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Doorway states induced by quantum recoils
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A proper treatment of the Pauli principle is usually impossible in Jacobi coordinate representation
when heavy nuclei are involved; hence a shell-model representation of the collision becomes manda-
tory. This raises the traditional problems of shell-model spurious states and recoil corrections. We
show how recoil parameters can actually be used as dynamical parameters in collision theories.

I. INTRODUCTION

Consider a system of N nucleons with momenta p;,
i = 1, . . . , N, kinetic energies t;, two-body interactions
m,z, and a structureless projectile with momentum po, ki-
netic energy to, and interactions uo; with the nucleons.
Because of Galilean invariance, the total center-of-mass
momentum M is an irrelevant degree of freedom and the
scattering wave function should be calculated in terms of
N Jacobi coordinates only, namely

cV

vro=M ' Nmpo —mo g p;

a superfluous degree of freedom will not be critical at all.
On the contrary, it can be related to quantum recoils
which will be used in the theory as dynamical variables.

Section II of this paper explains the basis of wave func-
tions we will use and Sec. III introduces a variational
principle for the calculation of recoil effects. Section IV
provides a numerical application. Section V is a generali-
zation to the case when the projectile is also a nucleus,
and not a structureless particle. Finally, Sec. VI contains
a discussion and conclusions.

II. BOOSTED SHELL MODEL BASIS

where mo is obviously the relative momentum between the
projectile and the center of mass of the target (with mo,
m, and M the projectile, nucleon, and total masses,
respectively), and N —1 additional Jacobi momenta, such
as

1V

m( N' (N —1)——p) —g p;
I =2

(1.2)

which is the momentum between nucleon 1 and the rest of
the target.

The lack of symmetry in the definition of
m~, ~2, . . . , m~ &

is a well known difficulty to be faced'
when antisymmetrization of the target is at stake. For
large values of N the Jacobi representation of exchange is
clearly cumbersome. Consequently, one must return to
the degrees of freedom p;, whose single particie nature
makes them more convenient variables.

The use of p;, however, reinstates one superfluous de-
gree of freedom, for there is one more p than ~, and
plagues the theory with the well known problem of shell-
rnodel spurious states. Despite this difficulty the impor-
tance of Pauli-blocking effects in nuclear collisions is so
well recognized that we advocate in this paper an an-
tisymrnetrized collision theory which is entirely based on
shell-model techniques. As will be shown, the existence of

Let 0 be the origin of an arbitrary, Galilean reference
frame. The rnomenta po, p~, . . . , pq are defined in that
frame, and we shall use a set of shell model orbitals con-
structed around O.

We are interested in particular in nonspurious wave
functions of the target, t(t„(p, , . . . , pq ), where n is the or-
dering label in the spectrum of the target. For the sake of
simplicity this section deals only with elastic or inelastic
scattering, leaving generalizations to Sec. V. We shall also
only consider the case in which the projectile is distin-
guishable from the target nucleons. Our definition' of a
nonspurious wave function is that 0, must factorize as a
product of an internal wave function g'„"'(tr, , . . . , tr~ &)-
and a center-of-mass wave function y(P), where
P= g, & p;. There are many ways to check whether this
factorization is present in actual shell model wave func-
tions without using the Jacobi coordinates, but using the
microscopic variables p; only. There are also many ways
to project partly spurious, shell-model states on purely
factorized states if necessary. In any case, we assume in
the following that the target center-of-mass wave function
is a Gaussian wave packet

y(P)=n. 'r N 'r b exp( ——N 'b P )

where b is the single-nucleon shell model length. The fac-
torization of y is trivially obtained under standard precau-
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tions in the harmonic shell model.
The boosted shell-model state is W;j

i &j=l
(2.10)

z & =—exp( —ik.R)
~
Q„&, (2.2)

where k is a parameter vector and the operator
R=X ' g; &

r; is just the center-of-mass coordinate of
the target. It obviously also factorizes as

Wn—k, (p&»»PN)=~ ~1» ' ' ' »~N —1 l
0n—k, &

N
V= g Uo;. (2.1 1)

The collision amplitude between channels n and n' with
momenta q and q' is the usual T-matrix element

=y(P+k)Q'„"'(~(, . . . , ~~ )) . (2.3)
T„.„(q',q) = (X„., ~ [V+ V(Z+ —H)-' V]

~ X„,& . (2.12)

It must be stressed here that the recoil of P„does not
complicate the shell model nature of P„ in the macroscop-
ic representation [p;), because exp( —ik R) is the ex-
ponential of a one-body operator. Hence the orbitals con-
tained in the Slater determinants that constitute g„are
just boosted by the amount —N 'k. The shell-model ex-
pansion of g„ in terms of these boosted Slater deter-
minants remains the same.

Consider now the "channel" state ~X& defined by the
wave function

(po, p), . . . , p~ ~X&=n ~ (molm) b' '

X exp[ ——,
'

mm o
'b (po —k) ]

It will be noticed that, since the center of mass has been
subtracted from the kinetic energy u, see Eq. (2.9),
center-of-mass integrals amount to a unit overlap in Eq.
(2.12). Consider now the similar matrix element

N„„(k',k)=(X'
~
[V+ V(E+ H) 'V]—~X&, (2.13)

where X' is defined like X, Eq. (2.4), with a channel quan-
tum number n' and momentum boost k'. With the aid of
Eqs. (2.8) and (2.5) we can rewrite Eq. (2.13) as

(X'
~ [ V+ V(E+ H) '—V]

~

X &

=(2m) f dqdq'y„(q' —k')T„„(q',q)y„(q —k),
(2.14a)

&&An, A(pi px) . (2.4)

Using Eqs. (2.3) and (2.1) and introducing the total
center-of-mass (c.m. ) momentum H=po+P, we obtain
from Eq. (2.4) the factorization

or the inverse relation,

T„„(q',q) =(2n. ) f dk'dky„'(q' —k')

&& N „„(k',k)y„'(q —k), (2.14b)

(Hmo, . . . , ~~ )
~

X& =yM(H)y„(m. ok)

int+0n ~(l ». »~»v —1)» (2.5)

and

y„(mo —k) =m (elm) b

)&exp[ ——,'mp 'b (n.o —k) ], (2.7)

with p being the projectile-target reduced mass. The y~
and y„ indicate, respectively, that the total c.m. is on the
average at rest and the projectile-target relative wave
function is peaked around k.

A traditional channel wave function g„q with rnomen-
tum q and unit flux would read, keeping in mind the fact
that the total center-of-mass wave function can be frozen
arbitrarily,

(~~o ~i, , ~~ i l
X., & =yM(~)(2~)'"b(~o —q)

XP'„"'(m.), . . . , n.~ () .

(2.8)

Consider now the Harniltonian H =Hp+ V with
Hp ——w + 8'and

where

y (MH)=m. (M jm) b exp( —, mM 'b H —)

(2.6)

where y„' is the deconvolution kernel related to y„.
This result, Eqs. (2.14), is the main result of our choice

of a boosted shell model representation. It shows that a
T-matrix element can be written as the superposition of
amplitudes & between states X and X', which can be cal-
culated in terms of microscopic coordinates
pp, p], . . . , p&. The states 7 and 7' therefore behave as
representation states, parametrized by the recoil momen-
tum, through which the calculation of the collision
proceeds.

The next section provides a variational calculation of
W through shell model techniques and actually takes ad-
vantage of recoil as a variational parameter.

III. VARIATIONAL CALCULATION
OF RECOIL EFFECTS

In this section we discard from & the Born term
(X

~

V
~
X &, which is trivial to calculate, and rather define

W as the matrix element (X'
~

VGV
~
X&, where G is the

Green's function. For the sake of numerical convenience
the imaginary part of E will first be taken as finite, thus
making G a bounded operator. The on-shell limit will be
taken at the end.

Let P(po, p~, . . . , p~) and P'(po, . . . , p~) be two arbi-
trary trial functions, infinitely flexible at first. An ele-
mentary argument of variational calculus shows that the
stationary value with respect to P and P' of the function-
al

N

~ =to+ g r, ——,M (2.9)
( y'

/

( E H)
[

cb&— (3.1)
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is reached when

(3.2)

imaginary parts of the boost labels are separated:

y„(?r —K) =?r (p /m ) b

where A. and k' are arbitrary, complex scalars. This sta-
tionary value is then nothing but F"= &7' VGV

l
7).

It is then interesting to parametrize M~ as the result of
an entrance width I, from + to an "entrance" doorway
state $', then a propagation from P' to an "exit doorway"
state P via the "propagator" &P'

l
(F. H)

l

P—) ', and fi-
nally an exit width I ' from the "exit doorway" state P to
the final state g'. This interpretation is transparent from
reading Eq. (3.1).

In a practical case $ and P' will be restricted to some
subspace of a boosted shell-model basis. Let K and K' be
boost parameters for P and P', respectively. The sta-
tionarity of F with respect to K,K' is obtained by
straightforward derivations of F,

1

)
V~ &P' v lX)

1
Vx- &P'

l
(F. H)

l P)—=0, (3.3a)
(E H)—

&~'l vl@)
1

(E —H)
(3.3b)

[It can be seen again in Eqs. (3.3) that the norms and
phases of P, P' are arbitrary. ]

The simplest ansatz for trial functions to be inserted in-
side F is to take P like 7, Eq. (2.4), with the given boost
label k replaced by a variable boost label K. In the same
way, we can take 4' as 1', with a variable boost label K'
rather than the final momentum k'. This will provide an
approximate N to &X'

l
VGV

l
Y). The quality of this ap-

proximation will be good if the intermediate states of the
collision belong to the elastic channel. It is a reasonable
assumption when the projectile and target have few excit-
ed states, with a large spreading.

Since E is complex, and the on-shell limit actually
remains complex because of the —i~6(E H) contrib—u-
tion to the propagator, the solution of Eqs. (3.3) must be
searched with complex values of K, K'. This raises an in-
teresting consequence. While k, k' are real and thus the
wave packets of the projectile and target are on top of
each other in coordinate representation, complex values of
K, K' induce both a boost and a shift for the entrance
doorway and exit doorway states P', P.

This is seen readily from Eq. (2.7) when the real and

X exp[+ —,
'

m p 'b (ImK) ]

XexpI —,
'

m—p 'b [(mo R—eK)

—2i ImK(pro R—eK)] l.

The real part of K corresponds again to a boost, while
ImK introduces a (nonessential) normalization factor and,
more importantly, an oscillatory phase. This phase corre-
sponds to a nonvanishing average value of the relative dis-
tance between projectile and target. The entrance door-
way and exit doorway solutions of Eqs. (3.3) imply, there-
fore, a semiclassical impact parameter, and provide at
once an estimate of the dominant partial waves for the
transition from momentum k to momentum k'.

While the infinitely flexible variation, Eq. (3.2), corre-
sponds to a linear problem, the present restriction of trial
functions to frozen states with just a recoil parameter is
now a nonlinear approximation. Hence, Eqs. (3.3) may
have more than one solution. Nothing prevents us in a fu-
ture stage of the theory from mixing these solutions
linearly through the ansatz

where v is the label for these various recoils K,K'. The
mixture coefficients C,C' then induce an interference be-
tween the various mechanisms (partial waves, semiclassi-
cal trajectories) represented by P„P'.

To conclude this section it must be stressed that recoil-
ing shell-model nuclear wave functions can be used as
dynamical intermediate states in a theory of collisions. In
the next section we shall investigate numerically the solu-
tion of Eqs. (3.3) in a case where nuclear structure is the
simplest possible case; namely, p„?, is reduced to just one
Slater determinant.

IV. AN ILLUSTRATIVE EXAMPLE

We consider here the N~ for an elastic collision of a
meson and an a particle, the structure of the latter being
approximated by just a (Os) wave function, in a spherical
harmonic oscillator, and antisymmetrization of the target
being taken care of by a Slater determinant of spin and
isospin variables. The meson-nucleon interaction v is tak-
en as central, spin, and isospin independent,

mpo —mop, ' mpo —mop;
& PoP l

~
l pop; & =~o&(PO+P —Po —P')

m+mo m+mo
v [(mpo —mop, ') +(mpo —mop;) ]

(m +mo)
(4.1)

Hence the spin-isospin determinant will be understood in the following. All the wave functions considered in this section
have the form

2

k k+ p3+ + p4+

& pop?p?p?pg l
k) ='?r (???0/I) I? exp[ —,p?I 0 b (po —k) ]

2 2

X~—
I exp ——,I p, + — + p, +-k k

(4.2)
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f (K', k)f (k', K)
—f (K', K)+g (K', K)

with

f ( K', K) =AK.K'* expI —[a, (K +-K" )

+ a2(K —K'*) ]I,

(4.3)

(4.4)

g(K', K)= E E ——
z

—a3(K+K'*)
4mb

Xexp[ —[a~(K—K'*) ]), (4.5)

where E is the internal energy of the target and takes
care of the constant matrix element of 8' since only elas-
tic wave functions are included. We have defined

A=4k, m. b P'(P +v ) (1+—'m /m)

)&(1+mo/m) '~ (mo/m)

b (1+me/m)
2m, /m

a~ ——P v (1+—,mo/m) (I+me/m) (P +v )

(4.6)

(4.7)

(4.8)

3ba2=
64

3 +11+mo/m

4+mo/m
2m 16m o/m

(4.9)

(4.10)

namely, k will be just replaced by k', K, and K' when we
define X', P, and P', respectively. In other words, we re-
strict the collision to the elastic channel and the trial
functions to the elastic channel also.

A straightforward calculation then gives

(K [V[k)(k [V[K)
—(K'[ V

/

K)+(K'/ (E —Ho)
/

K)

rule their imaginary parts are smaller than their real parts
in the energy domain investigated here (

~

k
~

=
~

k'
~

=0. 1

to 1.5 fm '). For ImE ~0, and small-angle scattering,
the signs of the imaginary parts of K,K" are dominantly
negative and the signs of the imaginary parts of the varia-
tional amplitudes & are also negative.

In the forward direction (case k=k'), the exact ampli-
tude must have an imaginary part with a sign opposite
that of E. The variational amplitude also shows the right
sign. We also verify that K=K'* in that case, a result al-
ready established as a property of our variational princi-
ple.

We show in Fig. 1 the angular behavior of the varia-
tional amplitude when

~

k
~

=
~

k'
~

= 1 fm ' and
ImE =50 MeV. A similar angular evolution is shown in
Fig. 2 for the same energy (ReE =118.33 MeV) but a
vanishing ImE. We stress that this on-shell limit of the
theory is extremely smooth. In Fig. 2 we also show the
forward & when

~

k
~

=
~

k' is raised from 1 to 1.5
fm '. Then we show in Fig. 3 the values taken by ReK'*
and ImK", respectively, for

~

k
~

=
~

k'
~

= 1 fm
ReE = 118.33 MeV, and ImE =0. The vector K can be
deduced from the vector K" via a reflection about the
bisector of the angle between k and k', an obvious sym-
metry of the problem. Finally, in Fig. 4 we show the an-
gular distribution of the variational cross section when

~

k
~

=
~

k'
~

= 1.5 fm ' and ImE =0. The Born term has
been reinstated and wave packets have been renormalized
to unit flux at the shell model center, as in Ref. 7. The
smooth behavior of all these quantities brings no evidence
of singularities such as bifurcations in our nonlinear ap-
proximation. All these results are average results and cor-
respond to Eq. (2.13), the amplitude between wave pack-
ets. The deconvolution described by Eq. (2.14b) is now
under study.

4+mo/m
a4. ——b

16mo/m
(4.1 1)

0.2— ImD
{MeV)

Re D
(MeV)

It is trivial to take derivatives of the symmetric func-
tion F, Eq. (4.3), with respect to its arguments K and
K'*. An elementary geometrical argument shows that
those vectors K,K' which cancel the derivatives are in the
plane defined by k and k'; hence only four equations must
be solved simultaneously rather than six at first sight.

The variational equations have been solved numerically
with the following values of the parameters: b =1 fm,
A /2m =20 MeV fm, mo/m =0.15, ko ———20 MeV fm,
and E = —20 MeV. The code RECLCR is available on re-
quest to the interested reader. The search for the solution
is initiated forward from a first guess K =k, K' =k'; then
a path is investigated in the eight-dimensional parameter
space (two complex components for each K,K" ) in order
to diminish the modulus of the logarithmic derivative of
F. Then angles and energies are varied smoothly.

Solutions are found quite rapidly and indeed, at least
for small-angle elastic scattering, K does not differ too
much from k, and K' is not too far from k'. Nonethe-
less, K and K' are complex, as expected. As a general

115
+

—0.2—

~ 90
+

—O.S— 64
+

-1.0—

-1.2—

E = 118.33+ i50
elastic Off shell

I

—0.1
I

0.1
I

0.2

I

0.3

30
2i.

+, 12+
Wp'

FIG. 1. Angular behavior of the multistep amplitude
M=(Y'

~
VGV

~

g) provided by the model. The energy is off
shell, E =118.33+50i (

~

k
~

=
~

k'
~

=1 fm '). For the other
parameters, see the text.
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+
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l
+ 100
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-0.8—
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179, 20
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+ li 7. 38 -0 2—
50 +

E = 118.33
elastic on shell

80 - 100
90 a

60
i 04 +-+-+ 0
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E = 118.33
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+ 132.51
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20' +
10 + Re&

(VeV)
l

1.&

I i [ i I
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I

-a. 2
+ 118.33

1

O. S 1.0

1.0
I

0.4

I

1.2
I

0.2

I

0.6
-2.0

0

FIG. 3. Angular behavior of ReK'* (top branch) and ImK'*
(bottom branch) when

~

k
~

=
~

k'
~

=1 fm ' and E is on shell.
The angle shown besides each point is the scattering angle be-
tween k and k'. To obtain K take the symmetric of K' with
respect to the bisector of k, k'. We have chosen the reaction
plane as the (y, zj plane, with the initial momentum k along the
z axis.

V. GENERALIZATION

The obvious generalization of Eq. (2.4) when a channel
contains a composite projectile a and a target 2 is obvi-
ously

I

+ dQ
~ (mb)

O. S ~. .(a) . .(~)(P&&P2»pa&pa+1»PA+a l+) "~ 'v'n, , k'v n, , —k'
E = 291.25

elastic on shell
(5.1)

where M is the total antisymmetrizer. Here g'„' is the
1

static shell model wave function tt'„' (p„. . . , p, ) of nu-
1

cleus a in quantum state n &, and it must factorize as a
product of an internal wave function P'„' '"'(vr~, . . . , vr, ~)

1

and a center-of-mass wave packet

y(P ) =m (M ) b exp( — bM, P ), —

where m&, . . . , n., ~
are the Jacobi mornenta internal to

nucleus a, then P, is its center-of-mass momentum, and
M, is its mass number. A momentum boost k converts

t ~ +
—+-

120 '
140 ' 160 ' 1&0

13 18

0 . 1 I I I

0 6 20 40

ttt„" k
——exp(ik. R, )1(„", (5.3)

60' 75
' 90 105'

where R, is the conjugate of P, and just boosts the indi-
vidual single particle orbitals contained in tt '„' . This

1

leaves the factorization of tt„"'"' unaltered and generates a
c.m. wave packet

FIG. 4. Complete angular distribution, including the Born
term, provided by the model for elastic scattering at

~

k =1.5
fm ' and E on shell.

FIG. 2. Left-hand branch same as for Fig. 1, but on shell
(ImE =0). Right-hand branch shows the on-shell forward am-
plitude Wi when k=k' and

~

k
~

rises from 1.0 to 1.5 fm
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(P k) —3/4(M )
—3/4b 3/2

&&exp[ —,' b —M, '(P, —k) ] . (5.4) Xexp[ —,
' b —M, '(P~ +k) ] . (5.5)

As to g'„' k, a completely similar argument defines it

as the product of an internal wave function
(rr, + &, . . . , n z +, & ) and a center-of-mass wave(3)

1

packet

The relative motion and total c.m. wave packets are then
derived from the product of Eqs. (5.4) and (5.5), expressed
in terms of the total c.m. and relative momenta
H =P, +P~ and p=(M&P, —M, P„)/(M, +M„), re-
spectively,

M, MqX=n (M +M ) b exp[ — b(M— +M ) 'H ]We. ' ba a M, +Mq

(5.6)

It is clear from Eq. (5.6) that the total center of mass is at
rest on the average, while the relative momentum peaks
around k and the internal structures are specified by the
channel label pair (n ~n2). It must be stressed again here
that, although the physical content of P is more transpar-
ent in terms of Jacobi coordinates in Eq. (5.6), the product
defined by Eq. (5.1) can be expressed in second quantiza-
tion as a product of boosted single-particle creation opera-
tors generating g„' k and 1(„'

The generalization to three-or-more-fragment channels
is obvious; for instance,

(a) (b) (c)~fn~, k~kn2, k20n3, k& ~ (5.7)

with k]+k2+k3 ——0. Trial functions can be of the form
Eq. (5.1) or Eq. (5.7), with variable labels K rather than
fixed labels k.

VI. DISCUSSION AND CONCLUSIONS

For spectroscopic calculations, a recoiling wave func-
tion p„k, Eq. (2.2), is regarded as spurious, in the sense
that the only relevant dynamics, which is the internal
dynamics, is Galilean invariant. In the presence of anoth-
er wave function, however, which is boosted in the oppo-
site direction, such as the projectile wave packet in Eq.
(2.4), the boost label is tantamount to a Jacobi momentum
of the composite projectile-target system. This is clearly
seen, for instance, in Eq. (2.5), where k is the mean value
of n.o, or in Eq. (5.6), where it is the mean value of p.

Hence these recoil labels can be used as dynamical pa-
rameters in the calculation of a collision amplitude. As il-
lustrated in Sec. IV, it is very practical to calculate matrix
elements in a microscopic representation with single parti-
cle coordinates [p; ), and to use the boost labels as varia-
tional parameters. The simplicity of the manipulation of
multicluster channels, see Eq. (5.7), shows that the
method may have a wide range of applications.

Besides allowing an easy antisymmetrization and taking
properly into account center-of-mass effects, the method
shows an extremely striking result, namely its smooth on-

shell limit. Even though the functional F, Eq. (3.1), is
formally real when ImE =0, our approximation spontane-
ously breaks time reversal invariance. The complex solu-
tion K,K' which provides the results plotted in Figs. 1—4
is actually not the only one: there is a conjugate solution
K*,K'; hence time reversal is globally restored. The
reason we chose the first rather than the second solution is
twofold; namely, (i) the first solution emerges naturally as
the nearest and most stable solution in the vicinity of k, k'
when ImE ~ 0, and (ii) this solution provides the correct
sign of the forward, retarded scattering amplitude. Fu-
ture refinements of the theory are possible if additional
pairs of conjugate solutions are discovered. The results
obtained in this paper at the time being are sufficient by
themselves to claim that we have a theory of collisions
which is regular on shell, a nontrivial result.

Last but not least, the orders of magnitude and angular
trends of the cross sections provided by the theory are
very reasonable. With only a very schematic ~-N interac-
tion and a rigid a structure, we obtain millibarns or tenths
of millibarns, with a smooth decrease from forward to
backward angles. No variation of parameters to balance
the Born term against the multistep amplitude
(X' VGV

~

Y) has been attempted. The only problem left
open by the present paper, besides of course an extension
of the flexibility of trial functions, is the deconvolution
demanded by Eq. (2.14b). This is now under investiga-
tion.

It can be concluded that we have reached a practical
stage in this microscopic theory of collisions.
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