach. ' It was found that
the model fits the (p,n) data very nicely, but not the (d,2n)
data. The purpose of this paper is to explain the
discrepancy in the (d, 2n) data.

The experiment measured o(g) and o(m ), which are,
respectively, the cross sections for forming the ground 6+
and the isomeric 2+ (378 keV) states in Mn. We shall
call o =cr(g)+tT(m ) the combined Mn-formation cross
section and call R =o(m)/c7(g) the isomer ratio. As
shown in Ref. 1, the trouble with the standard statistical
model (SSM) with two particle —one hole as the initial ex-
citon configuration in the preequilibrium model is that
the theoretical (d,2n) cross section, cr,h„„exceeds the ex-
perimental cross section, 0.,„~, by 30—50%. The agree-
ment is better with the choice of 2p-Oh initial exciton con-
figuration, but becomes worse with 3p-lh configuration.
Also, for the deuteron energy Ed ) 10 MeV, the value of
the isomer ratio is found experimentally to be roughly
unity, while for theory R is less than 0.5 and is insensitive
to the choice of the initial exciton configuration. We
want to remove these two difficulties. (For additional dis-
cussion on SSM, see Sec. III A.)

As is well known, the SM method first calculates oI,
the cross section with which a compound nucleus with
spin I is formed. It then calculates the ensuing decay pro-
cess. In the SSM method, one uses as o.l the spin I part
of the total reaction cross section, o.~, which is obtained

from the optical model, trit ——gt ot The su. ccessful (p,n)
analysis made in Ref. 1 shows that this SSM approach is
quite acceptable when the projectile is a proton. When the
projectile is a deuteron, however, the situation is different.

The fact that cr,h„, exceeds o.,„~, for (d,2n) suggests that
the value for crt used in the SSM is too large (at least for a
range of I), but acutally we should not be surprised at this
fact. Note that the total reaction cross section crR con-
tains two parts. The first, crR, is associated with fusion of
the projectile with the target (i.e., o.z is the formation
cross section of the compound nucleus) and the second,
o.z, is responsible for direct reactions. Since the deute-
ron is easily broken up, o.z is expected to be rather large
in deuteron-induced reactions. Thus, o.z is expected to be
significantly smaller than the tota1 reaction cross section
&w ~

If the spin I part of 0.& is now used as o.l in the SM
calculation for the (d, 2n) reaction, o.,h„, will be reduced
and the first of the difficulties encountered in Ref. 1 will
be overcome. In Sec. II A, we present a very simple
method of achieving such a reduction. This method,
which we call the direct-reaction approach to fusion
(DRAF), was used very successfully in fitting the cross
sections for fusion between two heavy ions, both below
and above the Coulomb barrier.

The DRAF method is, however, phenomenological. In
particular, it does not calculate the cross section for the
breakup, but only considers its possible onset conceptual-
ly. Explicit calculations of the breakup cross section, and
calculations of the breakup fusion cross section, are
reserved for Sec. II B.

When one speaks of the breakup of the deuteron, one
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normally has in mind the process during which both the
proton and the neutron fly apart. In the simplest case of
this process, which we call elastic breakup (EB), the target
stays in its ground state. The EB cross section should be
an important component of o.R

A straightforward calculation of the EB cross section is
normally performed when one wants to fit data for which
protons and neutrons are measured in coincidence. On
many occasions, however, the experiment measures only
the neutrons or protons separately, i.e., it measures only
the singles cross sections. Let us, for the sake of definite-
ness, consider the neutron- (n) singles cross section. This
is obtained by integrating the above EB cross section over
all of the proton degrees of freedom. It is now well
known, however, that this n-singles contribution is
rather small, and that a major contribution to the n-
singles cross section comes from a process called breakup
fusion (BF). Here the EB process is followed by the
absorption of the proton by the target.

In Sec. IIB we explain the calculation of the BF as well
as the EB cross sections in some detail. The reason for
doing this is not simply that the BF process makes a large
contribution to the n-singles cross section. It is because
the BF process followed by evaporation (which we call the
BFE process) contributes importantly to the (d, 2n) cross
section.

In Sec. IIC, we explain how the SM calculations follow
from the results of Secs.II A and II B.

Numerical results are presented in Sec. III. Section
IIIA discusses the basics of the statistical model calcula-
tion, and this discussion is followed in Sec. III B by calcu-
lations using the DRAF method. The BF calculation is
made in Sec. III C, and consistency arguments are given in
Sec. III D to justify the use of the DRAF method. Our
overall work in SSM, DRAF, and BFE is summarized in
Sec. IV.

II. THEORETICAL FORMALISM

A. Direct-Reaction approach to fusion (DRAF) method

As shown in Ref. 2, the total reaction cross section o.
R

for an incident deuteron can be written as

Yd+'=(1/kdr ) g i '(2l+ 1 )X&(r)P,(0),
I =0

(2)

where kd is the wave number. The function PI(0) is the
Legendre polynomial. By using Eq. (2), expression (1) can
be rewritten as

o ~ = ( m/k ~ ) g (2l + 1 ) TI
1=0

with the transmission coefficient TI given by

R =(2~/&ud)((&d
I
~d

i

&d+ )

where Ud is the deuteron velocity, Xd+' is the deuteron dis-
torted wave, and 8'd is the negative of the imaginary part
of the deuteron optical potential.

The distorted wave 7&+' can be expanded into partial
waves as

T/ =(g/fiud) I ~
XI(r)

~

Wd(r)dr . (4)

Note that we have attached superscript OM to o.
R and

TI to emphasize their optical-model (OM) origin.
Equations (2)—(4) were obtained by assuming that the

deuteron has no spin, a simplification that is well justified
for the purpose of this paper. (Contributions from dif-
ferent j=l+s with a given l will average out. ) Since the
target Cr is in a 0+ state, the spin I of the compound
nucleus Mn is the same as the orbital angular momen-
tum l of the partial wave that is responsible for forming
the compound nucleus. Thus, the partial cross section for
creating this compound state is written as

at =(m/kd)(2I+1)Tt

As emphasized in the Introduction, a straightforward
use of o.l, or equivalently of TI, as the starting point
of the SM calculation, makes the theoretical (d, 2n) cross
section o.,h„, too large. To remove this trouble, we now
introduce the DRAF method.

We can begin to explain this method by first noting
that the right-hand side (rhs) of Eq. (4) includes an in-

tegral over r that ranges from 0 to infinity. In practice,
however, this is a finite-range integral, because the in-
tegrand becomes negligibly small beyond a fixed value of
r, R,„, due to the finite-range nature of W(r). Let us
now introduce a cutoff radius RF that is somewhat small-
er than R,„, and define a new transmission coefficient
TI asF

The corresponding cross section o.l may be written, as in
(5),

trI =(n/kd )(2I+.1)Tt .

The superscript F attached to TI and o.i, and the sub-
script F attached to RF, both signify the relation of these
quantities to the fusion part of the total reaction cross sec-
tion.

The use of the DRAF method means that TI shall be
used in place of Tl in the SM calculations. Since
RF ~R „,it is guaranteed that TI & TI . An appropri-
ate choice of RF would thus decrease o,h, , so that it
agrees with o pt The details of this numerical problem
are discussed in Sec. III, although we might remark here
that an RF chosen to be independent of I and Ed repro-
duces the excitation function cr,„z, very well.

Thus we know that the DRAF method works nicely.
(It also worked surprisingly well in heavy-ion fusion anal-
yses. ) The method is, nevertheless, based on a rather ad
hoc phenomenology, and one may well ask that an a pos-
teriori justification be provided. One wag to do this is to
check whether the direct reaction part o.R of o.R, which
is given by

DR F
+R +R ~R

is accounted for by a summation of the various calculated
cross sections for all possible direct-reaction processes.
This consistency check is done in Sec. III D.

We wished to avoid the use of a phenomenological
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method to separate the direct reactions from the complete
fusion reaction. But its use was necessary because there is
no known way to treat this separation microscopically.
Among other phenomenological methods, we reject the
sharp I-cutoff method as unphysical. The smooth I-
cutoff method is similar to our method (see Fig. 5), but it
contains two parameters. We prefer our one parameter
DRAF method.

Here, p(E„) and p(E&) are the phase-space volumes for
the outgoing neutron and proton, respectively. Clearly,
the relation between the neutron energy E„and the proton
energy E~ can be written as

En +Ep Eg Bg ) (10)

where Ez is the energy of the deuteron and B& is the
deuteron binding energy. Further, Xz+' is the deuteron
distorted wave, as in Eq. (1), while X'„and X„' are,
respectively, the neutron and proton distorted waves. The
function pd stands for the spacial part of the deuteron
internal-wave function, while the interaction potential Vd
is given by

Vg ——U„+Up —Ug .

The symbol U„represents the optical potential of the neu-
tron relative to the target. The quantities U~ and Uz are
defined similarly.

The meaning of Eq. (9) is now evident. It is the well-
known DWBA (distorted-wave Born approximation) form
of the EB cross section. As remarked earlier, Eq. (9) was
derived by assuming that the target stays in its ground
state after the onset of the breakup. Thus Eq. (9) is in
fact the cross section for the elastic breakup. Equation
(10) is also the result of the target ground-state assump-
tion, and the corresponding assumption of elastic breakup
will be sustained throughout this paper. (That is, we as-
sume that contributions from inelastic breakup are
small. )

A comment on the specific choice of the DWBA in-
teraction made in Eq. (11) is worthwhile. To make this
choice of the interaction means that we are using its prior
form. Since all the interaction potentials U„, U~, and Ud
that appear in Eq. (11) are long ranged, the exact-finite-
range (EFR) method ' must be used in evaluating the
six-dimensional integral that is contained in the matrix
element appearing in Eq. (9).

B. Breakup and breakup-fusion cross sections

We first write down the triple differential cross section
for the EB process. ' It is given by

d3 EB
= (2n. /fiud )p(E„)p(Ep )

dE„dQ„dip

(9)

If we are interested only in the EB process, we may take
advantage of the prior-post equivalence to replace Vd in
Eq. (9) by V~„, the interaction between the neutron and
the proton. Since V~„ is short ranged, we may use the
zero-range (ZR) approximation, and thus drastically sim-
plify the calculation. Unfortunately, however, the use of
the post-form interaction V~„ in Eq. (9) causes a serious
problem (discussed in Refs. 5 and 7) in the ensuing formu-
lation of the BF process. Because of this reason we stay
with the prior form, in spite of its complexity.

We next write down the double-differential cross sec-
tion for the BF process, having in mind the case where the
neutron flies away and the proton is absorbed:

d2 BF
=(2n/iriud)p(E„)((gp+'

~
Wp

~

f'p+')/~) .
dE„dQ„

(12)

Here, 8'„ is the negative of the imaginary part of Up.
The wave function Pz+ is used to describe the motion

of the proton (to be eventually absorbed) relative to the
target. Its explicit form is found by first doing a partial
wave expansion in spherical harmonics YI (r) and radial
function ui~(r),

g~+'(r)= g(l/r)u i(r)Y~~(r),
lm

(13)

and then noting that the radial part of its wave function
satisfies the following inhomogeneous differential equa-
tion:

dr
l(l+1) +k —(2p /R ) U„u( (r) =pi (r ) .

r

(14)

The inhomogeneous (source) term p, (r ) is given by

pl (r) r(YI X'. '
I Vp IXd 4d~ (15)

'(r) =(4m/k r) pi'Xi(r) Yi (r) Y&" ( —k ) .
1m

(16)

Here, k~ denotes the angular part of the proton mornen-

turn k~, i.e., k~ describes the direction into which the pro-
ton proceeds (in the EB case).

If Eq. (16) is used, the matrix element in Eq. (9) can be
rewritten as

In Eqs. (13)—(15), r denotes the coordinate vector be-
tween the proton and the target, r being its angular part.
In Eq. (14) p~ is the reduced mass of the proton, while
k~=2@+~/A' . Finally, the matrix element in Eq. (15)
implies a five-dimensional integral that is closely related
to the six-dimensional integral of Eq. (9).

To obtain the relation between these two integrals, we
first expand into partial waves the proton distorted wave
X~

' that appears in Eq. (9), just as P~+' was expanded in
Eq. (13) above:

(X& X„~Vd ~Xd 'Pd)=(4n/kz) gi YI ( —kz) J Xi(r)r(Y&~X„' '
~

Vd ~Xd+'Pd)dr .
1m

(17)
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Equation (17) clearly establishes the relation between the
two matrix elements, i e., between the six- and five-
dimensional integrals. It also clarifies the meaning of the
source term p~ (r ). The source of this proton motion has
indeed been created by the EB process that occurred as
the first step of the BF reaction.

Once p& (r) is obtained, it can be used in Eq. (17) to
complete the calculation of the breakup cross section of
Eq. (9). By using the same p~ (r) in Eq. (14), the inhomo-
geneous equation is solved with the outgoing-wave boun-
dary condition to obtain u~ (r). The latter is used in Eq.
(13) to obtain the wave function g~+'(r ), which is, in turn,
used in Eq. (12) to finally obtain the BF cross section.
[See Ref. 10 for an explicit form of p~ (r ).]

It is convenient to write down explicitly the result of in-
serting Eq. (13) into Eq. (12). It may be written as

with

d2

dE„dQ„( dE„dQ„
(18a)

y2 BF

dE„dB„
= g(2/fiuq)p(E„) f ~

uim(r)
~

8'~(r)dr .

(18b)

Note that p~ (r) depends on k„via the k„dependence of
X'„' [cf. Eq. (15) and Eq. (16)]. The radial wave function

u& (r) thus depends on k„, as seen from Eq. (14). This is

why the rhs of Eq. (18b) depends on k„, i e. , on
Q„=(8„,$„). [Because of the axial symmetry of the whole
problem, the rhs of Eq. (18b) is, in fact, independent of
P„.] The function u~ (r) also depends on E„, as seen
from Eq. (14). Since E„ is uniquely related to E~ by Eq.
(10), u~ (r), and hence the rhs of Eq. (18b) also depends
on E„.

The derivation of Eq. (18) completes the derivation of
the breakup-fusion cross section.

C. Statistical model calculation

(19)

We now discuss how to use the results of subsections A
and 8 for the new calculation of the statistical processes.

The application of the result of subsection A should be
evident. It is essentially the same as that for the SSM cal-
culation, in which the complete fusion of the deuteron
with the target is assumed. The only difference is that we
should now use the transmission coefficients TI given in
Eq. (6), rather than TI given in Eq. (4). We denote by
cr (i ) the formation cross sections of the i (i =6+ and 2+ )

states of Mn thus obtained.
In order to explain how to use the result of subsection

B, we first note that the BF cross section of Eq. (18) de-
pends on E„and 0„. However, we are not interested in
the O„dependence, and thus we obtain as the angle in-
tegrated cross section:

BF

cr "(Ep)=

peri�

"(E )= +2rr f sin9„dO„.
dE„dQ„

E~ —B~o"(i)= f . o "(Ep,i)dEp . (21)

III. NUMERICAL CALCULATIONS

Three types of calculations are discussed for the
analysis of the Cr(d, 2n) Mn ' data. The first is the
standard SM, i.e., the Hauser-Feshbach plus
preequilibriurn-type calculation. We refer to the result of
this calculation as the SSM (standard SM) result. The
second calculation is performed using the DRAF method
of Sec. IIA, and the result of this calculation is referred
to as the DRAF result. The third calculation is based on
the BF theory. The result of this calculation together
with the calculation of the evaporation of a neutron from

Mn is referred to as the BFE result.
Since details of the SM calculation have been reported

in Ref. 1, its explanation here will be brief.

A. Standard statistical model (SSM) calculations

The SM part of the calculation is involved in all the
SSM, DRAF, and BFE calculations. We used the current
Livermore version of the statistical model code ST&PRE,
which is designed to calculate energy-averaged cross sec-
tions for particle-induced reactions. The reaction is as-
sumed to proceed first by emitting preequilibrium particle
in accordance with the exciton model. ' This emission is
followed by the evaporation of equilibrated particles and
then by the emission of gamma rays. These latter pro-
cesses are treated in terms of the Hauser-Feshbach for-

[oa"(E ) is an abbreviation for dcr "(Ez)ldE~ ].
Note that the left-hand side of (19) is written as a func-

tion of E„rather than E„(as we have written it before in
subsection B). This is because the compound nucleus
( Mn") that results from the BF process of subsection B
is the same as that obtained when a proton with an energy
E„ is absorbed by the target Cr. In other words, the SM
calculation which we are to perform is essentially the
same as that done in Ref. 1 for the (p,n) case. For this
reason, we also used I, instead of l, in denoting the spin of
the compound state (as we did in subsection A).

Contrary to the actual (p,n) analysis, in which the for-
mation cross section of the spin state I is given by the op-
tical model oq of Eq. (5), the formation cross section in
our calculation is given by oi "(E~) of Eq. (19). To use
this formation cross section is, of course, the same as us-
ing the transmission coefficient given by

TI "(Ep)=(kp/~)(2I+ 1) 'err "(Ep) . (20)

Whether one prefers the use of vl "(E~) or TI (E~), the
SM calculation that is to be performed should be evident.
Let us denote the formation cross section of the i state
thus obtained by cr "(E„,i ).

Obtaining these cross sections is not the end of the
present work, however. We are interested in obtaining the
BF contribution to the (d, 2n) cross section as a function of
Ez. However, for a given Ez, E~ ranges from 0 to
Ez Bz, see—Eq. (10). The cross section we want then is
given by
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malisnl with conservation of angular momentum and pari-
13

The results of the SSM calculations have been reported
in Ref. 1 and are summarized as follows: For the (p,n)
case, we were able to reproduce the cross section
o=o(g)+o(m) and the isomer ratio R =cr(m)/o(g)
with good accuracy. However, for the (d, 2n) reaction, the
cross section which we now denote by o.ssM is too large by
30—50%%uo, while the isomer ratio which we denote by
RssM is too small by about a factor of 2. These troubles
are clearly seen in Figs. 1 and 2, where o.ssM and RssM are
compared with respective experimental values. '

Note that the SSM results refer to the following choices
of preequilibrium model parameters: the parameter
%=200 MeV, a constant that defines the average two-
body residual interaction in the preequilibrium model, and
two particle —one hole as initial exciton configuration.
We point out that both the quantity K and the initial exci-
ton configuration are treated as free parameters. The
choice of a two particle —one hole initial configuration is
arbitrary, but our conclusion of the companion paper on
the isomer ratio is unaffected by the choice of the initial
configuration.

We also point out here that an adjustment of the level
densities and the compound/precompound fraction can
force the o.ssM to become closer to o.„~„but they affect
R th,„only negligibly. An adjustment of the gamma
branching ratios in Mn can change R,h„„but once this
change is made, the good agreement with data already
achieved for the (p, n) case is completely destroyed.

We thus have to look for a new mechanism which
makes cr,z„, and R,z„„agree with experimental (d, 2n) re-
sults, without appealing to these adjustments.

This is why we carry out the DRAF and BFE calcula-

1.0

0.8—
Q)

~ 0.6E DRAF {7.8 fm)

0.4
O

0.2—

SSM

Data

Calculations

I

10
l I l

12 14 16
E., (MeV)

I

18
I

20

FIG. 2. Comparison of the calculated isomer ratio
[o(m)/o(g)] with measured data of Ref. 1 for the reaction

Cr(d, 2n) Mn '~.

tions in the next two subsections. In presenting the results
of these calculations, we find it convenient to define
o.DR~F and RDRAF as

~DRAp ~ (g)+~

RDRAp ——o. (m )/o (g)

(22a)

(22b)

The formation cross section, cr (i ), was defined at the be-
ginning of Sec. IIC. Note also that cr (i), and hence
o.DRAF and RDR~F, are functions of the cutoff radius Rg.
If R~ is taken to be equal to infinity, o.DRAF and RDRAF
reduce, respectively, to o.ssM and RssM.

Corresponding to Eqs. (22a) and (22b), we may also de-
fine o.gFE and RBFF as

400— o.Bpp ——o "(g)+o "(m),

R,pE
—o.sP(m ) /o sP(g ),

(23a)

(23b)

300—
O

200—
theor ~DRAF+ BFE ~ (24a)

R,b, ,——[o (m)+cr "(m)]/[o (g)+o' (g)] . (24b)

where o "(i) was defined in Eq. (21). We shall also need
definitiOnS fOr 0 theor and R theor:

100— B. Statistical model calculations
with the DRAF method

l

8 10 12 14 16

E, (MeV)

18 20

FICx. 1. Comparison of the calculated total cross sections
[cr(g)+o(m)] with experimental data (Ref. 1) for the reaction

Cr(d, 2n) Mn . The calculated results of the DRAF and
SSM methods are identified. Ed is the bombarding energy.

We now use the DRAF method of Sec. II A to generate
the entrance-channel spin distribution for the ensuing SM
calculations. As we stressed in Sec II A, every calculation
is the same as that done with the SSM method in Sec.
IIIA, except for the use of the transmission coefficient
TI of Eq. (6) instead of TI of Eq. (4). In all of our cal-
culations, we used the Moldauer potential' for neutrons
below l MeV and the Rapaport potential' above l MeV.
For protons we use the global potential of Percy' and for
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alpha particles the McFadden-Satchler potential. ' The
deuteron potential is used without the spin-orbit term (see
discussion in Sec. IIA); we have used the potentials from
Lohr and Haeberli' below 13 MeV and Percy and Percy'
above 13 MeV. The choice of the above optical potentials
has been discussed in the companion paper. Here we sim-

ply mentioned them for completeness.
The results of the calculations using the DRAF method

are shown in Figs. 1 and 2. In Fig. 1 we compare o.ssM
and o.DR&F with experimental data. The disagreement
with ossM i.e., with o.DRAF for RF ——ao, is evident. The
line denoted by DRAF (7.8 fm) represents the crDR~F
cross section of Eq. (22) obtained with RF ——7.8 fm and
fits the data quite well. Figure 1 also presents the result
obtained with RF ——7 fm. This result is given to provide
an idea about the cross section variation with Rz. Addi-
tional information about this variation is found in Fig. 3
and will be discussed shortly.

In Fig. 2 the isomer ratio R is given both for SSM
(R~ ——co ) and DRAF (RF ——7.8 fm). It can be seen that a
significant improvement has been achieved by using a fi-
nite value of RF.

The reason that the use of a finite RF improves the fit
to the o. data is simply a consequence of the fact that
TI & TI, as was stressed in Sec. II A. The reason the fit
to R data is also improved is that the spin distribution has
shifted to lower values of I, i.e., the ratio TI /Tl gets
smaller as I grows larger. Since the isomeric state has a
lower spin (2+ ) than the ground state (6+ ), the resulting
lower spin distribution helps to increase R.

Although the DRAF result shown in Fig. 1 with

RF ——7.8 frn fits the o. data nicely, we cannot take it as
our final result because there are also BFE contributions
to o.. To accornodate the latter we calculated o.DRAF once
again, this time for RF ——7.3 frn. The result of the calcu-
lation is given in Fig. 3. We note that it underestimates
0 pt To this ~DRAF, we add 0 zFE, to obtain the final cal-
culated cross section. Both NBEF and oDRAF and their
sum are shown in Fig. 3. The calculation of o.BFE is dis-
cussed in the next subsection.

Corresponding results for the isomer ratio are presented
in Fig. 4. We postpone discussion of this figure to the
next subsection.

C. Breakup-fusion evaporation (BFE) calculations

This is the most time consuming part of the whole cal-
culation because once the bombarding energy Ed is
chosen, E„must range from 0 to Ed Bd, as seen in (10). —
We chose ten equally spaced values of E„ in this range,
and performed the BF calculations separately for each
pair of Ed and E„. Since we chose eight values for Ed (9,
10, 12.5, 15, 17.5, 20, 25, and 30 MeV), we had 80 sets of
Ed and E„values altogether. For each of these sets, we
calculated p( (r ) for 1=0—10 and m =0 and 1, and for a
particular range of r. Note that the experimental data on
the (d,2n) reaction are available only up to Ed -=20 MeV.

The calculation of EB and BF cross sections after ob-
taining p~ (r) has been explained in Sec. IIB. Obtaining
the BF contribution to the (d,2n) cross section, i.e., calcu-
lating o "(i ), was then explained in Sec. II C [see Eq. (21)
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in particular]. As remarked above, we wish to obtain
cr&FE and RB„E as they are defined by Eq. (23). Note that
in the EB and BF calculations, the spin-orbit term of the
optical potentials (Refs. 14—16 and 18—21) are ignored.
The spin-orbit terms, however, are included in the eva-
poration part of the calculation.
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FIG. 4. Isomer ratio [a ( m ) /cr(g ) ] for the reaction
Cr(d, 2n) Mng™. The combined results of DRAF and BFE

are compared with the data of Ref. 1. The SSM results are also
shown for comparison.
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FIG. 3. Total reaction cross section [i.e. , cT(g)+cT(m)] for
the reaction ' Cr(d, 2n)' Mn . The combined results of DRAF
and BFE are compared with the experimental data of Ref. 1.
The SSM results are also shown for comparison.
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The craFE is plotted in Fig. 3 as a function of Ed, and so
is the o.oa&F obtained for RF ——7.3 fm. The sum of these
two gives o,h„, [Eq. (24a)], which, as seen in the figure,
reproduces the experimental cross section o„~, very nice-
ly. This fit to the data is a major success of the approach
we have employed.

R BFE and R,h«, are given, along with R DEAF, in Fig.
4. One can see that RBFE is larger than unity for all Ed
and that it is particularly large at lower Ed. However, the
final theoretical R,h„, is calculated by Eq. (24b). Since
cr "(i ) «o(i )., as seen from Fig. 3, the large RBFE does
not produce very large R,h«„although it certainly helps
to make R,h«, larger than RDRAF. The R,h«, now agrees
rather well with R„z„as seen in Fig. 4, although it is still
somewhat too small. Nonetheless, the improvement of
R theo as compared with R ss~ is clearly evident.

In subsection B, we discussed the fact that the calculat-
ed value of R increases if the spin distribution is de-
creased. To give a more quantitative idea of the process,
we present in Fig. 5 the spin distributions for the SSM,
DRAF, and BFE cases for Ed ——15 MeV. More precisely,
for the SSM and DRAF cases we plot the cross sections
ol [of Eq. (5)] and oi [of Eq. (7) for RF —7.3 fm] with
which the spin state I of Mn is formed. For the BFE
case the cross section ol "(E~) of Eq. (19) is plotted after
it has been integrated over E~ from 0 to Ed —Bd. This
BFE curve thus gives an idea of the cross section with
which the spin state I of Mn is formed.

The shift to the lower spin distribution in using DRAF
rather than SSM is not very large, yet it is sufficient to in-
crease R from Rss~ -—0.5 to RD&AF-=0. 6. On the other
hand, the spin distribution of BFE is very strongly shifted
to the lower spins, which explains the very large RBFE
seen in Fig. 4.

280

240

200

E
160

O

120

U
80

D. Check of consistency

At the start of the present analysis we divided the total
reaction cross section o.z into two parts, o.z and o.z, and
retained only o.z as the part contributing to the complete
fusion of the deuteron. We have made this division
phenomenologically, and we now want to perform a con-
sistency check to justify the division. We wish to show
that the part oz that was left over in the above
complete-fusion calculation can, in fact, be understood as
the direct reaction part of o.z.

Our result is summarized in Table I: It lists various
cross sections obtained for seven Ed values given in
column 1. In columns 2 and 3, respectively, we give o.z
and oz (defined as o.z cJ&, wit—h o~ being calculated for
RF=7.3 fm). In column 4, we give the total EB cross
section o.E&, which was obtained by integrating the EB
cross section of Eq. (9) over Q~, II, and E„. The total BF
cross section for the neutron, crB"„, in column 5, was ob-
tained by integrating the BF cross section of Eq. (12) over
O„and E„. By assuming that the corresponding BF con-
tribution to the proton singles cross section is the same as
that of the neutron ozz, we listed in column 6 the total
breakup-related cross section o.z, which equals

(n]0EB+20 BF
Since o.z is expected to account for the major part of

o.z, the required confirmation of the consistency is ac-
complished by confirming that o's-=oz (cf. columns 3
and 6). We also give in column 7 the ratio
(oz —os )/~z, which is a measure of the violation of the
consistency. The smallness of the entries in column 7
confirms that our analysis was done in a consistent
manner. [The sharp change in (cr~ oz) /crt —fro.m 12.5
to 15 MeV, as seen in the table, is a consequence of the
two choices of the deuteron potentials made in this calcu-
lation. Note that we have used Lohr-Haeberli potential'
below 13 MeV and the Percy-Percy potential' above 13
MeV. ]

Our choice of the optical potentials has been carried
over from the companion paper. However, in order to test
the sensitivity of o.z to different choices of optical poten-
tials, we performed additional calculations with deuteron
potentials of Lohr and Haeberli' and Daehnick et al. ,
and the neutron and proton potentials of Becchetti and
Greenlees ' for a fixed deuteron bombarding energy of 15
MeV. The results show a 7% variation with respect to
the three deuteron potentials and a 16%%uo variation with
respect to the different neutron and proton potentials. We
believe that further choice of appropriate optical poten-
tials will lead to similar variations, and thus our con-
clusions are not likely to be altered.

40

0
0 4 6 8 10

Angular momentum (h)

12 14

FICx. 5. Spin distributions for the SSM, DRAF, and BFE
methods for 15 MeV deuteron incident on Cr.

IV. SUMMARY AND DISCUSSIONS

The data of the Cr(d, 2n) Mns' reaction' was
analyzed. Since the standard statistical model (SSM)
could not explain the (d,2n) data, we chose an approach
quite different from that of SSM.

Our approach was to emphasize the direct-reaction as-
pects involved in deuteron induced reactions. We began
by recognizing that the direct-reaction part o.~ of the
total-reaction cross section o.z should not be included in
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TABLE I. Various cross sections for the deuteron induced reaction on ' Cr: o.~ (total reaction cross
section), o.~ (direct reaction part of o.

& calculated with RF ——7.3 fm), o.EB (elastic breakup cross sec-
tion), o.BF (breakup fusion contribution to neutron singles cross section), and o.~ (total breakup cross see-

&n)tion, o.~ ——o.EB+2o.BF.

Ed(lab)

(MeV) (mb)

DR

(mb)

OEB

(mb)

(nj
OBF

(mb) (mb)

DR —&a

10
12.5
15
17.5
20
25
30

1388
1525
1547
1599
1635
1680
1707

596
614
464
466
467
465
463

34
52
61
65
67
70
66

163
176
178
175
170
159
149

360
404
417
415
407
388
364

0.17
0.14
0.03
0.03
0.04
0.05
0.06

the formation cross section of Mn as is usually done in
SSM. Only the internal part o.z of o-R should be con-
sidered as the cross section that leads via Mn to the
eventual formation of Mn. At the same time, we recog-
nize that the breakup-fusion process whose cross section is
a part of o.~ contributes to the formation of Mn. This
process first creates Mn', which can then partially de-
cay into Mn. We found that, when summed, the contri-
butions from these two processes give a good fit to the
data of Ref. 1.

Since the separation of o.z from o.z was done
phenomenologically, we wished to make an a posteriori
justification. This we did by confirming that the o.z part
of o.

& was well accounted for by the sum of the various
breakup-related direct-reaction cross sections.

In defining the SSM model, we used 2p-1h as the initial
exciton configuration in the preequilibrium model. This
is carried over from the companion, experimental paper,
where initial exciton configuration is treated strictly as a

parameter. However, we point out that our conclusions of
this paper would not be affected by the 3p-lh configura-
tion, but would be affected by the 2p-Oh configuration.

The problems of "complete fusion" and "incomplete

fusion" (the latter being synonymous with breakup fusion)
have been fashionable subjects of study in recent years in
the field of heavy-ion reactions. ' Considering this
heightened interest in heavy-ion reactions, it is somewhat
surprising to find that not much corresponding work has
been done in the field of light-ion induced reactions. The
data of Ref. 1 gave us an excellent opportunity to fill in
this gap.

We should emphasize that the data of Ref. 1 contains
(p,n) data as well, with the same target and the same final
nucleus. The requirement that the two sets of data should
be analyzed consistently sets an additional constraint and
made the present analysis more meaningful and convinc-
ing.
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