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Relativistic Faddeev theory of the m NN system with application to m.d scattering
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We formulate a novel relativistic Faddeev theory of the ~NN system using a variable-mass isobar
ansatz for the mN and NN amplitudes and the requirement that the spectator particles be always on
their mass shells. This theory takes into account the two possible time orderings in the propagator
of the exchange particle and describes correctly the coupling between the two-body and three-body
channels. As a first application of this theory, we study pion-deuteron elastic scattering by calculat-
ing all the observables in the region of the 3,3 resonance for which data exist.

I. INTRODUCTION

The nNN system is probably one of the most basic
problems in nuclear physics. It is certainly more basic
than the NN system, since in order for two nucleons to in-
teract there needs first to be a pion. Moreover, if the en-

ergy of the nucleon-nucleon system is sufficiently large, a
real pion will be produced, so that in order to have a con-
sistent theory of the NN system which is valid both above
and below the pion-production threshold it must be a
three-body theory. Also, since the pion can be absorbed,
one has transitions of the form NN~~NN and NN~wd
which are possible only if the pion or at least one of the
nucleons are allowed to be off their mass shells. Thus, a
theory of the ~NN system must also be relativistic in or-
der to be able to describe intermediate states in which
some of the particles are off the mass shell.

A candidate theory of the wNN system that has been
proposed by Avishai and Mizutani' and independently by
two other groups is the coupled NN-~NN theory.
There is considerable evidence however, from the mea-
surements of the tensor polarization t2p in ~d elastic
scattering, that this theory may not be correct. At the
same time, it seems to be possible to describe most of the
existing data by means of a theory which has much srnall-
er effects from pion absorption as pointed out by the
present author. Thus, a complete exposition of such
theory is needed in order to be able to compare it with
other theories. Also, it is important to have the predic-
tions of this theory for as many observables as possible so
as to make a comparison with experiment more meaning-
ful.

In the particular case of the ~d elastic scattering reac-
tion, data are available on the total cross section, differen-
tial cross section, vector analyzing power iT», tensor
analyzing power T2p, and tensor polarization t2p. In ad-
dition, new experiments have been planned at SIN and
TRIUMF to measure other tensor components, while an
experiment is now underway to measure the spin transfer
coefficient itzp and possibly in the future more complicat-
ed spin-transfer coefficients.

There also exists a need for a set of background ~d
Faddeev amplitudes upon which, for example, a ~d phase

shift analysis can be attempted, ' or effects that are not
included in the Faddeev calculation can be studied by
adding the remaining parts as a separate contribution to
the scattering amplitude. Such a procedure has been car-
ried out in order to search for possible evidence of di-
baryon resonances in the ~d system, "' or to extract in-
formation on the short-range part of the intermediate
delta-nucleon interaction. ' Since such background am-
plitudes exist in the case of the coupled NN-~NN
theory, ' we like to provide also a set of amplitudes
from the relativistic Faddeev theory that will be developed
in this paper.

In the next section we describe the relativistic Faddeev
theory. In Sec. III we present the predictions of this
theory for wd elastic scattering and compare them with
the available data in the region of the 3,3 resonance. Fi-
nally, we give our conclusions in Sec. IV.

II. THEORY

A. general remarks

The relativistic Faddeev equations proposed by Aaron,
Amado, and Young' were first used by Kloet et al. ' to
describe nucleon-nucleon scattering below and above the
pion-production threshold. They found that the nucleon-
nucleon one-pion —exchange (OPE) potential in this theory
has only one-half of the required strength, due to the fact
that in the relativistic Faddeev propagator

Gp —— 1 CO; +COJ +COk

co;cojcok S —(co;+co& +cok )

proposed by Aaron, Amado, and Young, ' only one of the
two possible time orderings is included in the pion propa-
gator. " This undercounting of the one-pion —exchange
potential in the Aaron-Amado-Young theory has given
rise to a great deal of confusion as well as to the develop-
ment of the coupled NN-~NN theory, ' which tried to
compensate for it by introducing a new mechanism in
which the pion is absorbed by one nucleon and emitted by
the other one.

The relativistic Faddeev propagator (1) was derived by
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Aaron, Amado, and Young by putting the three particles
on their mass shells and performing a dispersion integral
in the total energy squared of the system S which again
takes the particles off their mass shells although not in an
arbitrary way. ' This theory, however, is not consistent
since the propagator (1) is then used together with the re-
quirement that the spectator particle be on its mass shell,
which destroys conservation of total four-momentum. In
order to restore conservation of total four-momentum to
this theory, we have suggested before' that the propaga-
tor (1) must be replaced by

1 1
Gk ——

~~ ~j ( +S —ci); —coj ) —cok
(2)

Gp —Gp =Gk —Gk =ni
co;cuj cok

5(~S —CO; —~J —~k ),

which is obtained by requiring that in a transition from a
state in which particle i is the spectator and j, k the in-
teracting pair to a state in which particle j is the spectator
and i,k the interacting pair, both spectator particles must
be on their mass shells. It is easy to see that

correspond to exchanging a pion between two ~N isobars
or exchanging a nucleon between a mN and a NN isobar.
We show pictorially these two types of potentials in Fig.
1, where the crosses in the spectators indicate that they
are on their mass shells. If in these potentials one of the
wN isobars is the pion-nucleon P» channel, then one has
a state with the same quantum numbers of two nucleons,
and one has to take into account the Pauli principle. First
of all, one has to decompose the P» amplitude into a pure
nucleon part plus other contributions that do not reduce
to a pure nucleon part; that is, the so-called pole and non-
pole parts. ' The Pauli principle then acts only if the
spectator nucleon is taken together with the pole part,
which means that only those channels that are consistent
with the Pauli principle are allowed. If the spectator nu-
cleon is taken together with the nonpole part, the Pauli
principle does not act and all channels can exist. In the
models of the P» amplitude used in the NN-mNN theory,
the pole and nonpole parts are both very large, although
of opposite sign. Thus, when the pole and nonpole parts
are taken together, as occurs in the Pauli allowed chan-
nels, they add up again to the full P» amplitude, which is

so that both propagators guarantee that the required
three-body unitarity relation will be fulfilled. However,
let us try to use the two theories to describe nucleon-
nucleon scattering so that the propagators (1) and (2)
represent the pion propagator. Then, if one considers the
one-pion —exchange contribution to nucleon-nucleon
scattering assuming that particles i and j are the two nu-
cleons and particle k is the pion, one has that
co; =co& —v'S /2 and the propagators (1) and (2) become,
respectively,

4 ~S+~k 1
Gp ————

2S 2U'S+cok cok

N

(a)

4 1 1

S 2 Q)k
vN

4 1 1

S 2 m +(k;+k')
4 1 4 1

G S ~„Sm +(k, +kj)

(4)

(5)

where k; and kj are the momenta of particles i and j in
the initial and final state, respectively. Equations (4) and
(5) correspond to the well-known one-pion —exchange po-
tential, except that Eq. (4) has only one-half of the re-
quired strength, while Eq. (5) has its full strength. Thus,
as we see from Eqs. (4) and (5), the problem of having a
one-pion —exchange potential with the correct strength
has nothing to do with the new mechanism introduced by
the NN-~NN theory, but it is just a question of having a
consistent relativistic Faddeev propagator.

Since we use the isobar ansatz for the two-body ampli-
tudes (see subsection C below), the three-body problem be-
comes an effective quasi-two-body problem involving all
possible transitions between the various ~N and NN iso-
bars. These transition potentials are of two types which

li N

(c)

FIG. 1. Transition potentials of the mNN system, where the
crosses in the particles mean that they are on the mass shell. (a)
Transition from a ~N isobar to another mN isobar by means of
pion exchange. (b) Transition from a NN isobar to a ~N isobar
by means of nucleon exchange. (c) Another process which is
also described by diagram (b).
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very small; however, for the Pauli forbidden channels the
nonpole part acts alone, so that there is no cancellation to
give back the small P&& amplitude. Thus, they generate
very large effects out of a very small amplitude, simply by
writing it as the sum of two very large pieces and then ap-
plying the Pauli principle to only one of these pieces. It is
by now clear that these large effects are spurious, since, as
shown by Afnan and McLeod, ' they give rise to large
and positive values for the tensor polarization t2p Of nd
elastic scattering while, experimentally, t2p is large and
negative. In our case, where the decomposition of the
P&& amplitude into pole and nonpole parts can be done
unambiguously, these spurious effects do not appear,
since, as shown in subsection H, both the pole and non-
pole parts are small and, moreover, the nonpole part is
much smaller than the pole part.

The basic property of the theory that we are discussing
is the fact that the spectator particles are required to be
always on their mass shells. This property determines all
the important features of the theory. First of all, as al-
ready mentioned, it determines the relativistic Faddeev
propagator (2) in which the exchanged particie has the
two possible time orderings, which solves the problem of
the insufficient strength of the one-pion —exchange poten-
tial. Similarly, the objection raised by the proponents of
the NN-mNN theory, that in the standard Faddeev theory
only one of the nucleons (the isobar) can emit the pion,
does not apply to this theory due to the two time order-
ings. If the isobar emits a pion which is going forwards
in time, that is the normal process included in the Aaron-
Amado- Young theory; but, if the isobar emits a pion
which is going backwards in time, that is the same as if
the spectator had emitted a pion which is going forwards
in time. Thus, both particles (the isobar and the nucleon)
can emit the pion in this theory. In the case when we
have a three-body final state where the pion and the two
nucleons are all physical particles (that means they are all
on their mass shells), the final pion must have been emit-
ted only by the isobar, since as the spectator is always on

its mass shell it cannot emit a physical pion and still
remain on its mass shell. Thus, the mechanism intro-
duced by the NN-~NN theory in which the pion is ab-
sorbed by one nucleon and emitted by the other one never
enters in a theory where the spectators are kept always on
their mass shells.

The relativistic Faddeev propagator given by Eq. (2)
was first proposed by the author in connection with pion-
deuteron elastic scattering. ' Some of the consequences of
this theory for the case of the one-pion —exchange poten-
tial were explored in a later work, ' while numerical cal-
culations with this three-body OPE potential have been
performed recently by Mathelitsch and the author. A
theory based also on this idea has been proposed more re-
cently by Gross. '

B. The relativistic Faddeev equations

Let us consider the Bethe-Salpeter equation for three
particles such that it sums all processes in which two par-
ticles interact in all possible ways, while the third particle
acts as spectator. The Bethe-Salpeter equation for this
problem can be written in Faddeev form as

Tjk tjkjk+tjkjkG G Tk +tjkjkG G T'j
I 1 i j k j i j k k

i = 1,2, 3 (6)

where Gj and Gk are the propagators for particles j and
k, respectively, and t~"'~ is the scattering amplitude for
particles j and k, where particle i is the spectator and the
particles in both initial and final state are off their mass
shells. In the particular case wherein one of the particles
is on its mass shell, we will write the corresponding index
with a capital letter. For example, if particle j is on its
mass shell in the initial state and particle k is on its mass
shell in the final state, the corresponding scattering ampli-
tude will be tj ' . We can write Eq. (6) explicitly (assum-
ing momentarily spinless particles) as

&k;kI, I7PIWIJK& ~(k k0)&kk lrI ' (q ) I&Jsc&

+ ' f d' '&k„rp'I"(q )
I
k,'&G (k")G„(k„')&k'k,

I

T"'I Prm&+(T"' T
2&

(7)

where t(IJ~ is the initial state wave function of three free
particles on their mass shells, and where in the final state
we have put both the spectator particle i and particle k on
their mass shells. The momenta q; and kt in Eq. (7) are

&2 1
G~(kj' )=

k'p —k' —m +i eJ J J

GI, (kI', )

q,. =K—k, =[V'S —(m; +k;)'~, —k;],
kI' =K k' kj':[v'S —(m'+—k )

~ —kj0 —k' —kj]

(8)
1

[VS —(k; +m; )' —kja] —(k;+k~ ) —mI, +i g

where K =(v'S, O), is the total four-momentum of the
three-body system. Using Eq. (9), we see that the propa-
gators are given by

We like first to perform the integration over de'p in Eq.
(7). If we close the contour of integration from below, we
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have to know all the poles of the integrand in the lower
half kj'o plane. For example, the propagator Gj given by
Eq. (10) will contribute with the pole at

kr'o (——kj +mr )' i—e:c—or i—e, (12)

=—V S —ci)& + ciri —I 7j (13)

while, in general, the amplitudes &ki,
I
tj 'r"(q;)

I
kr'& and

&k'k,
I

T
I err&K& will bring in additional Poles whose

contribution, however, will be neglected. The theory dis-

and the propagator Gz given by Eq. (11) will contribute
with the pole at

kr'o ——&S —(k;+m; )' +[(k;+kj) +mi, ]' ig—

cussed in the preceding subsection, ' ' ' containing the
relativistic Faddeev propagator (2), is obtained if one con-
siders only the contribution of the spectator particle given
by Eq. (12). This theory, however, also has problems
since the propagator (2) gives rise not only to the physical
cut generated by the delta function 6(~S —co; —cur. —coi, ),
as shown in Eq. (3), but also to an unphysical cut generat-
ed by the delta function 5(v'S —ro; —cor+coi, ). Thus, in
order to eliminate this unphysical cut we will look into
the contribution of the pole (13), so as to take into account
a part of it which cancels the unphysical cut. If we take
into account the contribution of the two poles (12) and
(13) and neglect everything else, the relativistic Faddeev
equations (7) become

& k ka
I

&7
I

ijrrm & =~( k —k o) & ka
I

rj '

I

+ kg t q kj Gg kg kj k ' TJ IJK2'j
dkJ

kj, t '
q; kg Gj k' kj, k; T qJz + T~' Tg

2' g
(14)

where, as we see, the first integral contains the amplitude TJ, in which the spectator particle j is on its mass shell, while
the second integral contains the function Tz, where the spectator is off the mass shell. The propagators GA. and Gj that
appear in Eq. (14) are given by

1 1

v S or; —co—j vari, +—iv'a+i v'il v S or; —coj—+ori, +i& e i V il—

Gr(kr' )=
2' j

1 1

+S —co; —coj +coi, +ii e —iv 7) v S —co;+coj+cgi —iv e —ii 7J
(16)

k; =(co;,k;), (17a)

kr' = (cd, kj ), (17b)

ki, = ( v'S —co; —coj, —k; —kj ), (17c)

while in the second integral they are

The first term in the propagator G& diverges when
&S =or;+orj+coi„which gives rise to the unitarity cut
associated with continuum states of three particles, while
the second term diverges when &S =co;+conj —coi„which
gives rise to a completely unphysical cut. This unphysical
cut, however, as we will see next, will be cancelled by the
first term of the propagator Gr given by Eq. (16), while
the second term in Eq. (16) can never diverge. In order to
see how this cancellation takes place, we first notice that
the momenta of the three particles in the first integral are

k; =(co;,k;),
kr =(VS —or;+co'i„kj), (18b)

k/:( coj„k(' —kj) (18c)

Thus, the amplitudes tj 'r and T& appear at completely
different kinematical regions in the first and second in-
tegrals. Only at the point that gives rise to the unphysical
cut, which is determined by the condition
v'S =co;+conj —coi„are the two sets of coordinates (17)
and (18) identical. Thus, for this point the arguments of
tj"'r" and Tr" are the same in .both integrals so that the in-
tegral equations (14) are free of unphysical singularities.
In particular, the delta function produced by the second
term of Eq. (15) is cancelled by the corresponding delta
function produced by the first term of Eq. (16). If we
now neglect the rest of the second integral, we obtain the
final equations

&k kk
I
+j

I WIJK& @k;—k;o)&ka lrj ' (q')
I WJK&

r

+ f &ki
I
rj ' "(qi) lkj&Gi (ki kj)&kjk' ~J"

I
WuK&+(&r"'~~l )

2' j
(19)
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where the propagator Gk is now defined as

P
Gk(k;, ki ) =

( +S —co; —coi ) —cilk

771
5( VS —co; —cubi

—cok )

2' k
(20)

A, (k;mi)
Gi(k) =

k —m +i@
where

(21)

Ao(k;mi ) = 1, (22)

where P means the principal part, so that the propagator
(20) gives rise in Eq. (19) only to the physical cut [the lo-
garitmic singularities generated by the principal part of
the second term of Eq. (15) are very weak and do not
cause any trouble in the numerical solution of the ~NN
system]. It is very important to have a Faddeev propaga-
tor that has only the physical cut in order to satisfy uni-
tarity, as we discuss in subsection D.

Let us now consider the case when the particles have
spin. If particle j has spin sz, then the propagator G~ be-
comes

@+m)
A~i2(k 'mi ):

2mj

k„k
A", (k;mi)=g„+

mj

k+ mi.
AP3/2(k;m )= i

g „—
2m J

y„y 2k„k

3m~

(23)

(24)

k„y —k„yq+
3m~

(25)

S
where P '(ki) are an-shell spinors of momentum ki, spin

J
sz, and helicity vz. Thus, in the case of particles with
spin, Eq. (19) becomes

etc. , and similarly for the propagator Gk. Then, since we
have performed the integration over ki'0 in Eq. (7) by
keeping only the contributions that put particle j on the
mass shell, we have that the factor A, (ki;mi) becomes a

J
spinor projection operator for particle j; that is,

A (ki'mi:(ki' )
i ):+Pi(ki)P i(ki) (26)

V

&y.'(k;)W."„(kk)
I
TPI Our&=&(" —"0» &0 "„(Ik)1 )' ' (q )

I
A&)

+ g 1' '
&P "(4)

I
rf ' "(qi) I&'( i)&Gk(lt ki)2'jJ

~A, (kk;mk)&p '(ki)p, '(k;)
I
Ti

I
prig)+(Ti'~Tk) . (27)

The integral equation (27) contains all the possible con-
tributions in which the spectator particle j is on its mass
shell. If one considers contributions from other poles in
the integration over ki'0 (such as, for example, the pole in

T~
' arising when the two-body subsystem k, i has a bound

state), they will always leave the spectator particles j off
the mass shell, so that they do not contribute to the uni-
tarity cuts. Thus, these equations are, in a sense, the
minimal choice which is consistent with the requirements
of Lorentz invariance and unitarity. With regard to the
neglected contributions of the second integral, one can get
an idea of how important these contributions are, by cal-
culating them in the case of a single loop or so-called box
diagram. Such type of calculations have been performed
by Locher and colaborators, ' who noticed that since in
the second integral particle k propagates as an antiparti-
cle, and if particle k is a nucleon which has a very large
mass, this contribution is strongly suppressed by the prop-
agators such that it is negligible. If particle k is a pion,
on the other hand, due to its small mass the suppression
by the propagators does not occur, and they found that
the contribution of the second integral has an upper limit
of about 20%. Thus, this theory will be much better suit-
ed for reactions that proceed through nucleon exchange,
such as ~d~wd or ~d~~NN, whose dominant diagrams
are shown in Figs. 2(a) and 2(b). The reactions NN~NN
and NN~~NN, on the other hand, are driven by pion ex-

(c)

(e)
FICx. 2. The lowest-order diagrams for the processes (a)

~d~~d, (b) ~d~~NN, (c) NN~NN, (d) NN~~NN, and (e)

ad~NN.
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change, as shown in Figs. 2(c) and 2(d), while the reaction
~d~NN is dominated by the process drawn in diagram
2(e), which proceeds halfway through nucleon exchange
and halfway through pion exchange. Thus, the uncertain-
ties from the neglect of the second integral will be larger
for the last three reactions than for the first two.

C The isobar ansatz

The two-body amplitudes tj"'r"(q;) that enter in the rel-
ativistic Faddeev equation (27) obey the unitarity relation

tj"r" ('q;) tj"—'r"(q;)=2~i f d kr5+(kr mr—)5+(kk mk—)tj ' (q;)A, (kr. ,'mr ——(kr )'r )A,„(kk, mk (kk)'r——)tr 'r"(q;)

+2vri5+(q; qp)—furr Ar (qp, Mr (q——p)'r )rr (28)

where the first term on the right-hand side (rhs) is the discontinuity associated with continuum states and the second
term is the contribution of the process in which particles j and k are transformed into a stable isobar of spin j~ and mass
Mq, where I r is the vertex operator that couples particles j and k with the stable isobar and f~ is the corresponding
coupling constant. In the mNN system there are two of these stable isobars; namely, the nucleon in the mN subsystem
and the deuteron in the NN subsystem. Equation (28) can be written in the equivalent form

tj '" (q;) tj"'r"(—q;)=2rri g f 5 (K —k; —k —k )tj ' (q;) Ip'(k, )p "(k )&&/ '(k )p "(k„)
I

t 'r"(q;)
CO COkv vk

+2' g f 5 (K —k; —q )f r,', Ip",(qr)&&4', (qr)
I

r
m&

(29)

= g r,' I

y' (q ) &r (q;') & P
' (q;)

I r, . (30)

We will now introduce the second main assumption of
this theory. We will assume that the two-body amplitudes
tj ' (q;) can be written as a sum of isobars of variable
mass M~ ——(q; )', so that Eq. (26) can be applied for each
isobar; that is,

tj"'r"(q; ) = Q I r (q; )A (q;; M; =(q; )' )r ..

the two-body amplitudes (30), and that this separability
has been achieved while maintaining Lorentz invariance
at every stage of the derivation of the three-body equa-
tions. In Eq. (30) there may be more than one isobar for
every value of the spin j; (corresponding, for example, in
the ~N subsystem to the two possible values of the orbital
angular momentum l;+ ——j;+—,), and p

' (q;) are isobar
t

spinors of spin j;, helicity m;, three-momentum q;, and
mass squared [see Eq. (8)],

J m.

q,
'= [VS —(m, '+k,') '"]'—k,'=M,' . (3 I)

This assumption is somewhat unusual and perhaps even
unjustified on physical grounds, since we know that real
isobars have a constant mass; however, one can say in
favor of it that it leads to integral equations in only one
continuous variable as a result of the separable form of

The on-shell two-body amplitude tr ' (q;) corresponding
to the case when all particles are on their mass shells is
obtained from Eq. (30) by taking its matrix elements be-
tween on-shell spinors for all external particles; that is,

&Pp (kr )Pp (q kr)
I

tr
' (q )

I P (kr)P „(q —kr)&.

= X & 0 p' ( kr' )0 p" ( q —"I )
I rr, I P ', (q ) & rr (q ') & 0 ', (q )

I rr, I P' (kr )4
"

( q —"r ) &

J ~ m-

where the vertex functions in the rest frame of the pair j, k have the form
1/2

&y' (0) lr, ly.'(k, )4'.", ( —k, )&=5, "Ik,
I

'g,;.(Ik, I
)

4
~', , . .„(k,),

(32)

where

21;+1
2j;+1

1/2
l t C j k l

I Sj. s.s S.

j k j' k

and the function gr (
I kr I

), which contains factors coming from the normalization of the spinors is determined by the
t
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vertex operator I z. . The vertex functions in an arbitrary frame that appear in Eq. (32) can be obtained from Eq. (33) by
l

performing a Lorentz transformation along the direction of q;, so as to get
' 1/2

&0 ', (q;) I lr, 14'-', (kr)4."„(q —kr)&= g d-', k, (Pr)d."„k„(Pk)br,
r"

Ip I
'g,

,
( Ip I

)
'A

/

(35)

where Aj, kk, and p; are the helicities of the two particles, and the relative momentum between them as measured in the
S ~

ktwo-body c.m. frame; the functions d 'k (pr. ) and d "k (pk) are the matrix elements of the unitary transformation that
J J vk k

transforms the helicities between the two reference frames with pr and pk, the angles of the Wick triangle. If we sub-
stitute Eq. (30) into Eq. (29) and use the expression for the vertex function given by Eq. (35), we find that the functions

r~ (q; ) obey the unitarity relation
l

2l,. +&

rr (q; ) rr —(q; ) = 2, r2 gr (
I p; I

)rr (q; )r, (q; )+2~r5+(q; qz )5r—r fr,
i

where

[q; —(m. +mk) ][q; —(mr —mk) ]
4q;

so that in the case of uncoupled partial waves the functions rz (q; ) are related to the phase shifts as
l

i 5(q,~)
4(q; )'r sin5(q; )e

rr. (q; )=-
~gg(II I) Il I

'

(37)

(38)

and a corresponding expression in the case of coupled waves. If j;=jq, then the two-body amplitude rr (q; ) has a pole at
l

the mass squared of the stable isobar 6, so that near the pole it can be written as

2

r. (q; )= f~
(39)

Jrr I 2 2 + ~

D. Effective two-body equations

If we introduce the isobar ansatz (30) into Eq. (27) and make the substitution

&ii(' ',.(k )4 "„(kk)1~$
I Prjk &=5, „5(k —k o)&4 "„(kk)

I 6 ' (q )
I PJk &+&0 ',.(k )4 "„(kk)

I
Ur

I Arjr &

then the functions Uj will obey integral equations similar to Eq. (27), but with a new inhomogeneous term given by

(40)

2COj p

(kk)
I

rl '"(q )
I

iti-' «'o) &Gk(ki kjo)+ „(kk mk)&4 (ki)
I
rJ (q )

I WKI &+(rJ

&0 '„(kk)
I I,", 10-', (q;) &~,

,
(q') &4 ', (q )

I I;, I k.'„(k,o) &

j~i jm j m- jp

xGk(k;, k o)A, (kk, mk)&iti '(k;)
I

I
I
p' (qw)&v; (qr )&p ' (qw) I

I r I err &,

where we have taken kjp ———q~, with q q the mass squared of one of the stable isobars, so that the inhomogeneous term

(41) will be dominated by the contribution of the term with spin jr. ——jr, which is infinitely larger than the other ones and

therefore we can neglect the sum over j and over jj and set simply jj=j~. If we now introduce new amplitudes

qadi
i i' i™r'i'(k

„(kk)
I

&7
I OIJK & 2 &ziti "(kk)

I I,.
I i' ', (q ) &r (q')

j,.m,.m jp

Xdr ' ' ' ' '(k;,«)r (q~)&it, (q~)
I I, I OIJr: & (42)

then these new amplitudes satisfy the set of multichannel coupled equations

F;p ' ' ' ' '(k;, kp)= Vq ' ' '(k;, kq)+ g g f V;,'
' ' ' ' '(k;, kr. )~r (qr. )F~'p ' ' '(kr, kp),

j+i jm v. j
(43)
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where the transition potentials are

V, ' ' ' ' ' '(k, ,k, )=(p '
(q, )

l

&
l
p„'(k, ))Gk(k, ,k, )&.„(kk mk)(p„'(k, )

l
I',

l

p' (q, )) . (44)

x (2IJ+1)1 /2W(lJ lkIT/;; I,IJ), (45)

where 8' is a Racah coefficient and i; is the isospin of
particle i, I; is the isospin of the pair j,k, and IT is the to-
tal isospin.

The solution of the integral equation (43) gives directly~.m. v. , jpmpvp
the transition amplitudes 1;q ' ' (k;,kq) for the
processes going from an initial state of the system where
we have a stable isobar of spin j~ and helicity m ~ to a fi-
nal state of the system where we have an isobar of spin j;
and helicity m;. If j; is also one of the stable isobars, then
these amplitudes correspond to two-body~two-body pro-
cesses (such as ~d~vrd, NN~~d, or NN~NN), while if
j; is an unstable isobar, then the amplitudes F describe
two-body~three-body processes (such as ~d~vrNN or
NN~7rNN).

If the particles also possess isospin, the potential (44) must
be multiplied by the isospin transition coefficients

I.I .8.' '=( —1) ' ' (2I +1)'.
EJ

(49)

Equation (46) obeys the discontinuity relation

FP~ FP~ —g g (Q .Q +FPP~P )

py
i+j

+ g +FOP~(8 Py;~, —
i p

(50)

and

where p= {j„m„v„q„l will be taken to be also one of the
stable isobars. Thus, since the states on the right- and
left-hand sides in Eq. (50) are both stable isobars, the po-
tentials V~J~ and V~~ are real, since with the momenta q„
or qq the delta function in Eq. (20) cannot be satisfied.
Thus, the terms

E. Unitarity

The integral equation (43) is of the form
3

F; =V~ + g gV,~" rF?', '=1,2, 3
j=l y

(46)

(6„;6pp+F~; r; )(VPp —V~p)

both vanish in Eq. (50), so that dropping these terms and
multiplying on right- and left-hand sides by the coupling
constants fq and f„,respectively, we obtain

where the transition potentials are such that

VP~=O if i =j, (47)

and a={j~m~v~q~I are the quantum numbers of the
stable isobar, while /3={j;m;v;k;I and y={j~mjv~k~I,
such that

f.FP~ f~ f.FP~fc-
= g gy„Fg/ 8 (VPr VP, r)rrFJf-

ij pr
l~j

+ g g f„F~~(8 —8)FPp fp .
i p

(51)

(48) Using Eqs. (44) and (20), we see that the discontinuity of
the potentials is

VP~' VP~'=2~& &P —', (q )
I

f',
, I y'(k ) ~ 5(&S —co; —co —cok)A (kk mk) ~y.', (

=2~i g j o'(IC —k; —k, kk)(p ' (q;)
l I,—lp'(k, )p„"(kI,))(p '(k;)p "„(kk)

l
1 . lp' (qj)),

vk

so that the first term on the rhs of Eq. (51) is

(52)

g f FP/ P ( Vf 7 VPY )rYF? +f
py

l+J

d+idkjdkk 4 m v, v. v. vk rn&v&, v. v. vk=2'' g g j 5 (K —k; —k~ kk)H„;" " ' ' "(q„—,k;kjkk)Hpj' ' ' "(qp, kgkjkk), (53)
263i 2' J'2cok

1~J

where we have used Eqs. (48) and (49), and where we have defined
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H„;" " ' "{q„,k;k. kk) = g f„F p
' (q;)

~

I
~ ~

p„'(k~)p „(kk)) .

Similarly, using Eqs. (29), (30), and (35), we find that the discontinuity of the functions r; is

—r; =2mi g I 5 (K —k; —k —kk)P (P ' {q;)
~

I
~

P'(k )P "(kk))(({ '(k, ){t "(kk)
~

I", ~(t)
' (q;))8

V ~ Vk J

+2mi6, ., f„ f "5 (K —k; —q„),
~r

so that the second term on the rhs of Eq. (51) is

P Pa dk;dkJdkkg g f„FfP (8 —8)FPq fq 2vri g—— g J 5 (K —k; —ki kk)—
26k; 2'.26PP

Pt V VVV

+2~i g g 5 (K —k, —q„)H„„"" ' '(q„,q„)H&„' ' ' '(qq, q„), (56)
COI 2~r

where we have defined

Hnr" " ' '{qn ~qr ) =fnFni fr l J & &zr' i ~r

Using Eqs. (53) and (56), Eq. (51) becomes

P1 Y, WpVp m V s rnCVC
H„p" " (q„,qr. ) —H„p" " (q„,qr )

=2' g g I 5 (K —k; kj —kp)Hn—;" " ' ' "(q„,k;kikk)H&~'
' ' ' "(qr, k;kikk)

267 &. 267J 26)klJ V] V.Vk

+2' g g '
5 (K —k; q„)H„„"" —' '(q„,q„)Hq„' '(qq, q„),

;2~r
I l

(58)

which is the desired unitarity relation. Following similar steps, a corresponding unitarity relation can be obtained for the

case when the final state is a three-body continuum state, in which case the term ( V~1' —Vgz~)r&~FJ~ in Eq. (50) also con-
tributes.

Using Eq. (58) in the special case n =8, we get

4m Pt p Vp, TTl p VpImH« ' ''(q, ,q, )= g ' ' S'(K —k, —k, —k, ) gH„' '
5

i qp i

' v'5
i qp i, Zco;2coi2cok

4

+ — g g I 5 (K —k; —q„) },Hp„' ' ' '(q~, q, }~~
5

i
qr-

i ~ „2';2'„
m&V& m& V& m& Y& rn& V&

W~ij k +P~ F +~E~n ~tat

which is the optical theorem for the case when the projectile and target have definite helicities m~ and v~. Ef we average
both sides of Eq. (59) over the helicities mq and vq, we obtain the optical theorem for the case of unpolarized projectile
and target.

F. Angu1ar momentum decomposition

The transition potentials and amplitudes VJ and FJ given by Eqs. (43) and (44) describe transitions from a quasi-two-

body state where the spins and helicities are j;I;,s;v; to a state where the spins and helicities are jJ.IJ-,sJ vJ-. Thus, we can
use the two-body helicity formalism of Jacob and Wick to expand them in terms of angular momentum partial waves
as
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JM
M, m, v, i M, m v (60)

where A = IF or VI and k; and kj mean, only for the rest of this subsection, the magnitudes of the three-momenta k;
and kz. The inverse transformation of Eq. (60) is

1

(61)

with

cosO;J=k; kJ . (62)

If we apply the partial wave expansion (60) into Eq. (43), we obtain the partial-wave integral equations
2

P;z J" (k;,kq)=V;~ I' " (k;,kq)+ g g J VJ™J'' ' ' '(k;, kj)rj (qj )FJ.~& JJ ' (k~, kz) .
j &i j.m v. J

(63)

These equations can be further reduced by taking into account the invariance of the strong interactions under the parity
transformation, which implies that

(64)

with A = {F or VI, and as indicated by Eqs. (34),

gi = I& jt +Sj +Sk

Thus, if the particles have spins SJ & —,, we can introduce the linear combination of amplitudes

(65)

(66)

then, using Eqs. (64) and (66) in Eq. (63), we obtain the reduced equations

2

j+i jm J
(67)

where the sum over the helicity vj of the spectator j has
been eliminated and, similarly, the helicity v; of the spec-
tator i has been set equal to s; in Eq. (66). The ampli-
tudes corresponding to v; = —s; can be obtained by using
the parity relation (64). Again, we emphasize that this
complete elimination of the helicities v; and vj is possible
in the case of the m.NN system only because the spectator
is either a pion or a nucleon, which have spins SJ & —,.

Equation (67) can be further simplified in the case of
the m.NN system by taking into account the fact that the
two nucleons are identical particles following exactly the
same steps as in the nonrelativistic equations, as shown,
for example, by Afnan and Thomas or by Avishai and
Mizutani. '.

Cx. The ~NN transition potentials

VJ'
' ' ' ' '(k;, kj)=p ' (q;)I J u, (k~)

x Gk (k„k) )~. (k, )I J.p'. (q) ),
(68)

where u„(kj.) is a nucleon spinor of helicity vj. The ver-
J

tex operator and isobar spinor for the case when the ~N
isobar has spin jJ = —,

' and orbital angular momentum

l~ =0 (the S~ ~ and S3~ channels) are given by

I J. P
' (qj ) =f (q~, kk )u (q~ ),

where u (q~) is a spin —, spinor of helicity mj and
Jf (q~, kk) is the pion form factor which is taken to be of

the form

'+p' ' (70)

In the case of the ~NN system as mentioned before, the
transition potentials can be of two types which are shown
pictorially in Figs. 1(a) and 1(b). The potential of Fig.
1(a), where a pion is exchanged between two wN isobars, .
is given by p =(qj. +mN —kk) /4qj —mN,2 2 2 2 2 2 2 (71)

where p is the pion-nucleon relative three-momentum in
the two-body c.m. frame, which is given by
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and po is the relative momentum when the pion is on the
mass shell; that is,

bound state, g, , as

po = ( |1)~+m N
—m ) /4' —m N (72) ~ (a', 4)=(p'+~d) 0o( p I

)+ 0~( I p )
2

(80)

The vertex operator and isobar spinor for the case when
the ~N isobar has spin jJ- = —, and orbital angular mornen-
tum 1&

——1 (the P~, and P3~ channels) is given by

B(a' kk ) =(p'+ ~d) —,(2~~+ m N) P2( I p I
)

2p

I j~ P' (q. , )=. f (q, , kk)kky5~ (q, ), (73) 1+, (~N™N)ti'o(
I p I

)

P
(81)

while in the case when the ~N isobar has spin jj = —, and
orbital angular momentum Ij ——1 (the P33 and P|3 chan-
nels) the vertex operator and isobar spinor are given by

r,'y'& (q, ) =f„(q,', k„')k„„w„(q,),
where W„(kj) is a Rarita-Schwinger spinor of helicity

J
mz. The momentum of the exchanged particle kk in Eqs.
(68)—(74) is given by

c(a' ik)=(p'+~. )0.(
I p I »

where

p =(q; +m~ —kk) /4q; —mN,2 2 2 2 2 2

~x ——(m N+p )
2 2 1/2

a; =B;(m N B;/4),—i =d, a

(82)

(85)

kk ——(&S —co; —cui, —k; —ki), (75)

while the mass in the isobar spinors u and W& is
J

(q)~) ', where

q~ =(&S —cu, ) —k, . (76)

The potentials of the type shown in Fig. 1(b), where a
nucleon is exchanged between a nN and a NN isobar, are
given by

Vj~' ' ' ' ' '(k;, kj)=U (ki)p ' (q;)I,

X Gk(k;, ki )
kq+mN 1,.$ '.(q, ),

2m~

P
' (q;)I J =F„(q;)[q„A(q;,kq)+y„B(q;, kq)],

while in the case when the isobar has spin j;=0 and orbi-
tal angular momentum 1; =0 (the 'So channel) they are
given by

(79)

where the wN vertex and isobar spinor I
~ P '

(q&) will be
J J

the same as Eqs. (69)—(74) with the pion form factor f
replaced by the nucleon form factor fN(kk), and V„(ki) is

J
a charge conjugated spinor for the external nucleon. No-

$.
tice that we have replaced the spinor P„'(k&) that appears

J
in Eq. (44) by the charge conjugated spinor U (k&) which

J
has been moved to the extreme left on the rhs of Eq. (77).
This corresponds to drawing the diagram of Fig. 1(b) as in
Fig. 1(c). The NN isobar spinor and vertex operator in
the case when the isobar has spin j;= l and orbital angu-
lar momentum 1;=0 or 2 (the S& D& channel) are given-

by

and p is the relative three-momentum of the two nucleons
in the nucleon-nucleon c.m. frame, while Bd and B, are
the binding energies of the deuteron and 'So antibound
states, respectively. The ~N and NN vertex functions
(69)—(85) are of the required form (33), which also defines
the functions gj (

I
k~ I

) that determines the normalization

of the on-shell partial-wave amplitudes (38). It should be
noticed that the form factor B(q;,kq) given by Eq. (81) is
different from the one derived by Gourdin et a/. , who
were interested only in the nonrelativistic limit of the
NNd vertex and therefore used nonrelativistic two-
component spinors to obtain the connection with the
deuteron wave function. Equation (81), on the other
hand, was obtained by taking the matrix elements of the
NNd vertex (78) between u and U four-component helicity
spinors and requiring that the NNd vertex function
reduce to the form (33).

H. The intermediate NN states

When we have an intermediate state of a spectator nu-
cleon and a ~N isobar corresponding to the P~~ channel,
such an intermediate state has the same quantum numbers
as a two-nucleon state. This, however, does not mean that
it is a two-nucleon state, since in the pion-nucleon P&~

amplitude there exist not only contributions from a pure
nucleon state, but other contributions as well that do not
reduce to a pure nucleon state. In order to see this more
clearly, let us consider the diagrams of Fig. 3, where we
have in Fig. 3(a) a true two-nucleon state in which one of
the nucleons is on the mass shell and the other one is off
the mass shell, and in Fig. 3(b) a state of a nucleon on the
mass shell and a P&& isobar. If we would write explicitly
the contribution of the diagram of Fig. 3(a), then we
would have, from the off-shell nucleon, a vertex function
at each vertex and a fermion propagator for the internal
line; that is (ignoring the pion form factors),

where e„(q;) is a spin-1 spinor of helicity m; and the

form factors 3, B, and C are constructed in terms of the
S- and D-wave components of the deuteron wave func-
tion, 11o and p~, and the wave function of the 'So anti-

2 1 0i+mN 2G NNP rZN(a ), , G N~P')'sfN(a
q; —m N+ie

(86)
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(a)

FIG. 3. (a) A process with an intermediate state of two nu-
cleons. (b) A process with an intermediate state of a nucleon
and a P11 isobar.

of Eq. (89) the pole of rp (q; ) at q; =m N is cancelled by

the factor U s —mN. We should also point out that the
decomposition (89) is unique within a theory based in the
isobar model for the P» amplitude.

The problem of the decomposition of the P] &
amplitude

into a pole and a nonpole part has been the subject of
great discussion, since when the pole part is taken togeth-
er with another nucleon, only those channels that are con-
sistent with the Pauli principle are allowed to exist, while
if the nonpole part is taken together with another nucleon
all channels can exist. Thus, as discussed before, when
the pole and nonpole parts are both large, even though
their sum is small, this generates large spurious effects, as
encountered in the NN-vrNN theory. ' In the decomposi-
tion (89), on the other hand, both the pole and nonpole
parts are small since they are both multiplied by the on-
shell function rp (q; ), which is very small in the physical

11

region q; )(mN+m ) . In addition, not only are both
pole and nonpole parts small, but the nonpole part is
much smaller than the pole part due to the factor
(v's —mN)/2vs, which is approximately +, at the mN
threshold Vs =mN+m . Thus, the contribution of the
nonpole part of the P» amplitude in those intermediate
states where the pole part is not allowed by the Pauli prin-
ciple is completely negligible in this theory.

where G„NN is the ~NN pseudovector coupling constant
and

q; =[VS —(k;+mN)'~ ] —k;—:s . (87)

q;+Vs
=P 'Ysrp„(q ) . ~ P 'Y5 *2vs

(88)

where the mass of the isobar is v s as defined by Eq. (87).
Equation (88) can also be written in the form

2 qi+mN
tp (q;) =P~Y5rp (qt ) ~ P~Y

, Ws —mN+P.rsrp„(q ) &- P.'Y5,
2v's (89)

where we have added and substracted a term proportional
to mN. Since the function rp (q; ) has a pole when

11

q; =m N [see Eq. (39)], we see that the first term in Eq.
(89) has very similar structure to Eq. (86). They can be
made to be exactly identical by requiring that the nucleon
form factor fN be related to the function rp as

11

G'NNf N(q') 2 2

rp (q;). (90)

Thus, with the help of Eq. (90) we see that we have
decomposed in Eq. (89) the P» amplitude into a pure nu-
cleon term plus a remainder. These two terms can also be
called by the more fashionable names of the pole and non-
pole parts of the P» amplitude, since in the second term

Similarly, the contribution of the P» isobar in Fig. 3(b)
would be given using Eqs. (73), (30), and (23), and ignor-
ing the pion form factors, as

tp (q' ) P Y5rp, (q' )+1/2(q W =&~ )P' Y5

III. RESULTS

In order to obtain the m.NN transition potentials defined
by Eqs. (68)—(85), we first constructed the isobar spinors
for spin —,', 1, and —,

' as shown in pp. 462—464 of Ref. 29,
putting one isobar along the positive Z axis and the other
in the LZ plane at an angle 0 with respect to the Z axis,
and after performing the Dirac algebra, carried out the
partial-wave projection by using Eqs. (61) and (62). The
partial-wave transition potentials were then checked
against those obtained by using Wick s three-body helicity
formalism ' in the special case where the exchanged
particle is on the mass shell, which also allowed us to fix
the phases. The Wick formalism applies only for the case
when all three particles are on the mass shell. We found,
however, that if the exchanged particle is a pion, then our
transition potentials are identical with those of the Wick
formalism also when the pion is off the mass shell, pro-
vided we evaluate the full relativistic kinematics, using for
the mass of the pion not the physical mass m, but the
off-shell mass (kk)' . This result is, of course, a conse-
quence of the fact that the pion has spin 0. In the case
when the exchanged particle is a nucleon, our transition
potentials are identical to those of the Wick formalism
only on shell, but we found that if the nucleon is not very
far from the mass shell, the Wick formalism provides also
a very good approximation to the exact result.

Using Eq. (33) and the expressions for the isobar spi-
nors and vertices given by Eqs. (69)—(85), we determine
the connection between the functions rj (q; ) and the re-

duced on-shell amplitudes e' sin6/p '+'. Thus, in the
case of the pion-nucleon subsystem, the functions rj (q; )

for the six S and P-wave channels were constructed
directly from the experimental pion-nucleon phase shifts
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for the physical region q; ) (mN+m ) . For the unphys-
ical region (mN —m ) &q; &(mN+m ), we used the
partial-wave amplitudes obtained by Nielsen and Oades '

from the application of fixed-t dispersion relations. In
the region 0 & q; & (m N

—m ) =q o, we used the simple2 2 — 2

extrapolation formula

r, (q ) =rj (qo)/(2 q; /q—o)",

250

200

where we have found that the results are completely in-
sensitive to the value of the exponent n and therefore we
have taken n =1. In the case of the nucleon-nucleon sub-
system, we constructed the functions r2 (q; ) for the 'So

and S]- D] channels by applying the unitary pole ap-
proximation to the 'Sp antibound and S]- D] bound-state
wave functions of the Paris potential, which are the
same wave functions used in the vertices and form factors
(78)—(82).

For the range parameter P of the pion form factor
f„(q&,kk) given by Eq. (70), we used the value f3=600
MeV/c, which was obtained by making a rough fit of the
total cross section of the reaction ~d~NN, which is very
sensitive to the value of P. The reaction ~d~vrd, on the
other hand, is not sensitive to the value of f3, since as
shown in Fig. 2(a) it proceeds mainly by nucleon ex-
change. The nucleon form factor fN(q;) in this theory is
related to the reduced on-shell amplitude of the pion-
nucleon P, ~

channel, rp (q; ), as shown in Eq. (90).2

Thus, we can obtain the reduced on-shell amplitude from
this equation if we know the nucleon form factor or vice
versa. Thus, in the region q; ) (m ~ +m ) we construct-
ed the reduced amplitude rp (q; ) directly from the phase

11

shift and used Eq. (90) to obtain the nucleon form factor
in that region. In the region q; (m N we used a model for
the nucleon form factor of the form

2
A —mN2 2

fN qi 2 2A —q;
(91)

and applied Eq. (90) to obtain the reduced on-shell ampli-
tude in that region. Finally, in the region
mN &q; &(mN+m ) we used the form

3

fN(q )= g ~. (q,')"
n =0

(92)

where the four constants a„were obtained by requiring
that fN(q; ) and its derivative be continuous at the two
points q; =mN and q; =(mN+m ) . Since the reaction
~d~nd proceeds predominantly by nucleon exchange [see
Fig. 2(a)], we expected that it would be sensitive to the
value of the range A of the nucleon form factor (91). We
show in Fig. 4 the pion-deuteron total cross section calcu-
lated using for the range A the values A=1300 MeV/c
(solid line) and A=1600 MeV/c (dashed line). In the re-
gion below resonance the range 1600 MeV/c would seem
to be better, although above the resonance the range 1300
MeV/c is favored. We show in Fig. 5 the differential
cross section throughout the region of the 3,3 resonance,
again using the same two values for A in the nucleon
form factor. The range A=1300 MeV/c seems to give
the best agreement in the forward direction, where the

150

E

1
b

50—

50 250

T~(MeV j

I

350

FIG. 4. The pion-deuteron total cross section calculated us-

ing for the range of the nucleon form factor A the values
A=1300 MeV/c (solid line) and A=1600 MeV/c (dashed line).
The experimental data are from Ref. 33.

cross section is large, although both models fail by about a
factor of 2 in the region L9, ~ 90' at the higher energies.
These discrepancies between theory and experiment have
been interpreted by Ferreira and Dosch' as indicating a
short-range delta-nucleon interaction which is not con-
tained in the Faddeev amplitude and which they introduce
phenomenologically and adjust so as to fit the data.

Since we found that the polarization observables are
even less sensitive to the value of A than the total and dif-
ferential cross sections, we will use from now on the value
A= 1300 MeV/c. We show in Fig. 6 the vector analyzing
power iT» in the region of the 3,3 resonance, where we
see that both the size of iT» and its qualitative behavior
as a function of energy and angle are reproduced by the
theory, although some discrepancies still remain in some
cases, particularly around 0, =70'. In Figs. 7(a) and
7(b) we present the results for the tensor analyzing power
T2p and tensor polarization t2p, respectively, where in the
last case the results are calculated in the laboratory frame.
As we see, there is quite good agreement with most of the
data and with the fact that t2p and T2p are large and neg-
ative. A set of controversial measurements by Gruebler
et al. which gave values of t2p that were large and posi-
tive have now been contradicted by three different experi-
mental groups, while at the same time the calculations
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mediate NN states. As a first application of this theory,
we have studied pion-deuteron elastic scattering in the re-
gion of the 3,3 resonance by calculating all the observables
for which data exists, finding reasonably good agreement
over the entire set. Some predictions for other polariza-
tion observables that will be measured in the near future
have been presented. Future applications of this theory
will be the simultaneous description of all five reactions
that can take place in the mNN system; that is, ~d~~d,
~d~~NN, md~NN, NN~NN, and NN~~NN. This
hopefully may help us to understand some unknown as-
pects of the ~NN system, such as the nature of the cou-
pling between a pion and a nucleon; that is, whether it is
pseudovector (as we have assumed) or pseudoscalar. Simi-
larly, as already pointed out by Ferreira and Dosch, ' the
reactions of the ~NN system can be used to extract infor-
mation on the short-range part of the nucleon-nucleon
and nucleon-delta interaction. Finally, by treating all the
reactions of the ~NN system simultaneously, one may
perhaps even be able to learn something about the subnu-
clear degrees of freedom of the pion and the nucleon, by
going into kinematical regions where the standard
description based in the exchange of mesons and baryons
is not sufficient to give an adequate description of the ex-
perimental data.

0' 600 120' 0' 60' 120' 180'

C. f71.

FIG. 8. Some tensor analyzing powers and spin-transfer
coefficients calculated at laboratory pion kinetic energies of 140
MeV (solid lines), 220 MeV (dashed lines), and 325 MeV (dotted
lines).

one nucleon and emitted by the other one. If we decom-
pose the pion-nucleon P» amplitude into pole and non-
pole parts, this does not generate large spurious effects as
a result of the application of the Pauli principle in inter-
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