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Reconstituting rotational band structure from deformed boson expansions:
Generic treatment

E. R. Marshalek*
Department of Physics, Uni Uersity of Notre Dame, Notre Dame, Indiana 46556;

Institut fiir Theoretische Physi k, Johann Wo-lfgang Goe-the Universitat, 6000 Frankfurt am Main, Federal Republic of Germany;
Physik Department, Technische Uniuersita tMi'inchen, Theoretische Physik, 8046 Garching, Federal Republic of Germany

I,'Received 27 October 1986)

The usefulness of perturbative expansions in deformed bosons has been limited by difficulties as-
sociated with zero-frequency (Goldstone) modes. A method developed earlier by Marshalek and
Weneser to overcome these difficulties was restricted to the case in which the broken-symmetry gen-
erators commute. The present paper shows how to extend the method to the non-Abelian case of
three-dimensional rotation of axially symmetric deformed systems. Application is made to a generic
anharmonic Hamiltonian constructed from random-phase-approximation modes.

I. INTRODUCTION

Mean-field approximations applied to atomic nuclei
often produce solutions with broken symmetries, implying
the existence of collective bands having a rotational char-
acter. ' Attempts to generate the band structure by means
of Taylor expansions about a broken-symmetry extremurn
encounter well-known problems with zero-frequency
(Cxoldstone) modes. A method for overcoming these prob-
lems in the case of two-dimensional rotation was present-
ed by Marshalek and Weneser (MW) some time ago. ' In
a more recent paper, the author discussed the application
of this method to an exactly soluble many-body model
and compared it with a new method of Bes et al. The
reader is referred to these papers for background, and
especially to Ref. 4 for recent citations to related work.
As originally formulated, the MW method is restricted to
the case in which the broken symmetries constitute an
Abelian group, as, for example, in the superfluid (BCS)
model, in which the generators are the neutron and proton
number operators. ' The extension of this method to non-
Abelian cases, however, is nontrivial, although two closely
related examples exist; namely, the treatment of isospin by
Ginocchio and Weneser and that of high-angular-
momentum states by the author. These are both exam-
ples of the self-consistent cranking plus random-phase ap-
proximation (SCC + RPA) method. Although the
SCC+ RPA technique can indeed be continued to the
low-spin limit, it becomes somewhat cumbersome. '

Moreover, it should be possible to describe low-spin states
without taking a high-spin detour. That is exactly the
purpose of this paper, which outlines a viable extension of
the MW method, to directly treat the low-spin band struc-
ture of nuclei with axially symmetric equilibrium defor-
mations. It will be seen that axial symmetry poses some
special problems which are absent for nonaxial systems. "

The extended MW method is applicable to any rotation-
ally invariant Hamiltonian system expressible in terms of
boson operators, or, equivalently, canonically conjugate
coordinates and momenta, and having a classical equili-
brium configuration that violates angular-momentum

conservation. Its applicability to a second-quantized
many-nucleon shell-model Hamiltonian is based on the
fact that such a Hamiltonian can be mapped into an
equivalent many-boson operator by means of the boson
expansion method. ' ' In this method, it is usual to "bo-
sonize" all degrees of freedom of an even-even nucleus
while additional odd nucleons are treated essentially as
fermions. This paper is limited to purely bosonic (even-
even) systems, but no difficulties are anticipated in the ex-
tension to odd systems. '

The aim of the MW method is to transform a given
Hamiltonian, expressed as a boson expansion about the
deformed equilibrium configuration, into the form of the
generalized Bohr-Mottelson (BM) model of strongly de-
formed nuclei. ' In this model, the Hamiltonian is
represented by a power series in the body-fixed com-
ponents of the angular momentum, with coefficients that
create or annihilate intrinsic excitation modes, which, in
general, carry angular momentum along the symmetry
axis. What the MW method can achieve is a microscopic
theory of low-spin rotational band structure analogous to
the BM model, but without the arbitrariness inherent in a
purely phenomenological model. Since the boson expan-
sion makes the perturbational parameters explicit, the lim-
its of applicability of the BM model can be better defined.

In the present paper, the MW method is applied to
what is dubbed the generic model, defined as a system
described by the most general bosonic polynomial Hamil-
tonian of a given order that can be constructed from the
deformed RPA (small-oscillation) normal modes, subject
to given symmetry constraints. In practice, the Hamil-
tonian will be truncated at quartic terms, sufficient to
provide the leading-order corrections to the RPA. Al-
though the generic model may be interpreted as the boson
image of a many-fermion shell model under a generalized
Holstein-Primakoff (CsHP) mapping, ' ' the actual de-
tails of the mapping will be left to a later publication.
The advantage of using the generic model is that the treat-
ment applies equally well to collective models, such as the
quadrupole collective model' ' and the various forms of
the interacting boson model (IBM), ' and also to the rota-
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tion and vibrations of a molecule. Since there appears to
be no known analytically soluable microscopic model ex-
hibiting rotational band structure and having an axially
symmetric mean-field solution, ' the collective models
may be used instead to test the validity of the MW
method. In a companion paper, the method is tested on
a simple version of the quadrupole collective model, and
in the future it will be applied to the IBM in the deformed
regime. The method has already been successfully tested
for the rotation-vibration modes of a diatomic molecule, '

but that case does not exhibit the special problems with
which this paper is concerned since the vibrational quanta
carry zero angular momentum along the symmetry axis.

In Sec. II the generic model is described for axially
symmetric systems. In Sec. III the obstacles to the exten-
sion of the MW method to such systems are discussed.
The problems which arise in naively attempting to
transform the generic model into the BM representation
are then elucidated by an in-depth analysis of this repre-
sentation. In particular, it is shown that the BM represen-
tation involves a redundant variable, and that it can be de-
rived from what is called a Villars representation by
means of a unitary transformation. From this result, a
general outline of an extended MW method for axially
symmetric systems may be gleaned that involves
transforming from the generic model directly to the Vil-
lars representation, and from there to the BM representa-
tion via the aforementioned unitary transformation. The
details are provided in Sec. IV for the Hamiltonian and
for the electric quadrupole tensor, taken as representative
of how to treat transition operators. Conclusions are con-
tained in Sec. V.

II. THE GENERIC MODEL

where E' ' is a constant, the MF energy; H' ', the small-
oscillation or RPA Hamiltonian, is a quadratic boson
form; H' ' is a cubic odd-order and H' ' a quartic even-
order boson polynomial. The expansion is characterized
by some perturbation parameter 0 ', so that, for exam-
ple, if E' ' is of order 0, then H' ' is of order 0,, H' ' is
of order 0 ' and H' ' is of order 1. The term H' "of or-
der 0 is absent because the expansion is about an ex-
tremum point. In the case that H represents a shell-
model Hamiltonian, II —(2j + I ), the average shell size. '

Since the stability of the axially symmetric MF ex-
tremum is neutral, it is always possible by means of a ro-
tation to choose the z axis as the symmetry axis. The
broken-symmetry generators are then the total-angular-
momentum operators J„and J„, or, equivalently,
J+ ——J +iJy, which then have the Taylor expansions com-
mencing with linear boson terms:

J+ =J+ +J+ +J'+ +. . . (2.2)

The unbroken symmetry generator J, in the GHP and
most other boson expansions is a finite quadratic form
J,=J,' ', as will be assumed in the generic model. The
angular-momentum components must obey, of course, the
usual SU(2) commutation rules [J+,J ]=2J, and
[J„J+]=+J+. Since the commutators are preserved or-
der by order, one obtains, for example, in the first two or-
ders,

(2.3a)

(2.3b)

In Eq. (2.3a), J,' ' is the MF value, which vanishes for all
components of the angular momentum for an even-even
nucleus. In addition, since J, =J,' ', to any order n,

H =E"'+H"'+H"'+H"'+ (2. 1)

Given a Hamiltonian H constructed entirely from cer-
tain boson operators b;, b;, one may define a mean-field
(MF) approximation as the classical equilibrium configu-
ration obtained by replacing each boson in H by a c num-
ber, b;~c; and b ~c;*, and then minimizing the result-
ing energy functional with respect to the c numbers. The
Hamiltonian may then be expanded about the MF solu-
tion by using the boson translation b; =c; +b,
b; =c; +b; . The MF approximation depends, of course,
on the ordering of the boson operators immediately
preceding the c-number replacement. For example, if the
Hamiltonian is normal ordered, then the MF approxima-
tion is equivalent to averaging with respect to an oscillator
coherent state. In the case that H is the GHP boson im-
age of a many-fermion Hamiltonian, it has been shown
that there exists an ordering called "c ordering, " distinct
from normal ordering, such that the MF approximation is
equivalent to the Hartree or Hartree-Bogoliubov approxi-
mation. ' ' The advantage of expanding about this kind
of MF solution is that commutation rules are preserved
order by order, a property which will be assumed for the
generic model.

The Taylor expansion of the Hamiltonian about the MF
extremum may be written in the form

[J„J+
' ]= +J'+ ' . (2.3c)

[H' ',J'~']=0,
and in higher orders

(2.4)

[H(k) J(n —k+1) ]
k=2

while for any order n,

[H'"',J, ]=0 .

(2.5)

(2.6)

The Hamiltonian of the generic model, Eq. (2.1), is con-
structed with the aid of the following assumptions: (i) the
MF is axially symmetric; (ii) H is Hermitian; (iii) H is
even under time reversal; (iv) H is rotationally invariant,
i.e. , Eqs. (2.4)—(2.6) apply. It is also implicitly assumed
that the MF has reflection symmetry, to preclude tunnel-
ing modes that would be inconsistent with a small-
oscillation ansatz. For simplicity, Goldstone modes other
than the rotational ones are omitted.

Since H is rotationally invariant, for any component of
angular momentum J~ one has [H,J~]=0, which must
also be fulfilled order by order. In the RPA order, this
becomes
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A. The RPA as starting point

The diagonalized form of the RPA Hamiltonian H' ' is
given by

H(2) +(2)+ ~ ~ B( l)tB(1) +Q2J(1)J(1)/(~ ) (2 7)P P P + 0 r

where E' ' is a constant including the RPA correlation
energy, and B&",B&" are the annihilation and creation
operators for the true vibrational normal modes (phonons)
with nonzero frequencies co&, which obey the boson com-
mutation rules

[B(1)B())t]

[B(1)B(1)] p [B(l)t B(1)t) p
(2.8)

The last term on the right-hand side (rhs) of Eq. (2.7),
which can also be written as fi (J„"' +J~" )/(2Jro), corre-
sponds to a pair of Goldstone modes, one for each broken
symmetry. Physically, of course, this term represents the
collective rotation about an axis perpendicular to the sym-
metry axis. The moment of inertia Wo exactly coincides
with the self-consistent cranking model value. ' ' The
normal-mode vanables J+ and J commute with each(1) (])

other according to Eq. (2.3a), and with the B„'",B&"
from the definition of normal modes:

[J+',Bz'']=0 (and H. c. eq. ) . (2.9)

y(1) (
(1)+ 6)(1))/2 (2.1 1)

are the leading terms in the expansion of appropriately de-

As is well known, these variables do not suffice to form a
complete set. The set may be completed by adding a
pair of mutually commuting angle variables (t +' and
))()"'=(t'"' such that

[y(1) J(1)] . [y()) J(1)] p
(2.10)

[(()(+),B( '] =0 (and H. c. eq. ) .

It will be seen later that the variables cp
" and 0'" defined

by

fined Euler angles cp and 8. From Eqs. (2.7) and (2.10), it
follows that the RPA angle variables may be obtained by
solving the linear inhomogeneous equation

[H', $+' ] =i% J+'/(2'), (2. 12)

The first term on the rhs follows from the fact that the
RPA phonon Bz" carries E& units of angular momen-
tum along the z axis, while the next two terms are re-
quired to satisfy Eq. (2.3c) for n = l.

It should be noted that for K&&0 each vibrational
mode is doubly degenerate, with creation operators denot-
ed by B„'' and B '&. With the proper choice of phases,
the two operators may be related by

B(1)f TB(1)tT —1

P P

where T is the time-reversal operator. One has, of course,
that K

&
———Kz. In general, g„denotes summation

over both signs.

B. Higher-order corrections to the RPA

The next task is the construction of the higher-order
terms H' ',H' ' in the Hamiltonian and J+',J'+' in the
angular-rnornentum operators, using as building blocks
the RPA normal modes. The most general form of H'
compatible with hermiticity and invariance of H under
both time reversal and arbitrary rotations is given by

which is the Thouless-Valatin equation. From Eqs.
(2.10) and (2.12), the moment of inertia may be expressed
in terms of a double commutator as follows:

g2/(~ ) [y(1) [H(2) y(l)]]

(2.13)

To complete the story of the RPA, consider the
angular-momentum component J„which is assumed to
be purely quadratic in bosons, and must therefore take the
form

PVA, PV))I

+ g h '(00)„(B„"+B„"')+ J" gh ' (10)„~„""B'."+H. .

+ —J' ~~h (10)' (B "B ' B''Q ' )+H.c—. ~J ' J ' ~~ h '(20) (B"' +B ')
2 I" V P + P P P

PV P

+J gh '(20)p(B„" +B"„')+Hc. + , i [[P+,J j+—I(5,J+ ]]g h' '(ll) (B"'t—B" )

+i(t)"'J' gh '(11)~(B„' B' ~) +H. c.+ iP—'''g h (01)~Q„)tB' '+H. c.
P PV

+ , iP' g h' '(01)q (B—„' ' B ' +B 'Q '„)+H.c. +P+ P' g h' '(02)„(B(''t+B„'' )

+ —,(t' ' g h' '(02)„'(B„'" +B"„')+H.c. (2.16)
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Equation (2.16) reflects the following notation for general coefficients: In h'"'(kl), n denotes the order of the polynomi-
al, k, the number of J'+' factors, and 1, the number of P'+' factors. The coefficients may be chosen real without loss of
generality. They are arbitrary in the generic model, except for certain restrictions arising from invariance requirements
and exchange symmetries of indices. Taking into account J, conservation [Eq. (2.6)] and time-reversal invariance, one
obtains the following restrictions:

h (00)~ ~=h (00)~~g6~ +)c )'c () h (00) p ), =h (00)p g=h (00)

h' '(00)„' g
——h' '(00)„'~g6lc +~ +~ (), h' '(00)' „g=h"'(00)„' g=P(pvA, )h '(00)„' )„,

h( (00)~=h( (00)~6)r ()

h' (10)„=h' )(10)„P~ )r ), h' '(10)
p

———h' (10)„„,
h' '(10)„'„=h' (10)„'pic +~ ), h( '(10)'„=h' )(10)„'

h' '(20)„=h( )(20)„6x o, h' )(20)„'=h )(20)p6x.

h' '(ll)„=h' )(11)„6~ (), h (11)„'=h '(ll)„' 6ic

h' )(01)„„=h '(01)„6lc ~ ), h' )(01) „=h( '(01)„

h' )(01)„'„=h' )(01)„'pic +Ic ), h' )(01)'„=h( '(01)„', ,

h' '(02)„=h' '(02)„6~ (), h' '(02)„' =h' '(02)„'61c

(2.17a)

(2.17b)

(2.17c)

(2.17cl)

(2.17e)

(2.17f)

(2.17g)

(2.17h)

(2.17i)

(2.17j)

In Eq. (2.17b), P(@vs, ) represents an arbitrary permutation of the three indices. Equations (2.17) are used in later evalua-
tions of various commutators. In addition to these restrictions, the rotational invariance condition (2.5) implies certain
relations between coefficients of H' ' and those of J'+' [see Eq. (2.21) below]. The next task then is to construct the most
general form of J+ .(2)

The quadratic correction J'+ ' may be obtained from Eq. (2.3c) and the time-reversal property

(2.18)

It turns out that Eq. (2.3b) is then automatically fulfilled, as may easily be checked afterwards. The most general form
of J'+ ' is found to be

J(2) J(1) ~ .(2)( 1P) (g(1)t+g(1) )+J(l) ~ .(2)(1())' (g())t+g()) )+ + ~~ p p p —~~ p p —p

+ .P( ) y (2)(Q1) (g(1)t g(1)
) +lg(1) y (2)(01 ) (g(1)t g(1)

)+ ~ p p

(')(QP) ~("tg("+—' g (')(QP)' (g")~g("t
PV PV

J(2) J(2)f
+

(2.19)

where the coefficients j' '(kl)„are chosen real and the
nomenclature is similar to that for the Hamiltonian coef-
ficients. The coefficients must satisfy the following con-
ditions:

The rotational invariance condition (2.5) for n =3 im-
plies the following relations between the coefficients of
(t '+ -dependent terms of H( ' and those of J'~'.

j' '(10)~——j' (10)~6x. 0,
j' (10)„'=j '(10)„'6)r

j(2)(01 ) j(2)(01 )

j' '(01)„'=j' '(01)„'6Ic

'(2)(()Q) j(2)(00)

j"'(00)„.=j"'(00)„'Ac„+x„,),

I

(2.208)

(2.20b)

(2.20c)

(2.20cl)

h' '(11)„=fuup' '(10) + j' (01)
0

2
h' '( l l)„'=fuup' (1Q)' + j (Ql )'

0

h' (02)„=—frog' '(01)„, h' (02)„'=—fmg' '(01)„'

(2.21)
h' )(01)„=Pi(co„—co )j '(00)„

h (3)(01)~ ——A(~~+co„)j' '(00)p„.

These relations will play an important role in later
developments.
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Continuing in the same vein, one may construct the
most general form of the quartic polynomial H' ' and the
cubic polynomia1 J'+'. Here one encounters a large num-
ber of different kinds of terms; for example, 34 in the case

of H' '. Fortunately, for the purpose of evaluating the
leading-order corrections to the RPA, only a small subset
of these terms are actually needed. Thus, for H' it is
sufficient to write

H' =h' (40)(J"'J ") ~h '(00)~ ~~h' '(00) Q'" B" ~ —~~ h' '(00)+ 4 PV KA, P V K

PV P VKA,

+ J'+ J'' h' '(20)+ g h' '(20)&+&" B,"' +dispensable terms,
PV

(2.22)

h' '(00)„g=h' '(00)„,g5x- ~x.

h' '(00) „g=h' '(00)„

=h '(00) „
=h' '(00)„

=h '(00) „g ——h' (00) g„

(2.23a)

h' '(00)„=h' '(00)„gx.

h' )(00) „„=h' '(00)„=h' (00) „, (2.23b)

where the coefficients, which are real, have the following
properties:

It should also be mentioned that the angular-momentum
conservation condition (2.5) for n =4, which relates cer-
tain coefficients of J'~' to those of the (t'~'-dependent
terms of H' ', involves only the coefficients of the
dispensable terms in Eqs. (2.22) and (2.24).

C. Electric quadrupole transition operators

The electric quadrupole tensor will be chosen as a typi-
cal example of how to treat transition operators in the
MW formalism. In the generic model, the components of
the E2 tensor, Mf(E2, M), may be expanded through
quadratic terms as follows:

P/(E2, M)=~lg( '(E2,M) ~ lg'')(E2, M)
h' '(20)p~ ——h' '(20)pox.

h '4'(20) „,=h '(20)„=h ' '(20) „. (2.23c) (2.26)

In the case of J'+', only three terms need be explicitly con-
sidered; namely,

where the first term on the rhs is a constant of order 0
given by

1/2

~( '(E2,M) = 5

16~ eQo&M, o (2.27)

+j' '(30)J+' J'' +dispensable terms,

J(3) g(3)t
+

(2.24)

go being the intrinsic quadrupole moment, and the
second term of order Q' is linear in bosons, the third
term of order 1 is quadratic, etc. For the present pur-
poses, it is sufficient to stop at quadratic terms.

In each order the E2 operators satisfy the time-reversal
property

T /1 "'(E2,M) T ' =~'"'(E2,M)
A term of the form = ( —l ) M/(")(E 2, —M) . (2.28)

J(l)~.(3)( l0)~(1)tB(1)—~J PV P —V
These operators must satisfy the angular-momentum
commutators for a rank-2 spherical tensor order by order,
namely

also occurs on the rhs, but ultimately does not contribute
to the order of interest. The (real) coefficients in (2.24)
must satisfy and

[J„Mi'(" (E2,M)] =M~@'(")(E2,M), (2.29)

(2.25)

[J'" + ' M1(")(E2,M) ]
k=1

= [(2~M)(3+M)]' MP(" "(E2,M+ 1) . (2.30)
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The general form of ~A"~" (E2,M) can be deduced from
Eqs. (2.28) and (2.29) alone, while (2.30) relates certain E2
and angular-momentum coefficients. In this way, the
linear boson terms are easily found to have the forms

(2.31a)

~I''(E2, 1)= gq~ (00)&(B&" +8' &)+iq"'(01)P+

(2.31b)

(2.3 1c)

where the coefficients, which are chosen real, have the fol-
lowing properties:

q'"(00)„=q '(00)„5

qI '(00)„=qI (00)„6»

q z"(00)„=q q" (00)„6»

(2.32)

The .N(E2, M. ) with M = —1, —2 can always be found
with the aid of the second equality in (2.28).

Continuing to the quadratic terms, one finds, first of
all, that

~' '(E2,0)=qo (00)+ gqo (00)&Q& ' 8„+—, gqo (00)&„(8& 8 +B„B&")+qo'(20)J+'J "
rMV PV

+J' ' gqo '(10)„(B„' 8&)+—H. c. + iP 'gqo '(01)&(8& +8' &)+H.c. +qo '(02)P+'P'",

where the (real) coefficients have the following properties:
(2.33)

qo '(00)„„=qo '(00)„P» », qo '(00) „ =qo '(00)„ =qo (00)„„, (2.34a)

qo (00)„' =qo (00)„'P» », qo (00)' „ =qo '(00)„'„=qo '(00) „, (2.34b)

q ( 10)„=qo ( 10)„6»

qo (01)„=qo (01)„6»

Next, for M' (E2, 1), one obtains

~~(2)(E2 1) y (2)(()()) ~(1jtB(1|+ ~ y (2)(00)& (8(1)'tB(1)4+8(1~)(1)
)

PV PV

J(1)y(2)(10)(8(1)t 8(1))+J(l)y(2)(]0)(8(1)8(1))

'~'(01) (8'"t+8(")+;y"'g '2'(01)'(BI "t+8"' )

(2.34c)

(2.34d)

(2.35)

with the following conditions on the coefficients:

q ) (00)p =qI (00)~P»», , qP (00) =qI (00)

qI '(00)~ ——qI '(00)p 5» +», , q', '(00)p ——qI (00)'@,

qI '(10)z ——qI (10) 5» 0, qI '(10)' =qI (10)I,6»

qI '(01)&——
q& '(01)&5» 0, qI '(01)&——qI '(01)&6»

(2.36a)

(2.36b)

(2.36c)

(2.36d)

Finally, for the M =2 component, one obtains

~' '(E2, 2)= gq2 '(00)&+& ' 8' + —, gq2 '(00)&„(8& 8„' +8' Q''„')+qz '(20)J'+'

+i/'+'gqP'(01)„(8„'" +8"„')+i/'"gq', '(01)„'(8„'" +8''„')+q2"(02)P'+", (2.37)
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with the following conditions on the coefficients:

q2 (00) q2 (00) v K —K„, 2

q2 '(00) „„=q2'(00)„„,

q 3"(00)„'.=q 3 '(00)„'PK„+K„,2

q2 '(00)„'„=q3 '(00)'„,

q2 '(10)p ——q2 '(10)p6K

q,"'(10)„'=q',"(10)„'6

q2 '(01)p ——q3 '(01)~6K

q 2 '(01)„' =q z '(01)„'6K 3

(2.38a)

(2.38b)

(2.38c)

(2.38d)

To complete the discussion, the angular-momentum
commutators (2.30) must be taken into account. For
n = 1, this leads to the identification

' 1/2

q'"(01)= 15
18' (2.39)

qo '(02) =— 45
4m

1/2

ego —2 g j' '(01 )&q o (00)z,

1/2

qI '(01)„=~6qo"(00)„— 15
8~ egoj '(10)„

—g q', "(00).[jI"(00).„+j"'(00).],

q I (01)„' =2q ',"(00)„—
1/2

egojI '(10)„'8'

—g [j'"(00)„—j"I(00)„' „]q", (00)

(2.40)
q 2 '(01)„=2q I"(00)p

—gq' '(00)„[j' '(00) „+j' '(00)' „],
q',"(01)' = g [j "(00)' —j"'(00) ]q2 (00), ,

q2 '(02) =— 15
8n

1/2

ego —g q', "(00)g (01)„' .

III. GOALS, OBSTACLES, AND SOLUTIONS

Ideally, one would like to begin with the RPA Hamil-
tonian H' ' as the zeroth order and treat the higher-order
terms H' ', H' ', etc. as small perturbations. However,
such a procedure could be feasible only if the Hamiltonian
were truncated to the vibrational subspace; any attempt

For n =2, with M =0, 1,2 in succession, the following
identifications are made:

q 0 '(01)„=v 6q,"(00)„
—g [j' '(00)„„—j' '(00)„' ]qo (00)„,

to include the rotational degrees of freedom in the guise of
bare Goldstone modes would lead to infrared diver-
gences. This is because the RPA variables J'+' have a
continuous spectrum, unlike the full angular-momentum
operators J+. As a consequence, the RPA eigenstates are
nonnormalizable, with each Goldstone mode contributing
an infinite factor to the norm. The underlying reason for
this difficulty is the use of Taylor expansions indiscrim-
inately involving all degrees of freedom. Such expan-
sions are valid, at best, in a limited region of phase space
in the neighborhood of a MF minimum. While such a
procedure may be satisfactory for small-amplitude vibra-
tions, in the presence of rotational degrees of freedom the
MF method does not provide a true minimum but rather
a point of neutral stability. The crux of the difficulty
then is that angular coordinates, which require the full
range of, say, 2~, are restricted by fiat to a much smaller
range, thereby precluding proper quantization of these de-
grees of freedom. Nevertheless, the situation is by no
means hopeless; it is still possible to calculate correct re-
sults in the presence of Goldstone modes, either through
the artful use of appropriate constraints and limiting pro-
cedures or by the very different technique used in this
paper, in which the Taylor expansion is exploited to
uniquely reconstruct a valid Hamiltonian (and other
operators) amenable to perturbation theory.

A. The goal of the MW method

Given a Hamiltonian and associated transition opera-
tors equivalent to the generic model, the goal of the MW
method is to reconstitute a viable Hamiltonian and associ-
ated operators for which the generic model is a correct
Taylor expansion to a given order. This reconstituted sys-
tem should be unique up to arbitrary canonical transfor-
mations and it should have the form of the generalized
BM model. It will be shown eventually that this goal can
be achieved with the aid of formal unitary transforma-
tions.

In the generalized BM model for nuclei with axially
symmetric equilibrium shapes, ' the Hamiltonian is as-
sumed to have the form of an angular-momentum expan-
sion:

(3.1)

where I~ =I, +iI3, Ik ( k = 1,2, 3) being interpreted as the
components of the total angular momentum along the
principal axes (PA's) of the nucleus, with the three-axis
designated as the axis of symmetry. The components of I
are usually represented as differential operators in the
space of Euler angles. The operators ~ „, which
describe the intrinsic (nonrotational) excitations, commute
with all components of I and with the Euler angles. In
general, operators that commute with all components of
the angular momentum and with the Euler angles are
called intrinsic operators. The operators A „ in the
BM model also have the special property of carrying an
"intrinsic" angular momentum, denoted by J3, along the
symmetry axis, and the eigenstates of (3.1) are required to
satisfy the condition I3 ——J3. Any scalar operator may be
written in a form analogous to (3.1), while spherical ten-
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sors, such as transition operators, must be expressed in a
more general form involving the rotation matrices [see
Eq. (3.32) below].

B. Obstacles to a naive extension of the M%' method

A oo+ —,A )([I,I+ ) =A oo+4 ),(I)+I2),
where

(3.2)

A 00
——const+ g fun„B„B„+.. .

(3.3)~i i =A'/(~o)+
and the omitted terms are of higher order in 0 '. In or-
der for this to be valid, it is necessary that the boson ex-
pansion yield I&+Iz ——J~" +J~" +higher orders. The
higher-order contributions from the boson expansion of
(3.2) would then contribute to H' ', H' ', etc. While this

The generic Hamiltonian defined by Eqs. (2.1), (2.7),
(2.16), and (2.22) as it stands is not of the form (3.1) if the
RPA modes B„'",Bz" are identified as the intrinsic exci-
tations, since, first of all, the J+' are not angular momen-
tum operators, but only their leading-order approxima-
tions, and second, H contains a dependence on the angular
variables P'+'. In a straightforward extension of the MW
method used for two-dimensional rotation, one could at-
tempt to reconstruct a valid H of the BM form as follows.
Given the boson expansions of H and the constants of
motion, i.e., the angular momentum vector J, one may
seek certain angle variables P~ and intrinsic boson excita-
tion operators B&,B„,whose boson expansions begin with
the RPA variables P'+ ' and B„'",B„'", respectively.
One might proceed in the following way. First, the vari-
ables P+ could be chosen as appropriate Euler angles, or
functions thereof, and the Taylor expansions determined
from the ansatz P+ ——P'+ +P'+'+ . and the require-
ment that P+ obey the correct commutation relations with
the angular momentum components order by order. Next,
the expansions of intrinsic bosons can be sought in the
form B& 8&"+B& +——. . (and the H.c. equation) by re-
quiring the order-by-order fulfillment of the correct com-
mutation relations with the components of J and the an-
gle variables P~. Having determined the expansions of all
degrees of freedom, which, in principle, could be inverted,
one would be in a position to transform H from the origi-
nal variables to the final ones. That is, 0 would then be
expressed in terms of the full-angular-momentum com-
ponents and the true intrinsic variables B& and B„,but
would be independent of the angle variables P+ because of
rotational invariance. Thus, one would expect that H
would then have the BM form. While this rosy scenario
will indeed eventually come to pass, there are some stum-
bling blocks that must first be overcome.

From physical considerations, it is clear that the intrin-
sic operators A „ in Eq. (3.1) must be functions of the
bosons B„,B& alone, which in the lowest order of the bo-
son expansion are approximated by the RPA bosons
B„'',B&

' . Thus, it is natural to surmise that the RPA
Hamiltonian (2.7) arises as the lowest-order approxima-
tion in the expansion of the following terms of a BM
Hamiltonian:

supposition will be justified eventually, at the present
stage a basic difficulty emerges.

Since I denotes the total angular momentum in the BM
representation and J the total angular momentum for the
given generic (many-body) system, it would appear per-
fectly natural to equate the two. However, in the BM rep-
resentation, all components of I commute with all intrin-
sic excitation operators by definition, and therefore should
commute with all the phonons B„,B&. But in the case of
J, it is easy to demonstrate that at least one component
cannot commute with the phonons, namely, the com-
ponent J, . From Eq. (2.14), it follows immediately that

[B„"',J, ]=K„B„"' (and H. c. eq. ) . (3.4)

Since each term in the phonon expansion B&——B„'"+ - . -

would have to commute with J„Eq. (3.4) is sufficient to
prove that J, does not commute with the phonons. If
even a single component of the angular momentum fails
to commute with an operator, then that operator cannot
qualify as an intrinsic one. Moreover, even if the phonons
were to commute with the other laboratory components of
J and with the Euler angles, they could not commute with
the PA components of J as normally defined [see Eq. (3.6)
below]. This can be seen explicitly for the component
along the symmetry axis J3, which in lowest order is just
the phonon part of (2.14). The conclusion is that directly
equating the BM angular momentum I with the total an-
gular momentum J is inconsistent with the designation of
the vibrational phonon as an intrinsic excitation operator.
This difficulty is associated with the fact that the pho-
nons carry angular momentum along the symmetry axis.
In the phenom enological BM model, this problem is
avoided by the introduction of an "intrinsic" angular
momentum J, distinct from the "collective" angular
momentum I.

The above obstacle is the most fundamental and the one
most responsible for impeding progress in extending the
MW method to three-dimensional rotation of axially sym-
metric nuclei. However, there are two other, not unrelat-
ed problems. First, in the BM model, the angular-
momentum components are represented by certain dif-
ferential operators in Euler-angle space. The question
arises whether J in the generic model can also be
represented in the same way. Observe, however, that J
can be expanded in a Taylor series that involves, in part, a
small-angle expansion, whereas the standard differential
operators cannot be so expanded. The reason is that if
the usual zyz definition of the Euler angles is adopted, the
angular-momentum components are represented by dif-
ferential operators that become singular when the inter-
mediate Euler angle vanishes. Fortunately, this problem
is easily remedied by choosing an uncommon definition of
the Euler angles, namely, the xyz definition, which leads
to an expandable representation of the angular-
momentum components, as will be seen later. The
remaining problem is that there are, of course, three Euler
angles, whereas the RPA defines the leading order of only
two angular variables. The reason for this is that the
third angle, representing rotations about the symmetry
axis, is completely undefined. Nevertheless, such an angle
is needed as a dynamic variable if a correspondence with
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the BM model is to be made. It will be seen that the in-
determinacy of this third Euler angle is of no physical im-
portance.

The above problems are the consequence not only of ax-
ial symmetry, but also of the fact that intrinsic modes ex-
ist with K&&0. In the case of the rotation and vibration
of a diatomic molecule, for example, for which the vibra-
tional mode has K =0, these difficulties do not occur. '

There are also no difficulties in extending the MW
method to triaxial systems and to systems at high spin,
which, in general, do not have axial symmetry.

The above scheme for extending the MW method to
three-dimensional rotation presupposes that, just as in the
two-dimensional case, there is no need to introduce redun-
dant variables. However, as shown next, the key to sur-
mounting the obstacles is precisely the recognition that
the BM representation involves a redundant Euler angle
corresponding to a rotation about the symmetry axis, a
point hidden in the fine print of Ref. 15 and historically
perhaps somewhat shrouded in mystery. It will be shown
that the BM representation can be related to a nonredun-
dant description through a simple unitary transformation.

C. Connection between the BM
and Villars representations

Some time ago, it was formally shown by Villars, and
more recently by Mikhailov using a different technique,
that any rotationally invariant Hamiltonian (or other such
operator) may be expanded in powers of angular-
momentum components along the principal axes. For a
system with an axially symmetric intrinsic shape, this ex-
pansion may be written in the form

H = g A. „-,' [J',J',"I,

L
TM = g TXDMX(y~0~$) ~

K= —L
(3.7)

0

where the A „are intrinsic operators and J+ ——J&+iJ2
are combinations of PA components of angular momen-
tum. Since the latter are scalars, (3.5) is manifestly rota-
tionally invariant. The relation between the spherical-
vector PA and laboratory components is given, as usual,
b 29

] 1

JK y DMK(q ~~~0)JM y JMDMK('P~~&e)
M= —1

(K =0,+1), (3.6)

where the DMx(y, 8,$) are the matrix elements of the
spin-1 irreducible representation of the rotation group,
parametrized by a set of Euler angles @,0,$. According
to Refs. 22 and 30, the intrinsic coefficients A „are ex-
pressible in a series involving multiple commutators of 8
with the DM~(y, B,g), but this result will not be utilized
here. It should also be mentioned that the decomposition
(3.5) is hardly unique, but depends entirely on the choice
of the Euler angles as functions of the nuclear degrees of
freedom.

Spherical tensor operators TM can be written in the
form

where DM~(y, 8,$) is a rotation matrix element corre-
sponding to the spin-L irreducible representation, and the
T K, the PA components of the spherical tensor, are sca-
lars, and, therefore, like 8, may be expanded in powers of
the angular-momentum components:

Tx ——g (tx) „[J',J'+ I, (3.8)

where the coefficients (tx ) „are intrinsic operators.
The Villars representation closely resembles the BM

representation, but with one notable difference. In the
former, the coefficients A „and (tx. ) „are truly intrin-
sic operators, carrying no angular momentum, whereas in
the latter the corresponding coefficients do carry angular
momentum along the symmetry axis. Within the Villars
representation, one may proceed as follows. The Euler
angle P describing a rotation about the symmetry axis is
canonically conjugate to J3, which may be expressed by

[J3, exp(iP)]=exp(iP) .

The operators A „and ( tx. ) „,defined by

A „=~ „exp[i(m —n)P],
(tx ) „=(t'z) „exp[i(K+m n)Q], —

satisfy

[J3,A „]=(m —n)A

(3.9)

(3.10a)

(3.10b)

(3.1 la)

[J3,(tx) „]=(K+m n)(tx)m—„, (3.11b)
oL

since J3 commutes with A „and (tz) „. These are ex-
actly the commutation relations obeyed by the corre-
sponding coefficients in the BM representation, where J3,
however, is the "intrinsic" angular momentum.

With the help of Eqs. (3.10), Eqs. (3.5) and (3.8) may be
written as

H = g ~ „exp[i (n —m)P] —, [J™,J'+ I (3.12)

and

T M
——g (tz) „exp[i (n —m —K)g] —, [J',J'+

I . (3.13)

Note that Eqs. (3.12) and (3.13), which can be rearranged
in several permutations owing to the intrinsic nature of

0 oLthe substituted operators A „and (tz) „,are, of course,
just another form of the Villars representation. The coef-
ficients A „and ( t~ ) „, however, do carry angular
momentum along the symmetry axis as in the BM repre-
sentation, but, on the other hand, they do not commute
with J+ and therefore are not intrinsic operators with
respect to J. Thus, this simple substitution certainly does
not give the BM representation. Moreover, Eqs. (3.12)
and (3.13) also carry the unesthetic P-dependent exponen-
tial factors. It will now be shown, however, that the Vil-
lars and BM representations are connected by a unitary
transformation and thus are basically equivalent.

The key step in the transformation from the Villars to
the BM representation is the prior introduction of a
redundant variable P. That is, all operators such as H
and the transition operators may be regarded as defined
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B
I3 ———i (3.14)

on an extended Hilbert space that is the direct product of
the original (nuclear) Hilbert space with the space of
periodic functions e' ~. To emphasize again the differ-
ence, the variable t/r is a function of the original (nuclear)
degrees of freedom, whereas 1( is a dummy variable, des-
tined, however, to assume the function of P. In the ex-
tended space, one may define the operator I3 represented
by

+J3 P~=I3,
and, for an arbitrary function f (g),

+f(4)+'=f (0+4) .

(3.20)

(3.21)

Wg y, , O, 2 =g y, , O,
B B f B B

'B~' 'BO 'B~' 'BO (3.22)

This transformation has no effect on the other Euler-
angle degrees of freedom:

which is canonically conjugate to @, i.e.,

[I„exp(ig)]=exp(if) . (3.15)

for an arbitrary function g. As a consequence, the only
effect of k on the laboratory components of J [Eq.
(3.17)] is to replace J3 by I3 to give

Of course, I3 and P both commute with all of the original
degrees of freedom.

As intimated earlier, the reason for introducing the
redundant variable is that it enables one to relate the Vil-
lars and BM representations by means of a unitary
transformation defined on the extended Hilbert space.
Before introducing this transformation, however, it is use-
ful to explicitly display the angular-momentum com-
ponents in terms of the Euler-angle degrees of freedom.
In the immediate context, the conventional zyz definition
would do perfectly well. On the other hand, as mentioned
in Sec. III B, this definition of the Euler angles is unsuit-
able for the expansion procedure to be outlined later. It
will be seen that the ideal definition is the xyz definition, '

in which an arbitrary active rotation R is represented by

R =exp( —iyJ„) exp( —igJ&) exp( i', ) —. (3.16)

J = —i
B

Bg
(3.17)

and the PA components by

By BO cosO

With this definition, the angle P has essentially the same
significance as in the conventional definition, describing a
rotation about the symmetry axis. For the sake of econo-
my then, the xyz definition is adopted forthwith. In the
space of these Euler angles, the laboratory components of
J are represented by the differential operators

k Jk+ =Ik (k =x,y,z),
where

I —=J=—i B

Bg

I +i' = —ie+'+ —tanO +i + I3
B . B 1

Bc@ BO cosO

(3.23)

(3.24)

The effect on the PA components (3.18) is similar, but
with an additional phase factor arising from the property
(3.21) as follows:

2 J+ ~k =e+'~I~ ——Ige+'~,

where

(3.25)

I'+ =I]+iI2 ———ie+'~ B . B+i —i tanOI3
cosO Bg BO

(3.26)

In summary, what the transformation + accomplishes
is replacement of the components of J, which depend only
on the nuclear degrees of freedom, by components of a
vector I (apart from a possible phase factor) that behaves
like an angular momentum, but in which g and J3 have
been replaced by the redundant variables g and I3, respec-
tively. The operators A „and ( tx ) „,which carry angu-
lar momentum along the three-axis and thereby fail to
commute with all components of J, are easily seen to
commute with all components of I, as compactly sumrna-
rized by

J'+ —J) +iJ~ — ie+'~ B . B+i —i tanOJ3
cosO Bop BO [A „,I]=0, [(tsc ) „,I]=0 . (3.27)

B
J3 ———i

B

(3.18)

In contrast to the standard definition of the Euler angles,
there is no problem in expanding (3.17) and (3.18) about
O=O.

Consider now the following unitary transformation +
defined on the extended Hilbert space:

k =exp(ifJ3) exp( igI3) . — (3.19)

Note that the two factors do not commute, so the order is
important. With the properties (3.9) and (3.15) taken into
account, elementary calculations give, first of all,

Since A „and (tx. ) „also commute with all Euler an-
gles, they certainly qualify as intrinsic operators with
respect to I. Moreover, as shown by Eqs. (3.11), these
operators also carry an angular momentum along the
symmetry axis, with J3 playing the role of the "intrinsic"
angular momentum. In other words, these operators have
all the properties necessary for the BM representation.

To clinch the case, it must be shown that the transfor-
mation (3.19), in fact, maps operators and state vectors
from the Villars to the BM representation. The Hamil-
tonian (3.5) is easily transformed with the use of Eqs.
(3.25) and (3.10) and the the fact that A „, being an in-
trinsic operator, is invariant under W. The result is
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„—,[I',I'+ j, (3.28)

which meets all of the requirements for the BM represen-
tation of the Hamiltonian. In the same way, the PA com-
ponents (3.8) of the spherical tensor are found to
transform as follows: [J3,A] =KA, (3.37)

sentation is complete.
As a final point in this section, it is worthwhile noting

that if A is an arbitrary intrinsic nuclear operator satisfy-
ing

~p T L ~ f —iKQTtL TtL —iKQ

where

TK = g (tK) „—,' {I™,I'+

(3.29)

(3.30)

then, as is easily shown from the definition of &,

+A k =e' ~A+A, (I3 —J3), (3.38)

+ TM + = g TKDMK((P~B. Q) ~

K= —L
(3.32)

which meets all of the requirements for a spherical tensor
in the BM representation. It should be noted that the
Euler angle in the rotation matrix is no longer f, but rath-
er P.

Finally, consider the state vectors. The introduction of
a redundant degree of freedom is inevitably accompanied
by spurious states that must be eliminated by a suitable
subsidiary condition. Prior to the transformation k, the
subspace of physical states may be chosen to satisfy the
condition

I3l )=0. (3.33)

In order to transform the laboratory components of the
spherical tensor, it is then only necessary to note that Eq.
(3.21) and the property DvtK(y, B,Q) =dMK(@, B)e' ~ [see
Eq. (3.49) below] imply

&DMK(p, B,p) & =DMK(&p, B,Q)e' (3.31)

Therefore, from Eq. (3.7), one obtains the result

where A. is a function of I3 —J3 depending on multiple
commutators of P with A. Equation (3.35) shows that in
the physical subspace A, =0. That is, effectively the
transformation gives A ~e ' ~A =Ae ' &. Of course, if
[Q,A]=0, then X vanishes identically. This is what hap-
pens, for example, in the cases of A „and (tK)

The insight gained from the preceding analysis is that
the chief obstacle discussed in Sec. III B is an artifact aris-
ing from the failure to distinguish between the Villars and
BM representations. If redundant variables are to be
avoided, then it is necessary to work in the Villars repre-
sentation. If, in addition, the intrinsic excitation opera-
tors are chosen so as not to commute with J3, then the
Hamiltonian and spherical tensor operators must be writ-
ten in the forms given by Eqs. (3.12) and (3.13), involving
the P-dependent exponentials. In applications to even-
even nuclei, for example, the coefficients A „and (tK)
would naturally be chosen as functions of the phonons
B„,B„. It is clear from the foregoing analysis that one
cannot demand that phonons with K&&0, or functions
thereof, commute with all components of J. However,
since the noncommutation can be traced to the J3 depen-
dence of the operators (3.17) and (3.18), then if the pho-
nons are assumed to satisfy

From the definition of k [Eq. (3.19)] it is easily found
that [J3,Bq] =KGB„, (3.39)

PI3+ —I3 J3 ~

Therefore, transformation of (3.33) yields

(I3 —J3)
l

) =0

(3.34)

(3.35)

where I ) ' =— k
l

) are the physical states after the
transformation. The condition (3.35) is a well known if
somewhat mysterious feature of the BM model. It implies
that the physical subspace after the transformation may
be spanned by vectors of the form

0MK DMK(V B 4)+K (3.36)

where 7& is an intrinsic wave function satisfying
J3XK —KXK and, of course, I3DMK (y, B,p )

=KDMK(y, B,$). The state vectors (3.36) are easily un-
derstood. Prior to the transformation, they have the form
of (3.36), but with /=0, since there can be no dependence
on the redundant variable as required by Eq. (3.33). How-
ever, the intrinsic part g& depends on e' ~. According to
Eq. (3.21), the transformation then generates an extra fac-
tor of e ' ~, which gets absorbed into the final
D~K (y, B,p). Thus, the demonstration that the
transformation ~k carries the Villars into the BM repre-

one can demand instead certain well-defined commutation
rules that follow from Eqs. (3.17), (3.18), and (3.39). Al-
though it is possible to work within a Villars representa-
tion including the P-dependent exponentials without the
need for an explicit choice of g [aside from the stipulation
(3.9)], it would be more aesthetic to be rid of these ex-
ponentials. But that is precisely what the transformation
to the BM representation accomplishes. Since this repre-
sentation, as is now clear, requires the introduction of a
redundant degree of freedom, it is an inconvenient repre-
sentation within which to formulate the MW method
directly. However, a two-step approach is quite feasible,
in which the MW scheme is first implemented without
the redundant variable to derive a Villars representation in
the form of Eqs. (3.12) and (3.13). The second step in-
volves applying the unitary transformation 'k to pass
over to the BM representation. This step is trivial to car-
ry out, in effect amounting to setting /=0, and making
replacements J'+ ~I'+ and DMK(p, B,O)~DMK(y, B, Q).
In this way, the goal of reconstructing a BM representa-
tion from the generic model can be reached. The next sec-
tion is devoted to outlining a viable MW scheme for exe-
cuting the first step.
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D. Outline of the MW method
for axially symmetric systems

With the choice of the xyz convention for the Euler an-
gles, the laboratory components of J may be expressed in
terms of the Euler angles and Hermitian canonically con-
jugate momenta p~, p~, and p& ——J3 as follows:

J„=p~, (3.40a)

in accord with Eq. (3.17). The first term on the rhs of
(3.40b) has been symmetrized to ensure that J» and J, are
manifestly Hermitian. The momenta p+ and p~ must
satisfy

(3.41a)

(3.41b)

while 1( satisfies (3.9), or, equivalently, [Q,J3]=i, but, as
already emphasized, g need not be determined explicitly.
All other combinations of pairs from the set
(y, 8, g,p+,pt), J3) are required to commute.

The first step in the MW scheme is to obtain the expan-
sions of the Euler angles and their canonically conjugate
momenta, given the expansions of the laboratory com-
ponents of J, as in the generic model. Now, Eq. (3.40a)
defines the expansion of p„ to be identical to that of J ~

The expansion of g can then be obtained from the require-
ment that Eq. (3.41a) be fulfilled order by order com-
mencing with the RPA order. Next, from the pair of Eqs.
(3.40b), pe is easily derived in the explicit form

p& ———[e '+, J, —iJ» I
——Ie'~, J,+iJ» I . (3.42)

Having obtained the expansion of y, that of p~ is then
fully determined, and the expansion of 0 can subsequently
be obtained from Eq. (3.4lb). Clearly, the xyz representa-
tion is very convenient to work with.

In practice, it proves convenient to introduce the com-
plex combinations of Euler angles P+ defined by

J,+iJ» ———tan8 —, [e+'»,p~ I+ie+'&pt)+ e+'» sec6)J3,

(3.40b)

where
~

IM ) denotes a simultaneous eigenvector of J
and J,. The factor of e' ~ in (3.49) is what gives rise to
the g-dependent exponentials in the Villars representation
after transformation to the final variables.

The techniques that may be used for generating the ex-
pansions of the new variables are essentially the same as
in the case of two-dimensional rotation. ' These consist
of the commutator and the formal unitary transformation
methods. The discussion thus far has been based on the
first method, in which the commutator relations are
solved order by order. To give a more specific example,
upon expansion of P~,

y(~))+y(2)+ . +y)n)+ (3.50)

Thus, p+ first differs from J+ in the cubic terms.
Once the expansions of P~ and p~ have been deter-

mined, those of B& and B& can be obtained straightfor-
wardly from the conditions

[B„,P~]=0, [B„,p+]=0 (and H.c. eqs. ), (3.48a)

[B„,B„)=5„, [B„,B ]=0 (and H. c. eq. ) . (3.48b)

It should be mentioned that Eqs. (3.48a) are the main
ones, with (3.48b) being weak conditions. Note also that
(3.48) does not require that the phonons commute with all
the components of J, which, as already emphasized, is im-
possible.

It has been seen that starting with the set of RPA vari-
ables (P'+', J'+', B&",B&" ), one may generate a new set of
variables (P+,p+,B„,B„) that is expressed as an expan-

P 9 P )
sion in the RPA set. The momenta p+ are ultimately to
be eliminated in favor of the PA components of J with
the help of Eqs. (3.44), (3.42), (3.40a), and the inverse of
(3.6). In connection with Eq. (3.6), and also for treating
spherical tensor operators [Eq. (3.7)], it is also useful to
expand the rotation matrices, which in the xyz representa-
tion are given by

DM&(&p, B,Q) = MK
~
exp(i', )exp(iOJ»)exp(ipJ» )

~

IM)
=e' ~(IK

~
exp(i HJ»)exp(icpJ„)

~

IM),
(3.49)

P+ = (y+i 0)/2,
and the canonically conjugate momenta p+, given by

p+ =p~+Ipe

(3.43)

(3.44)

the first of Eqs. (3.45) gives rise to the hierarchy of equa-
tions

(3.51)
and sati. sfying

(3.45)

(&) (2) (3)p+ =p+ +p+ +p+ + '

where

(1) (&) (2) (2)p+ =J+, p+ =J+

(3.46)

(3.47)

2

which is equivalent to (3.41). From Eqs. (3.44), (3.40a),
and (3.42), one readily finds for p+ the expansion

[p(k) (n —k ~1)
] ()

k=1
This is a sequence of recurrence relations for p'+ ' in terms
of its lower orders, with p'+' given by (3.47). Since these
are just linear inhomogeneous equations, they are quite
straightforward to solve. Note, however, that there is an
arbitrariness in the solutions. Any solution P'+' may be
augmented by an arbitrary nth-order polynomial that
commutes with p'+' ——J'+', in other words, a function of
J'~', B& ', and B&" . A similar arbitrariness occurs in
the solution of Eqs. (3.48) for B„,using the expansion

(3.52)
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where any solution for B„'"' can be augmented by an arbi-
trary nth-order polynomial in Bz and B& . The signifi-(&) (&)t

cance of this arbitrariness is easily understood. It pro-
vides the freedom to construct the final variables in accor-
dance with the desired form of the Hamiltonian; for ex-
ample, to choose 8 to be diagonal (to a given accuracy in
the expansion parameter 0). This arbitrariness may also
be exploited to guarantee that the phonons carry good an-
gular momentum along the symmetry axis. This means
that J3 is required to take the form

J,=g ~,B„'B„. (3.53)

For further discussion, see Sec. IV D below.
The commutator technique, while perfectly straightfor-

ward, has the disadvantage of requiring in each order the
solution of separate equations for P'+ and B„'"'. This can
be avoided by using the formal unity transformation
method, which has the added advantage of easy inversion
of the expansions. The applicability of this method is
based on the fact that the set of final variables
(P+,p+, B„,B„) and the set of RPA variables

((t +J+,B&,B& ) tnvolve the same mutual commuta-(&) (1) (1) (1)t ~

tion relations, allowing the possibility of connecting the
two sets by a canonical transformation. Specifically, the
procedure is to seek a formal unitary transformation
exp(iS) such that

S)J((( ( S) ((I+ (2I (3( (3.54)

where the rhs is given by Eqs. (3.47). The generator has
an expansion commencing with cubic polynomial terms:

s =s"'+s "+ . . - (3.55)

With Eqs. (3.47) taken into account, Eq. (3.54) in the first
two orders leads to the following linear inhomogeneous
equations:

[iS' ', J'+ ]=J'~', (3.56)

[ S(4I J(1I] (

[ S(3) J(2I]+J(3)+ ( Iy(()+y((I

(3.57)

The solutions for S'"' are arbitrary to the extent that any
solution may be augmented by an arbitrar~ nth-order po-
lynomial function of J'+', B&'', and B&", all of which
commute with J'+ '. This arbitrariness is entirely
equivalent to that occurring in the commutator approach.

Once the expansion of S has been found, the expansions
of (t+, B„,and Bz can be generated directly by applying
the unitary transformation to the corresponding RPA
variables as follows:

(t+ =exp(iS)P+'exp( iS)=P'+ +[iS—', P~ ]+
(3.58)B„=exp(iS)B„exp( —iS)

=B&''+[iS' ', B& ']+ . (and H. c. Eq. ) .

Because of the unitary transformation, it follows immedi-
ately that the final variables must satisfy the same com-
mutation relations as in the commutator method. It is

then clear that Eqs. (3.58) satisfy the definition of P+, Bz,
and Bz. In practice, there is no need to generate the final
degrees of freedom separately, since H and transition
operators can be transformed directly using the inverse
unitary transformation.

As a final point, the unitary transformation method ex-
poses an apparent technical difficulty. On the one hand,
Eq. (3.54) implies

exp(iS)J' "exp( iS—) =J„' +J„' '+J„'+ (3.59)

IV. APPLICATION OF THE MW METHOD
TO THE GENERIC MODEL

In this section, the MW method outlined in Sec. IIID
will be applied to the generic model. The technique utiliz-
ing the formal unitary transformation is chosen for brevi-
ty. From Eqs. (3.54) and (3.58), the effect of this transfor-
mation on ant operator function of the RPA variables
F(J+',P'+,B„',B„' ) is given by

F=exp(iS)F(J~, Q+,B&,B& )

&& exp( iS) =F(p+,P+, B—„,B„), (4. l)

i.e., each RPA variable is replaced by its transform:

s —s +s + —s —s +s')+ -.(3) [4) (3) (4.2)

By inversion, the original operator F may be expressed in
terms of the final variables as follows:

F=exp( iS)Fexp(iS)—
=F(p+,P+,B„,B„)—[iS ' ', F(p+, P+,B„,B„)]+

(4.3)

In particular, the Hamiltonian expanded through quartic
terms is given by

On the other hand, since J' ' has a continuous spectrum,
while J has a discrete spectrum, no unitary transforma-
tion exists such that

exp(iS) J„"exp(—iS) =J„.
This difficulty also occurs in the case of two-dimensional
rotation. Nevertheless, there is no problem in finding an
expansion of S satisfying (3.59). What one has is a formal
unitary transformation that transforms J ' not into J„,
but rather into an expansion of J . All of the expansions,
including those of J„and exp(iS), contain nonconvergent
parts that arise from improperly treating the angular de-
grees of freedom as small quantities. The "nonexistence'
of the unitary transformation shows up in the nonconver-
gence of the formal expansion of exp(iS). Nevertheless,
the final reconstituted forms for H and transition opera-
tors are in no way improper since they are free of any
small-angle expansions, as will be seen. The nonconver-
gent Taylor expansions are simply formal intermediate de-
vices used to identify coefficients in a legitimate expan-
sion. One might say that the effect of the improper parts
of the formal unitary transformation is to cancel the im-
proper parts introduced by the original boson expansion.
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H —g[ '+H'[ '+H'[ ~+H'[ ]+ ~ ~ ~ (4.4) The next task is to find S ' and S ' '.

where

H (3) H (3) [iS (3) H (2)]

H~(4) H (4) [iS (4) H (2)] [iS (3) H (3)]

+ —,
' [iS, [iS' ',H ']] .

(4.5a)

(4.5b)

(4.5c)

A. Solving for S ' ' and S ' '

Solving the linear inhomogeneous equations (3.56) and
(3.57) for S' ) and S' ' is trivial, involving, apart from
factors of i, partial integration of the rhs with respect to
the variables P'+' and (t ". Application of Eq. (4.1) then
immediately yields S' ' and S' '. For S' ', the follow-
ing result is obtained:

iS( '= ——,i[I)t, ,p+ I+ [)I)+,p )]gj' )(10)&(B&+B&)— ip p g j( )(10)&(B&+B &) —H. c.

+P+P g j (01)„(B„—B„)+ —,()() g j' '(01)„'(B„B„)——H. c.

i/ —g[j' '(00)„Q„B + ,j '(00)„' —(B„B BB „—)]—H. c. +i o''(p. ,p,B„,B„), (4.6)

where o. ' ' is an arbitrary Hermitian cubic polynomial function of its arguments, in accordance with the discussion in
Sec. III D.

In the case of S ' ', only a limited subset of contributions is actually needed to evaluate the leading-order corrections to
the RPA. This abbreviation is consistent with that for H' ' [Eq. (2.22)] and J'+' [Eq. (2.24)]. The point here is that only
the diagonal contributions of H ' ' are needed, these being of the same order as the off-diagonal contributions arising
from H' ' in second-order perturbation theory. Among the "dispensable" terms are some P+-dependent ones whose con-
tributions to H ultimately cancel [see the discussion in connection with Eq. (4.16) below]. At any rate, the (transformed)
solution of Eq. (3.57) is

S(4) )

Iy p I
j(3)(10) ' gj(3)(10)

P

——, g[2j(3)(10)„„+2j''(10)p( '(10) +j' '(10)p '(10)'+j '(10)' p '(10)' ](B„B+ —,5„„),

——,ij( '(30) I Q, p p+ ] —H. c. of all terms+dispensable terms+i cr ( '(p+,p,B„,B„), (4.7)

where cr' ' is an arbitrary Hermitian quartic polynomial
function of its arguments.

B. Treatment of the Hamiltonian

P P P ~ + (4.&)

From angular-momentum conservation, it follows that
H' ' is independent of the angle variables P+. That this
is indeed the case may be easily seen by calculating the
commutator [H' ),p+]. From Eq. (4.5b) and the Jacobi
identity, one obtains

[H(3)p][H(3)p][iS(3)[H(2)p)]
[H(2)[iS(3)p]] (4.9)

The second contribution on the rhs vanishes since the

Returning to the expansion of H in terms of the vari-
ables P+, p+, B&, and B& [Eq. (4.4)], one obtains, first of
all, from Eqs. (4.5a), (4.1), and (2.7),

transform of the RPA conservation law (2.4) is just
[H' ',p+]=0. Furthermore, in the last term on the rhs,
the transform of Eq. (3.56), namely, [iS' ',p+]=J'+',
may be substituted to give

[HI(3) p ] [H (3) p ]+[H (2) J (~2)] 0 (4.10)

which vanishes because the result is just the transform of
the higher-order angular-momentum conservation law
(2.5) for n =3. The P+ independence of H' ' can also be
obtained with a little more effort by direct evaluation of
(4.5b), using Eqs. (2.21), which are equivalent to (2.5) for
the case when n =3.

The considerations thus far have been independent of
the arbitrary functions o. ' ' and o. ' '. However, the
dependence of H' ' on p+, B&, and B„is a consequence
of the choice of these functions. Now, in principle, the fi-
nal physical results are invariant under unitary transfor-
mations, and therefore should not depend on the choice of
the arbitrary functions. As discussed earlier, the arbitrary
functions allow one to shape the final form of the Hamil-
tonian. However, if these functions are set equal to zero,
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-(3)
O ~ (4) O (4.11)

is made. The consequences of some other possible choices

nothing is lost, since additional unitary transformations
can be performed afterwards to achieve any desired final
form. Therefore, for the time being, the simple choice

are briefly discussed in Sec. IV D.
The evaluation of H' ' [Eq. (4.5b)] is quite straightfor-

ward with the use of the transform of Eq. (2. 16) for H I ',
as well as (4.6) with o ' '=0 and (4.8). The somewhat
tedious calculation is alleviated by not keeping track of
P+-dependent terms, since these must cancel according to
Eq. (4.10). The final result is

H'"= —, g hI '(00)„,x(B„B+g+BgB„B„)+gh' (00)„(B„+B„)
pvA, P

+ —, g h' '(00)„' ~(B„BQ~+B~BB„)+ p g I' '(10)„Q„B +H. c.

g r'"(10)„'.(B„'B.' —B .B „)+H.c.

+p p g I I (20)„(B„+B„)+p g I ' (20)„'(B„+B „)+H.c.
P P

(4.12)

where

I' '(10)„=h' '(10)„„— j' '(00)„
2~o

2I' '(10)„':—h' '(10)„'„— j '(00)„'„,2'

(4.13a)

(4.13b)

transforms of the angular-momentum conservation equa-
tions (2.4), (2.5) (n =3,4), and (2.6) (n =2), and also the
transforms of Eqs. (3.56) and (3.57), one may derive the
result

[H'" p+]=+ —[[H'",4++0 ] J. I

I "'(20) =—h "(20) — j '(10)
P

0
p (4.13c) + —'[ '" (4++0 )'](p+ —p-» (4.14)

I' '(20)' —=h' (20)' — J (10)'
P 2J, (4.13d)

Consider next the evaluation of H' ' [Eq. (4.5c)], which
carries a P~ dependence, unlike H' . This is because H
so far has been expressed in terms of p+ rather than the
PA components of the angular momentum. It will be
shown that the introduction of the latter eliminates the
explicit P+ dependence. Although the angular depen-
dence of H' ' may be calculated by retaining all /+-
dependent terms in S ' ' and the other operators entering
into Eq. (4.5c), it is much less tedious to separately calcu-
late the commutator [H' ',p+ ] and use (4.5c) only for the
P+-independent terms. Using the Jacobi identity, the

which may be evaluated further with the aid of Eqs. (4.8)
and the transform of (2.14) to yield the explicit expression

[H' ',p~]=+ (p++p )gK„B„B„
0 p

+
4 [0+—0 (p++p )'j

(4.15)

The P+-dependent terms of H'I ' are then obtained by
solving Eq. (4. 15). The expression for H'"' including
only terms of interest to the given order is

H' '=E' '+ —, g I' '(00)„(B„B„+—, )(B+ + —, )+g I '(00)„(B„B„+—, )+1 ' '(20)p p +I' I(40)p p

$2
+p+p g I I4I(20)„(B„B„+—, )+off-diagonal terms+ 0 p~ —20p~ QK„B&B„——,

2Wo
(4.16)

where the last term originates from the solution of Eq.
(4.15) [after the substitution of Eqs. (3.43) and (3.44) for
aesthetic reasons]. In Eq. (4.16), only the diagonal terms,
which are of order A ' relative to the RPA, have been re-
tained, whereas the off-diagonal terms, which lead to

corrections of relative order 0, , have been suppressed.
In addition to the constant E' ', which is of no intrinsic
interest in the present context, the remaining coefficients
in (4.16) may be expressed in terms of the original coeffi-
cients as follows:
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I (00)„„—:—,h' '(00)„„„,—2j' (00)qg' '(10)„

—2j' '(00) „h' '(10) „—j' '(00)„' P ' '(10)„' —j' '(00)' „ P "'(10)' „
[ 4[j")(00)„]'~ [j '(00)„' ] + [j (00) „ „] ),

0

2

I ' '(00)„=h '(00)„„——, gh '(00)), ),„+ [2[j' '(10)),] —2j' (10)),„+[J' '(10)~] +[J' '(10)'
) ] ],~0

I' (20)=h' '(20) ——,
' gh' '(20)„„,

$2I' (40)—=h' '(40) — j' '(30),
W0

I '(20) —=h '(20)„ —4j' '(10)„h '(20)„—4j (10)„'h' '(20)' —4j' '(10)' „h' (20)'
2

[2[J' '(10)„] + [J' '(10)„'] +[j '(10)' „] ] .

(4.17a)

(4.17b)

(4.17c)

(4.17d)

(4.17e)

The next task is to replace p+ in H by the PA com-
ponents of angular momentum. Beginning with the iden-
tity

substituting on the rhs from Eqs. (3.40), and expanding in
powers of the Euler angles, one may readily arrive at the
result

is valid, as is shown to be the case in Sec. IVC. This re-
placement then removes the angle dependence in H' '. In
general, as mentioned earlier, p~ can be related to the lab-
oratory components of J using Eqs. (3.40a) and (3.42), and
subsequently to the PA components through the inverse
of Eqs. (3.6). It is then not difficult to show that

p~ -=exp(+i g)J'~ +cubic terms

J) +Jz ——,
'

( J'+,J'
j =p+p +6) p„—20p+J3

=J'~ exp(+ i/) + (cubic terms)', (4.19)

(4.18)

This result is valid through quartic terms. After multi-
plying Eq. (4.18) across by )h' /(2Wo), it is seen that the
rhs accounts for the rotational term in H' [Eq. (4.8)]
and also for the last Euler-angle-dependent term in H' '

[Eq. (4.16)]. That is, these two contributions to H may be
replaced to the given order by the single contribution

where the exp(+i/) dependence arises from the rotation
matrix in Eq. (3.6). Since H is expanded only through
quartic terms, substitution of (4.19) in H' ' and H' '

does not require the use of the cubic terms, i.e., effectively
one makes the replacement p~ ~e xp(+i/) J'+
—=J~exp(+if) 'With . the elimination of p~ in favor
of the PA components of J, H may finally be written as
the expansion

g2
(J) +J2),

0

provided that the identification of J3 given by Eq. (3.53) where

&[0]+H [2]+H [3]+H [4~+. . . (4.20)

H"(2) E(2)~y~ BtB ~ (J2~J2)

H" '= —, gh' )(00)~„g(BpB+g~838„8~)~gh' )(00)p(Bp~B~)~ —, gh )(00)p g(B~B+g~BgB Bq)
PVA. P PVA,

~J' e '~+[I ' )(10)„+„8+ —,
' I ' )(10)„'„(8„8„88„)]~H.c. —

~(J) +Jz)g I '(20)z(B& ~8&)+J' e '~g I ' '(20)&(8&+8 &)+H.c. ,

H" '=E' '+ —, g I' '(00)„„(B„B„+—, )(BQ + —, )+g I ' '(00)„(B„B„+—, )

PV P

+I' (20)(J) +J2)+I ' '(40)(J) +J2) +(J) +J2)g I' '(20)&(8&8„+—,
' )+off-diagonal terms .

(4.21a)

(4.21b)

(4.21c)

The Hamiltonian to the given order is now in the form of the Villars representation (3.12).
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The final step in the reconstruction of the Hamiltonian is the application of the unitary transformation (3.19) in order
to pass over to the BM representation. Thus, in accordance with the discussion in Sec. III C, the transition from the Vil-
lars representation given by Eqs. (4.20) and (4.21) to the BM representation is immediate:

HBM ——kH k =E' '+HgM+HgM+HBM+

where

(4.22)

HBN1
——E' '+g ficopBpBp+ (I)+I2),

HI)M ———, g h '(00)p i(8~8+3+8)B 8„)+gh' '(00)p(Bp+Bp)+ —, g h' '(00)p i(BqB~),+B)B 8„)
PVA, P PVA,

+I' +[1' )(10)„Q„B+ —, 1 '3'(10)„' (B„B B,B—„)]+H.c. +(I, +I )g 1 "'(20)„(8„+8 )

+I' g 1 ' '(20)„'(8„+8 „)+H.c. ,

II' ' =E'"+—, y &' '(00)„(8„8„+—, )(B~ + —, )+y 1 "'(00)„(8„8„+—, )

+1' '(20)(I +)I )2+1' '(40)(I)+I&) +(I, +I&)g 1 ' '(20)„(B„B„+2 )+off-diagonal terms .

(4.23a)

(4.23b)

(4.23c)

Further discussion of the perturbative treatment of the
Hamiltonian is deferred to Sec. IV D.

C. Diagonalization of J3

In this subsection it is shown that the condition
J3 ——g K„B„B„[Eq.(3.53)] can always be satisfied, at
least to the order of interest. From Eq. (3.6), J3 is given

by
1

J3= g DMO(iP, O, Q)JM =sinN„—sin((pcosHJ~
M= —I

g 3=+K„B„Bq

=exp(iS)QKqB~ Bp exp( —iS)

=exp(iS)(J, i')+'J—' '+i/'"J'+')exp( —iS)

=exp(iS)J,exp( —iS)—i (P+p —)t p+ ) . (4.27)

X =X'"+X '+E + (4.28)

This result can be expanded through quartic terms as fol-
lows:

+cosy cosOJ, , (4.24)
~here

where

J(2) +J(3j +J(4j + (4.25)

where the second form on the rhs can easily be obtained

by solving the pair of Eqs. (3.40b) for J3. Upon expand-

ing J3 through quartic terms, one obtains g 3 = i (P+p P p+ )— —[Jz,iS—' ],
g3 = —i($+P i' P+)' ' —[J„—iS' ']

+ —,
' [[J„iS("],iS"'] .

(4.29a)

(4.29b)

J3"= i(4+p 4 p+—)"'—-
J; = i(y.p ep. —)" +-,' [4'+—'"+& '" J.}-

1 (~(1)3J(l) ~(1)3J(1)
)+ T~'&+ +

(4.26a)

(4.26b)

(4.26c)

Comparison of Eqs. (4.26a) and (4.29a) shows that Eq.
(3.53), i.e., the condition J3 ——g 3, is fulfilled through
quadratic terms. It is also fulfilled through cubic terms,
provided that

[J„iS("]=0, (4.30a)

as is seen from Eqs. (4.26b) and (4.29b). It follows from
the inverse transform of Eq. (4.6) that (4.30a) is satisfied
by all of the angle-dependent contributions to S' ', and
therefore (4.30a) is equivalent to

and the notation (P+p —))( p+)'"' stands for the nth
order polynomial in the expansion of P+p —P p+.

Next, consider the expansion of /3=+ K&B„B&.
From Eqs. (2.14), (4.1), and (4.26a), one obtains

[J„io")]=0, (4.30b)

where o' '=—o ' '. This condition is fulfilled not only for
o' '=0, but also for any physically useful choice such as
discussed in Sec. IV D below.
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Continuing to the next order, and assuming that (4.30)
is satisfied, one sees that (4.29c) reduces to

g' '= —i(P p —P p )' ' —[J„iS' '] . (4.31)

Although the commutator in (4.31) receives no contribu-
tions stemming from the terms explicitly given in Eq.
(4.7), there are nonvanishing contributions from some of

I

the "dispensable terms, " namely those that give rise to the
last angle-dependent term in H'I [Eq. (4.16)]. The com-
mutator [J„iSI '] can be obtained by first solving fully
for iS' ', or, alternatively, by calculating the double com-
mutator [[J„iS' '], J'+ ] from Eq. (3.57), using the Jacobi
identity, and then 'integrating" with respect to P'+ . Ei-
ther way gives the result

[J„iS' I]= —'[y'" +P J )
—i(Pi JI ' Pi ~ JI'I)

—[ —,
' i/+" [P ',J+'I+H. c. ]—[ ,' i [-P"",J+') +H.c.]+[J„ioI4'] . (4.32)

Comparison of (4.26c) with (4.31), taking (4.32) into ac-
count, shows that

J3
' —g 3 + [J„icr' '] . (4.33)

Again, for any physically useful choice of o' ', the condi-
tion

[J„io' ']=0 (4.34)

is satisfied. Since to the order of interest in this paper the
choice of o' ' is irrelevant, one can always take cr' '=0.

The conclusion then is that for any physically sensible
choice of S, the condition J3 ——g 3, i.e., Eq. (3.53), is satis-
fied. Although this has been demonstrated through quar-
tic terms, it is surmised to hold to all orders.

D. On the choice of the arbitrary
functions o' ' and o' '

The final BM form of the reconstituted Hamiltonian
given by Eqs. (4.22) and (4.23) contains a variety of terms
analogous to those found in the purely phenomenological
model. ' The leading-order Hamiltonian H zM stems
directly from the RPA, and identifies the zero-order
eigenstates which provide a basis for a perturbative treat-
ment of the higher-order coupling terms as products of
rotational and RPA vibrational states. In particular, HBM
contains anharmonic vibrational corrections to the intrin-
sic excitation modes as well as couplings of the rotational
and intrinsic modes. The couplings linear in I+, which
change the quantum number K by one unit, are analogous
to what is usually referred to as the "Coriolis" interaction,
but the matrix elements may be quite different from the
usual angular-momentum matrix elements. Indeed, Eqs.
(4.13a) and (4.13b) suggest that only part of the contribu-
tion to such matrix elements comes from the angular
momentum, although this is not a rigorous argument.
The remaining coupling terms quadratic in angular
momentum resemble what is usually called the rotation-
vibration interaction (centrifugal stretching), with the
terms involving I ] +I2 corresponding to mixing with
K =0 modes ("/3 vibrations"), and those involving I'+ cor-
responding to mixing with K =2 modes ("y vibrations").
In second-order perturbation theory, these couplings give
rise to contributions of order 1 to the eigenvalues, since a11

terms of HBM are of order 0', thus contributing a fac-
tor of order 0 to numerators, while the RPA energy

[iS"'H'"]=H"' (4.35)

so as to entirely remove cubic polynomial terms. Since
the terms explicitly given by Eq. (4.6) already remove all
the P~-dependent terms, cr ' I should be chosen to remove
the additional terms given by the rhs of Eq. (4.12). This is
accomplished by taking

denominators are also of order B. However, in an
ab initio microscopic treatment, one finds that among the
diagonal terms of HBM, which are also of order 1, those
proportional to powers of I&+I& physically also involve
Coriolis-like and centrifugal stretching effects. In other
words, these effects to the given order are smeared be-
tween HBM and HqM. In the case that there are no small(3) (4)

energy denominators, nondegenerate perturbation theory
may be used, which is equivalent to performing a unitary
transformation that removes terms of HBM. The physical
effects to the given order then all appear as renormaliza-
tions of the diagonal quartic terms of the Hamiltonian,
the off-diagonal terms contributing to the next higher or-
der (0 '). The same unitary transformation also renor-
malizes transition operators, thereby taking into account
the effect of the couplings on transitions. ' Alternatively,
a unitary transformation could be performed to remove
diagonal terms of H&M. The advantage is that this pro-
cedure would concentrate all of the effects of centrifugal
stretching and the Coriolis force to the given order in a re-
normalized HBM, rather than having these effects distri-
buted between the two terms in an arbitrary manner.
Such an approach would be especially useful if one wishes
to compare the matrix elements with those of some
phenomenological model. It could be useful if some of
the couplings have small energy denominators so that de-
generate perturbation theory has to be employed.

It has been seen that the choice of arbitrary functions
o. ' '=o. ' '=0 gives rise to a variety of anharmonic and
band-mixing corrections, which are distributed between
the off-diagonal cubic and the diagonal quartic polynomi-
al terms of the Hamiltonian, and that these corrections
may be treated by perturbative unitary transformations
subsequent to completion of the reconstruction of HBM.
As an alternative at an earlier stage, one may choose non-
vanishing values of o. ' ' and o. ' ' with the aim of obtain-
ing the desired final form of the Hamiltonian immediately
upon passing over to the BM representation. For exam-
ple, if the goal is to diagonalize the Hamiltonian, then
S ' ' may be chosen to satisfy
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h' '(00)„„i t q
h" (00)„ t, h '(00)„' i.

~ Ace„+Ace.—Ace~ " Ace„" " ' .~ Ace„+Ace.+A~~

I'"(10)„
2p~ P V

r'-"(2o)„

p P

—H. c.

r"'(2o)„'
Ace

"(B —B ) —H. c.

r"'( lo)„'.(BB+B,B „)

(4.36)

1"n

x Q(&„+—,'),
P=P]

(4.37)

where N„:—B&B„, and the replacement I&+I2 ——I —I32 2 2 2

was used. The energies could then be read off immediate-
ly by replacing the operators by their eigenvalues as fol-
lows: X„~n„,and I I,~I(I+1)——K . The numer-
ical coefficients h (m)„„,as generated by the unitary

transformation method outlined above, would appear as
1/0 expansions. The Hamiltonian (4.37) may be regarded
as a quantal analog of the classical Birkhoff-Gustavson
(BG) normal form, but extended to include rotational as
well as vibrational motion. However, since the angular
momentum operators in the Schwinger representation
are expressed in terms of boson creation and annihilation
operators, it should be possible to rewrite (4.37) as an ordi-
nary BG normal form. It is well known that the BG ex-
pansion usually diverges, although it may still be useful as
an asymptotic expansion. There has recently been consid-
erable interest in quantization of BG expansions in con-
nection with summation of series using Pade approxima-
tion. However, the practical application of these

The connection with perturbation theory is obvious.
While the transformation completely eliminates H' ', its
double commutator with H generates quartic polynomial
and higher-order terms. To the order of interest, only the
diagonal quartic contributions, which renormalize the
terms of H' ' given in Eq. (4.16), are needed. The choice
of o. ' ' is irrelevant to this order. However, if the total el-
imination of the off-diagonal quartic terms is also desired,
which is of consequence to the next higher order, than an
appropriate choice of o. ' ' can also be made.

Any final form of HzM that can be attained by means
of unitary transformations within the BM framework can
also be attained through appropriate choices of the arbi-
trary functions o. '". In general, the approach used is
largely a matter of taste, although the manipulations are a
little easier using the canonical variables p+ than the an-
gular momentum components I+, but at the expense of
having to carry along the contributions from the o. '"
throughout. It should be kept in mind that whatever the
choice the concomitant transformation of the transition
operators preserves the physical amplitudes.

The foregoing discussion suggests the possibility of
reducing the Hamiltonian by means of successive unitary
transformations to the following diagonal form:

oo 00

HBM ——g g g h (m)„„(I I3)—
IPt =0 Pl =0 P 1, . . . &P

methods to systems with many degrees of freedom may be
problematic.

E. Treatment of transition operators —E2 operators

In this section the MW method is applied in detail to
the electric quadrupole (E2) tensor as a typical example
of the treatment of transition operators. In general, boson
expansion provides a local Taylor-series representation of
a spherical tensor TM, while the aim is to reconstruct this
tensor in the "global" form defined by Eqs. (3.7) and
(3.13) in the case of the Villars representation, or Eqs.
(3.30) and (3.32) in the case of the BM representation.
This can be done in a straightforward fashion by observ-
ing that since

DM~(rp, ~, i') =e' oMrc,
g~O, (9~0

(4.38)

which follows immediately from the definition of the ro-
tation matrix (3.49), then, from Eq. (3.7),

lim TM —— lim TM ——T Me'
0+ cp~O, 0~0

(4.39)

This permits one to find the intrinsic components in the
Villars representation by simply allowing the Euler angles
to vanish in the expansions of the laboratory components
and then multiplying by exp( —iMQ) According. to Eqs.
(3.32), (3.30), and (3.13), the intrinsic components in the
BM representation Tz can be obtained through the re-

placements $~0, J'+ ~I'+ in T ~. Equations (3.7) or
(3.32) then provide the fully reconstructed operators. As a
check, the DMz(@, 0,0) dependence in these operators may
be expanded in powers of P~ afterwards to regenerate the
original expansions of the spherical tensor components,
but this is not necessary. The procedure just outlined will
now be applied to the E2 tensor described in Sec. II C.

The first step is to perform the transformation (4.3)
from the RPA variables i''~', J'+', Bz ',B„'", to the vari-
ables P p ~B„~,B„Consistent w. ith the truncation of the
Hamiltonian, transition operators need only be expanded
through quadratic terms. One therefore has

..lj(E2, )M=. Z8' (E2,M)+ /~'"'(E2, M)

+ ~~"'(E2,M) —[iS"', 7~ "I(E2,M)]+ -.
(4.40)

where Ec' I(E2,M) is a constant given by Eq. (2.27).
Equations (4.40) are readily evaluated with the aid of Eqs.
(2.31)—(2.40) and (4.6), with the choice (4.11) for the arbi-
trary functions. The following results are then obtained
through quartic terms:
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M(E2, 0)=
1/2
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PV P

1/2
45

eQod+4

+iv'6p g q", (00)„(B„+8„)+H.c. , (4.41a)

1/2

~/(E2, 1)=g qI' (00)&(B&+8 &) +i
8w

eQoP +gqI (00) Q 8 + z gql (00)&«(8&B„+8 «8 &)

+p+ g q',2'(10)„(B„8)+p—g q', '(10)&(B„8&)—

+iv'6P+ g qo' (00)&(B&+Bz)+2ig g qq (00)z(8&+8 z),
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P PV PV

+p+ gq2 '(10)„(8„8„)+—p gq2 (10)„'(8„8„)—

(4.41b)

1/2
15
8w

eQog++2ig+ g q'I '(00)„(8„+8 „) . (4.41c)

It should be noted that in Eqs. (4.41) the coefficients of the P~-dependent terms were obtained with the aid of the rela-
tions (2.40).

The intrinsic components in the Villars representation may be obtained straightforwardly from Eqs. (4.41) by applying
(4.39) to MP(E2, M) and then replacing p+ by the PA components of angular momentum, using Eq. (4.19). Finally, from
the Ml(E2, M) the intrinsic components /8 (E2,M) in the BM representation are obtained, as already indicated, by mak-
ing the replacements $~0 and J'+ ~I'+, the results for which through second order are

Ml'(E 2,0)= 5

16~

1/2

ego++ qo (00)~(8~+8~)+qo (00)+g[qo (00)q+pB«+ 2 qo (00)p«(BpB«+8«Bp)]
PV

+q,"'(20)(r', +I', )+ r' gq', "(10) (8' —8 „)+H.c. (4.42a)

~'(E2, 1)=gqI '(00)„(8~+8 ~)+gqI '(00)„Q„B + —, gqP (00)&„(B~B +8 „8 „)

+I'+ gqI (10)„(8„8„)+I'g—ql '(10)„'(8„8„), — (4.42b)

~'(E2, 2)=gq' '2( 00)„(8~+8 ~)+gq'z '(00)„Q„B + —,
'

gq2 '(00)~ (B„B +8 8 &) +qP'(20)I'+

+I+ gq2 '(10)„(Bp Bp)+I' gqp (10)p(B—p Bp) . — (4.42c)

The remaining ~&'(E2,K) can be obtained from the rela-
tion ~'(E2, EC) =( —1) ~'(E2—,K) . This completes
the demonstration of how to treat transition operators in
the MW formalism. Two comments, however, are in or-
der.

First, it should be kept in mind that the expressions are
still expansions in a small parameter. Thus, for example,
in Eq. (4.42a), the first constant term on the rhs, related to

I

the static quadrupole moment, is of order Q, the linear
term is of order 0', and the remaining quadratic terms,
including the correction to the static quadrupole moment
qo (00), are of order 1. Second, the effect of making a
nonzero choice of o' ' as discussed in Sec. IVC is to re-
normalize the coefficients in Eqs. (4.42). In particular, if
the Hamiltonian is diagonalized to the order of interest,
then the effects of band mixing are entirely incorporated
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in the transition operators. These effects may then be
read off by inspection of the transition operators. Further
details may be found in Ref. 15.

V. SUMMARY AND CONCLUSIONS

Finite systems with broken continuous symmetries are
represented in two distinct ways. First, there are local
representations, which are Taylor series expansions involv-
ing all degrees of freedom about a mean-field solution
with broken symmetry. Expansions in deformed bosons
about a deformed Hartree-Fock solution are examples.
Although such representations are easy to generate, they
have well-known problems associated with zero-frequency
(Cxoldstone) modes that render them unsuitable for direct
application to the band structures associated with the bro-
ken symmetries. On the other hand, there are global rep-
resentations, such as the Villars and Bohr-Mottelson'
(BM) representations, which are also expansions, but of a
type that preserve the constants of motion and associated
cyclic variables. Although such representations are natur-
ally fitted for the description of band structure, they are
in general quite difficult to derive. The MW method
makes it possible to pass from a local to a global represen-
tation in an elementary way by means of formal unitary
transformations.

While much of the previous work using the MW
method has been limited to cases involving Abelian
groups of broken symmetry, the present paper has demon-
strated that the method is applicable also to the rotation
group. Specifically, the application has been to the prob-
lem of low-spin rotation of strongly deformed systems
with axially symmetric equilibrium shapes. In order that
the outlines of the method be as clear as possible, the ma-
nipulations were carried out for a generic boson Hamil-
tonian and associated transition operators. Consequently,
the results are manifestly independent of the choice of in-
ternucleon interactions, and one avoids the (in the present
context irrelevant) clutter that would result from a micro-
scopic boson expansion. It should also be apparent that
the method has a broad range of application, including
microscopic systems treated by means of boson mappings,
phenomenological boson models such as the old Bohr-
Mottelson quadrupole collective model and the newer
IBM's, and even molecular systems.

In the course of the discussion, it has been shown that
some ostensible obstacles to the application of the MW

method disappear if due note is taken of the redundant
degree of freedom in the BM representation. In this con-
nection, a novel treatment was given of the relation be-
tween the Villars and BM representations, which, it is
hoped, will dispel some of the mysteries surrounding the
latter. Since difficulties associated with this redundant
degree of freedom have apparently also been a source of
irritation in molecular physics, the unitary transforma-
tion method used here might be of some interest in that
area.

As for future work, a planned sequel to this paper will
discuss the application of the MW method to an exactly
soluble model, namely, the quadrupole collective model, in
lieu of a suitable exactly soluble microscopic model. Also
planned are applications to various versions of the IBM's,
of which those involving extra bosons, such as the g bo-
son, might benefit from the present treatment. Another
area of application is presented by odd nuclei, for which
the MW method can be readily extended. An interesting
question here is whether the method can illuminate the in-
famous "Coriolis attenuation" problem, for which, of
course, a fully microscopic treatment is needed.

Finally, it should be acknowledged that the problem of
describing nuclear rotational band structure could also be
attacked with a variety of elegant techniques, most of
which were referred to in Ref. 4. Among the older
methods overlooked there, however, is the ideal collective
coordinate method, which was used to derive the Villars
expansion for two-dimensional rotators, and, undoubtedly,
could be extended to three dimensions. Among the latest
methods, the nuclear Born-Oppenheimer approximation
looks promising. The reader's attention is also called to
two recent review particles discussing the roton ap-
proach and the generalized density matrix method.
These are all methods that circumvent Goldstone modes.
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