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The symmetries of an antiferromagnetic face-centered-cubic lattice with alternating isospin layers
reproduce simultaneously several one- and two-dimensional spin- and isospin-ordered states which
have previously been shown to be low energy configurations for a condensed nuclear phase. The
face-centered-cubic lattice also shows a precise correspondence with the j-j model and, consequently,
the entire nucleon buildup procedure of the independent-particle model. It is concluded that the
study of nuclear condensates at normal nuclear densities should begin with the face-centered-cubic

configuration.

I. INTRODUCTION

Over the past 15 years, much work has been done on
the possible existence of nucleon or pion condensates at
densities near or above that of normal nuclei. The density
at which various kinds of condensation might take place
remains controversial and depends upon the forces and ac-
tual configuration of nucleons which are assumed.
Indeed, many different condensates have been studied, in-
cluding one-, two-, and three-dimensional configurations
of pure neutron matter or nuclear matter (N =Z or
N >>Z) in spin- and/or isospin-ordered states.

In the present paper, no attempt is made to add to those
arguments concerned primarily with the density value at
which condensation occurs. Rather, we show that several
low-energy states which have been studied by others are
simultaneously found in a particular three-dimensional
lattice. That lattice is the antiferromagnetic face-cen-
tered-cubic configuration with alternating isospin layers
(the FCC model). It is also shown that the FCC lattice
implies a description of nucleon states which is identical
to that of the independent-particle model. As a conse-
quence, the major features of nuclear structure theory
which are accounted for in the independent-particle model
can also be accounted for in the FCC model.

Whether or not the combined binding contributions of
several one- and two-dimensional ordered states can gen-
erate sufficient nuclear binding to allow for stability at
nuclear densities remains uncertain. Nevertheless, the
striking isomorphism between the FCC lattice and the
known eigenvalue symmetries of normal nuclei indicates
that, if a condensed nuclear phase is energetically stable,
then investigations of the solid phase should begin with
the FCC model. Other solid-phase nuclear models, briefly
discussed below, show few advantages and many
disadvantages—primarily in their inability to account for
the independent-particle nature of nuclei.

II. THE CONDENSATION
OF NUCLEAR MATTER

Solid-phase theories of nuclear structure have appeared
sporadically since the discovery of the neutron in 1932.!—°
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Their theoretical strengths and weaknesses have been
varied, but they all imply a dense nuclear interior from
which certain realistic nuclear properties can be deduced.
These include essentially all of the properties of the
“liquid drop” model [constant nuclear density and the im-
plied saturation of the nuclear force, short mean free path
(MFP) of intranuclear nucleons, dependence of the nu-
clear radius on the number of nucleons present, the in-
compressibility of nuclear matter, and other collective
properties], as well as alpha clustering, which is inherent
to the tetrahedral arrangement of nucleons in any close-
packed configuration.

Although some of the solid-phase models can also ac-
count for the emergence of “magic” numbers in the build-
up of nuclei, the validity of the independent-particle
description of the nucleus has presented difficulties for
most of the solid-phase theories because nucleon “orbit-
ing” is explicitly prohibited within a nucleon solid. The
prospects for a solid-phase nuclear theory have been kept
alive, however, by recent developments concerning possi-
ble nucleon and pion condensates. Theoretical estimates
of the density at which pure neutron matter or mixtures
of protons and neutrons would solidify vary by more than
an order of magnitude,!® but it has been shown that in-
creased nuclear binding can be achieved through the ten-
sor part of the nuclear force in various ordered
states.!'=1° While literal nucleon orbiting remains prob-
lematical within any ordered state, “weak” or ‘“strong”
condensation at nuclear densities could arise if mecha-
nisms for producing additional internucleon binding can
be found.

III. THE NUCLEAR DENSITY,
NUCLEON DIMENSIONS,
AND THE NUCLEON MEAN FREE PATH

The underlying motivation for pursuing solid-phase nu-
clear theories stems from the known dimensions of nu-
cleons and nuclei and the extremely short MFP’s of nu-
cleons within the nucleus. In contrast to the pointlike nu-
cleons assumed in the independent-particle model, elec-
tron and muon scattering studies have shown both pro-
tons and neutrons to have charge and magnetic radii of
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0.8 fm.?° Such dimensions are already a large percentage
of the nuclear rms radius (1.7—5.8 fm) and suggest that
models based upon freely-orbiting, pointlike nucleons may
not be realistic.

Moreover, the density at the core of the larger nuclei is
known to be a value of approximately 0.17
nucleons/fm3?! Even if nucleons were put into a close-
packed configuration which produces such a density, a
nearest-neighbor internucleon distance of only 2.0 fm is
implied (four nucleons within the FCC close-packed unit
cell with a cube edge of V'8 fm; in a less densely packed
array, such as cubic, a nearest neighbor distance of only
1.8 fm would be required to obtain a density of 0.17
nucleons/fm?®). In such arrays, space-occupying nucleons
would be almost contiguous and very little intranuclear
nucleon movement, much less nucleon orbiting, could be
expected. As we have reported elsewhere,” using an inter-
nucleon distance of 2.0 fm and the FCC model, nuclear
rms radial values for nuclei over the entire periodic chart
(A > 20) can be produced within 1.3% of empirical values.
Such calculations argue for the viability of the FCC nu-
clear model, but, more importantly, they demonstrate the
validity of the 2.0 internucleon distance.

It is worth recalling that the extremely short MFP’s of
intranuclear nucleons was one of the early paradoxes
posed by the shell model. Although the shell model soon
proved itself invaluable in nuclear spectroscopy, it was
based fundamentally upon the unimpeded orbiting of nu-
cleons over distances which are “several nuclear diame-
ters” (20—30 fm).?> Empirically, however, it was known
that the MFP of low energy ( <30 MeV) nucleon projec-
tiles was 0.4—1.0 fm—or less than one nucleon diame-
ter.?22% The paradox of having a long MFP in a medium
as dense as the nucleus was explained away simply as due
to the exclusion principle preventing otherwise inevitable
particle interactions,?> but the MFP problem has not
disappeared. Some maintain that a large MFP of 20—30
fm can be theoretically sustained for intranuclear nu-
cleons,?* while others argue that the empirical evidence in-
dicates a much shorter MFP on the order of one nucleon
diameter>>—and implicitly the unlikelihood of nucleon or-
biting.

With the spatial extent of nucleons now having become
a central issue in quark theory,?® the MFP question has
resurfaced in terms of the magnitude of the interaction
between quarks in adjacent nucleons. That is, a quark po-
tential well which is many hundred MeV deep at distances
of less than 1 fm could imply a quark contribution of
several tens of MeV to internucleon binding (1—2 fm).
Given a nucleon diameter of 1.6 fm, a center-to-center in-
ternucleon distance of 2.0 fm, and an estimated quark ra-
dius of 0.5 fm,?” a small change in the shape and depth of
the quark potential well could mean that quarks are re-
sponsible not only for the cohesiveness of nucleons them-
selves, but also for part of the attractive force among nu-
cleons.

As will be discussed in Sec. V, the FCC model provides
an alternative independent-particle description of nuclei
which is consistent with strong nearest-neighbor interac-
tions and which does not require nucleon orbiting. As a
consequence, it may obviate the necessity of invoking the

NORMAN D. COOK AND VALERIO DALLACASA 35

“Pauli force” to allow for a long MFP in a substance as
dense as the nucleus.

IV. THE STABILITY OF NUCLEON CONDENSATES

The first objection which any solid-phase nuclear
theory must address concerns the energetic stability of a
nucleon lattice. Calculations based on the uncertainty re-
lations indicate that, when there is an uncertainty of only
1.0 fm in the particle position (half the internucleon dis-
tance in a close-packed array), there is an uncertainty in
the nucleon momentum which corresponds to some 40
MeV per nucleon—well over the 30 MeV nuclear poten-
tial well which is conventionally assumed. Unless a con-
siderable amount of negative potential energy can be gen-
erated, this level of nucleon momentum would lead to nu-
clear instability. Recent speculation has suggested that
quark effects may also contribute to nucleon binding,?
but more concrete results have already been obtained in
research on nucleon and pion condensates.

Starting in the early 1970’s, Migdal et al.'! and other
groups'?2~!° showed that previously unanticipated binding
energy (and/or diminished repulsion) can be produced in
various ordered states, thus making certain condensed
configurations more energetically favored than compar-
able liquid or gas phases. Most approaches, in fact, indi-
cate that solidification can occur only at densities greater
than normal nuclear density, but Calogero and Palumbo!?
found a unidimensional ordered state that is favored al-
ready at nuclear densities. Of particular interest in the
present context is that several of the nucleon configura-
tions which have been shown to be low-energy states are
contained simultaneously within the antiferromagnetic
FCC lattice (see Fig. 1 and Table I)—suggesting that a
combination of binding mechanism could lead to stability
at nuclear densities.
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FIG. 1. Planes (in parentheses) and directions (in brackets) of
symmetry in the FCC lattice. The shaded plane is (111). See
Table I for details of binding effects.
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The two principal sources of additional attraction in a
nucleon condensate come from (i) the tensor force and (ii)
the decreased contribution of the (mainly repulsive) in-
teraction at short range. The separation of nucleons
within a three-dimensional lattice can of course operate in
all three dimensions. While paying a penalty in terms of
kinetic energy, the repulsive contribution among nucleons,
and particularly protons, is thereby minimized. Similarly,
ordered spin states lead to tensor effects in several direc-
tions. Considering only the nearest neighbor interactions

in the FCC lattice, attractive tensor effects among nearest
neighbors are found in two of the three undimensional
directions of symmetry, [110] and [011]. Among the
planes of symmetry, five of the seven planes which in-
clude nearest neighbors show attractive tensor interac-
tions. Because of redundancies in the effects listed in
Table I and some cancellation of attractive and repulsive
effects, the net contribution of the nearest neighbor spin-
and isospin-ordered states within the FCC configuration
is only twice that which is found in previously studied

TABLE 1. The presence of previously studied, one- and two-dimensional condensed states within the FCC lattice.

Antiferromagnetic
FCC symmetry

Description

Source of additional binding
or decreased repulsion

(11n

Two-dimensional mixed spin,
mixed isospin

(110) Two-dimensional mixed spin,
pure isospin

(101) Two-dimensional mixed spin,
mixed isospin

(011) Two-dimensional pure spin,
mixed isospin (Ref. 18)

(100) Two-dimensional mixed spin,
mixed isospin (Refs. 13,14,16)

(010) Two-dimensional pure spin,
mixed isospin

(001) Two-dimensional mixed spin,
pure isospin

[110] One-dimensional mixed spin,

[101]

[o11]

pure isospin (Refs. 11,12)
One-dimensional mixed spin,
mixed isospin (Refs. 11,12)

One-dimensional pure spin,
mixed isospin (Refs. 11,12)

Alternating isospin layers,
attractive tensor effects be-
tween nearest neighbor like
nucleons

Alternating isospin layers,
attractive tensor effects be-
tween nearest and second
nearest neighbor like nucleons

Alternating isospin layers

Alternating isospin layers,
attractive tensor effects
between nearest neighbor un-
like nucleons

Alternating isospin layers,
attractive tensor effects
between second nearest
neighbor like nucleons
in different isospin layers

Alternating isospin layers,
attractive tensor effects
between nearest neighbor un-
like nucleons and between
second nearest like nucleons in
different isospin layers

Attractive tensor effects
between nearest neighbor like
nucleons

Attractive tensor effects be-
tween nearest neighbor like
nucleons

Alternating isospin layers

Alternating isospin layers,
attractive tensor effects be-
tween nearest neighbor unlike
nucleons
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two-dimensional ordered states, such as the alternating
layer spin (ALS) model of Tamagaki et al.'*> There are,
however, also second neighbor effects working between
like-isospin layers, which remain to be included in such
calculations.

V. EQUIVALENCE BETWEEN EIGENSTATES
OF THE SCHRODINGER EQUATION
AND THE FCC LATTICE

The solidification density and the source of additional
binding energy needed for a solid-phase theory remain un-
certain, but pursuit of a solid-phase nuclear theory re-
quires, first of all, some indication that the major, known
features of nuclear structure can be maintained within
such a theory. In other words, if a solid-phase theory of
nuclear structure is to be taken seriously, it must provide
a coherent alternative to the powerful independent-
particle description of the nucleus, within which most nu-
clear excited and ground states are currently understood.
As we have discussed elsewhere,” the systematics of the
eigenvalues in the independent-particle model can be
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reproduced exactly if it is assumed that the nucleus can be
represented as a lattice of positions at which nucleons
have a high probability of residing: P(x,y,z) along three
orthogonal axes. If it is also assumed that the lattice is
antiferromagnetic FCC with alternating isospin layers
(Fig. 2), then it is found that all of the restrictions concern-
ing allowed eigenstates of the Schrodinger equation are
reproduced within the FCC lattice (i.e., all of the states and
substates with the appropriate eigenvalues and the known
number of nucleons with any given eigenvalue or com-
bination of eigenvalues). See Table II.

Specifically, the eigenvalues of nucleons in the FCC
model can be redefined as follows. Each nucleon can be
given an eigenvalue, n, determined by its position relative
to three axes passing through the fixed center of the lat-
tice system [Fig. 3(a)]:

n=([x|+[yl+]z]=3)72
=(r sinf cosd +r sinfsing +r cosf —3)/2 . (1)

The axial position of the nucleon (from a nuclear “spin

TABLE II. The complete buildup sequence of nucleons within the FCC lattice. The rows correspond to the number of nucleons
with each eigenvalue. The sequence and the entire pattern of nucleon eigenvalues are identical to those of the independent-particle
model, except for the spacing of levels. In its simplest form, the FCC model predicts magic stability with the closure of all such shells
and subshells. This is borne out by the fact that 15 of the first 17 subshells are magic by at least one criterion of magicness. Conven-
tional criteria are as follows: a, number of stable isotopes; b, number of stable isotones; ¢, number of metastable (half-life > 1 yr) iso-
topes; d, number of metastable isotones; e, number of known isotopes; f, number of known isotones; g, quadrupole moment; 4, neu-

tron separation energy; i, excitation energy of first 2+ state.
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FIG. 2. Two representations of the antiferromagnetic FCC lattice with alternating proton and neutron layers. On the left are
shown the nucleon coordinate values (x,y,z) of the 14 nucleons which comprise the unit cube. All coordinate values are odd integers.
Spin and isospin are denoted by, respectively, the orientation and shading of the arrows (the assignment being arbitrary since the lat-
tice shows triaxial symmetry around the origin). On the right are shown the n, j, m, and [ eigenvalues, which can be deduced directly
from the coordinate values of the nucleons and Egs. (1)—(3). Note that the origin of the coordinate system is not at the center of the
cube, but is at the center of a tetrahedron of nucleons (darkened spheres), which comprise the “He nucleus. The 14-nucleon cube cor-
responds to a highly unstable '“Be or *Ne isotope (depending upon the choice of isospin shading) and is presented here only to illus-
trate the symmetries of the FCC lattice, rather than an actual isotope.

FIG. 3. (a) Illustration of the triaxial symmetry of the principal quantum number for the first four n shells. Bonds are drawn be-
tween all nucleons with the same n value, thus producing concentric n shells. The central tetrahedron is the *He nucleus (» =0), and
is surrounded by triaxially symmetrical, truncated tetrahedrons which correspond to n=1, 2, and 3. (b) Illustration of the symmetry
of the angular momentum subshells around the nuclear spin axis. Bonds are drawn between all neighboring nucleons with the same j
value, thus producing cylindrical j shells. The shaded structure lying along the z axis corresponds to j =% nucleons, and the three

surrounding ‘“‘cylinders” correspond to j = %, —;—, and % Similar structures for larger values of »n and j values (and other eigenvalues)
can be built, and are found to maintain complete isomorphism with the j-j model (see Table II).
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axis”) can be given an eigenvalue, /, determined by the
nucleon’s location relative to the two axes orthogonal to
the spin axis. Coupled with the intrinsic spin eigenvalue,
s (as in the spin-orbit coupling model), a fourth eigen-
value, j, is also defined [Fig. 3(b)]:

j=l+s|=0x[+[y| =172
=(rsinf cosd +r sinfsing—1)/2 . (2)

A third eigenvalue, m, is determined by the nucleon’s
position relative to one axis:

m=(|x|)/2=(rsinfcos$)/2 . (3)

Whereas alternating spin layers are found orthogonal to
the x axis (the antiferromagnetic arrangement), alternat-
ing isospin layers are found orthogonal to the z axis. This
isospin configuration produces a layer of neutrons in be-
tween the strongly repelling proton layers, thereby minim-
izing the total Coulomb repulsion for any nucleus. The
antiferromagnetic spin configuration maximizes the mag-
netic attraction between nearest neighbors, i.e., producing
an attractive tensor interaction, and, indeed, the other
source of attraction in condensates has been the tensor
force between neighboring nucleons.''~!° Within the con-
text of neutron star research (where gravitation supplies
the needed additional binding force), Canuto and Chitre?®
have shown that the lowest energy state for nucleon con-
densation (N =Z2Z) is the antiferromagnetic FCC lattice
with alternating isospin layers, i.e., identical to the config-
uration which is required in the FCC model to reproduce
the known eigenvalue symmetries. Matsui et al.!® have
also found the FCC configuration to be the lowest energy
condensed state, although their calculations were done us-
ing a mixed isospin state for each lattice site.

The principal theoretical attraction of the FCC model
[and the reason why all other solid-phase nuclear models
(Sec. VI), must be regarded as less likely] is that only the
FCC model reproduces the entire sequence of allowed nu-
cleon states as found in the independent-particle model.
As shown in Table II, the exact isomorphism between the
FCC geometry and the nucleon states of the j-j model
leads to the “shells” and ‘“‘subshells” of the harmonic os-
cillator plus spin-orbit coupling model (although the pre-
cise spacing of the levels and the production of the magic
numbers, which are functions of the potential well, are not
directly implied by the FCC description of nucleon states).
The significance of the isomorphism is that virtually all
of the nuclear features deduced from the independent-
particle model can therefore be deduced from the FCC
model. More speculatively, it also suggests that the
“quantal” nature of fermion energy states, in general, is
fundamentally linked with the ‘“quantal” nature of the
FCC crystalline structure—i.e., its fundamental unit dis-
tances and associated unit energies.

It should be noted that, unlike several previous solid-
phase nuclear models, the FCC model is based upon the
shell-subshell texture of the j-j model, rather than on the
so-called magic numbers. Although failing to predict
uniquely the 6 (7, 8, or 9) of the textbook magic numbers
[i.e., 2, 8, 14(7), 20, 28(7?), 40(?), 50, 82, 126], the FCC
model implies structural symmetries and more two-body

bonds per nucleon with the closure of any shell or subshell
within the j-j nucleon buildup procedure. In other words,
it predicts magic stability with the closure of every j sub-
shell. As shown in Table II, it is empirically found that
15 of the first 17 subshells are magic by at least one cri-
terion of magicness. In contrast to the inert gases of
atomic physics, it is evident that the relative stability of
the nuclear closed shells is slight and no single criterion or
combination of criteria predicts a unique set of 6 (or so)
magic numbers. Rather than being a weakness of the
FCC model, the implied “multishell” texture of the FCC
lattice is thought to reproduce the known texture more
closely than theories built around a small number of mag-
ic structures.

VI. OTHER SOLID-PHASE MODELS

The modern (post-shell model) solid-phase theories of
nuclear structure include those of Pauling (P),* Anagnos-
tatos (A),”> Lezuo (L),® Cook and Dallacasa (FCC),’
MacGregor (M)} and Robson (R).° Some of these
models can account for cluster effects in the small (R) or
small and large (P,M,FCC) nuclei, and some models deal
centrally with the magic numbers (P, A4,L), but problems
concerning the nuclear surface are common (P, 4,M,R)
and some of the solid-phase theories require post hoc ad-
justment in internucleon distances (A,R) or cluster di-
mensions (P) and some require the selection of ‘“‘accept-
able” symmetrical structures from a larger number of pos-
sibilities (P, A,L). Nevertheless, the varied successes with
regard to fission (P,M), electron form factors (L,FCC),
total binding energies and magnetic moments (M,FCC),
and nuclear rms radial measures ( 4,FCC) indicate some
of the fundamental attractions of a solid-phase conception
of the nucleus. No solid-phase theory other than the FCC
model, however, can account for the independent-particle
nature of nuclei.

VII. DISCUSSION

Provided that the initial question concerning the stabili-
ty of a nuclear lattice can be answered affirmatively, the
solid-phase models can be shown to exhibit a wide range
of properties known to exist in real nuclei. The solid-
phase models of Pauling and MacGregor show impressive
correlations with symmetric and asymmetric fission, but,
in not accounting for the independent-particle features of
nuclei, such cluster models are inevitably relegated to be-
ing “alternative” nuclear models with a limited range of
applications, as distinct from unifying models which
would eliminate the need to use diverse nuclear models to
account for different nuclear properties. In contrast, the
truly solid-phase models (L, 4, R,FCC) imply the existence
of ordered states within the context of a “collective”
model. As such, these latter models may be considered
candidates as potentially unifying models which bring to-
gether cluster, shell, and liquid-drop characteristics within
a single theoretical framework.

Unique among the solid-phase models, the FCC model
reproduces the entire independent-particle description of
the nucleus—based solely upon the geometrical position
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of the nucleons within an FCC configuration. Conceptu-
ally, the FCC and the other solid-phase depictions of the
nucleus appear at first consideration to be counter-
intuitive since a gaseous phase theory of nuclear structure
(the conventional j-j model) has been the central paradigm
of nuclear theory for three decades. Nevertheless, the pre-
cise isomorphism between the j-j model and the FCC
model clearly indicates that the “orbiting nucleon” con-
ception of the nucleus is not an inevitable implication of
the independent-particle description.

The predictive successes of the shell model have been
remarkable, yet a theoretical understanding of the spin-
orbit interaction has not yet been achieved. As recently as
1980, Bertsch et al.?’ noted that “Despite its success in
phenomenological description of nuclei, the origin of this
spin-orbit interaction . still remains a puzzle.” The
FCC model may resolve this problem by retaining a
description of individual nucleons identical to that of the
spin-orbit coupling model, but without demanding the or-
biting of nucleons within a nuclear medium which is so
dense that a liquid-drop model has been the basis for
quantitative work on nuclear binding energies. It may
also answer DoDang’s question:'* “How can one recon-
cile such a (condensed-phase) structure, which is perfectly
valid for an infinite system, with the known shell-model
structure of finite nuclei?”

It is worth noting that the principal strength of the
FCC model—i.e., its precise mapping onto the
independent-particle description of nuclei—is simultane-
ously its most difficult to appreciate in two dimensions.

This is not an inherent weakness in the theory itself, how-
ever, and three-dimensional models*® clearly demonstrate
the one-to-one isomorphism with the j-j model, as well as
the impossibility of alternative crystal structures showing
similar correlations with the n, j, m, etc., eigenvalues of
the j-j model.

The regular polyhedra of Anagnostatos’s model and the
approximate spherical symmetry of Pauling’s models have
a “magic” appeal which is not found in the FCC model.
Those correlations with magic numbers are attained, how-
ever, at the expense of sacrificing all internal symmetries
correlating nucleon positions with nucleon eigenvalues. In
this respect, such models are fundamentally misleading—
suggesting an explanation of (selected) magic numbers,
but not relating to the fundamental quantum mechanics
which underlie those numbers.

Only the antiferromagnetic FCC lattice with alternat-
ing isospin layers shows such internal symmetries (for all
eigenvalues) and is therefore the only solid-phase model
which is isomorphic with the independent-particle
description of nuclei. It can therefore be said that, regard-
less of whether or not nucleons have actually “condensed”
within nuclei into a solid phase, the antiferromagnetic
FCC lattice is an accurate and unique representation of
“nuclear quantum space””—arguably as valid as the elec-
tron orbital depiction of atomic “quantum space.” Reso-
lution of questions concerning the validity of the FCC lat-
tice as a nuclear model will depend upon future develop-
ments regarding the energetic stability of a solid-phase at
nuclear densities.
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