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We investigate some of the features of A and X hypernuclei. The widths of A- and X-
hypernuclear resonances are discussed and estimates made. The coupling between a certain class of
A- and X-hypernuclear states is considered and its relevance to the problem of X-hypernuclear
widths is indicated.

I. INTRODUCTION

The strangeness exchange reactions (K,vr) on nuclei,
performed in the last decade, have led to the observation'
of excited A-hypernuclear states. In more recent experi-
ments bumps in the (K ~ ) and (K,~+) cross sections
were observed at energies about 80 MeV above the ob-
served A-hypernuclear states. The difference between the
mass of a free A and a free X is about 80 MeV. Therefore
these structures in the cross sections were interpreted as
evidence for the formation of X-hypernuclear states in
these reactions. In the lighter nuclei studied, Li, Be, ' C,
and ' 0, the various structures that appeared usually had
widths of several MeV. The above experiments have
prompted a great deal of theoretical work concerning X
hypernuclei ' and, in particular, the question of X-
nuclear widths was examined.

The X-hypernuclear states are coupled through the con-
version interaction X+N~A+ N to the A-hypernuclear
states. This coupling, it was stressed, should contri-
bute very significantly to the widths of the X-
hypernuclear excitations.

Also, recently there have been attempts to describe the
low-lying (relative to the &-hypernuclear ground state) X-
hypernuclear excitations using a small space she11-model
basis. ' This basis includes only a few (1—3) X-particle
nucleon-hole (XN ') configurations. However, the XN
configurations lie at 80 MeV excitation energy in the A
hypernucleus, and if the conversion process is indeed im-
portant, then the coupling between the

i
XN ') configu-

rations and the more complicated surrounding A-
hypernuclear states will affect not only the widths but
also the energy positions of the X-hypernuclear excita-
tions. In other words, the conversion process should con-
tribute to both the widths and shifts of the X-
hypernuclear levels.

In this paper we do not attempt to improve upon these
calculations and extend them to larger spaces. Rather, we
apply some methods taken from the calculation of widths
of "usual" nuclear resonances to estimate widths of the A
and X hypernuclei. In the last section we consider the
coupling of certain A and X hypernuclear states and the
relevance of this coupling to the problem of the widths of
hypernuclear states.

II. THE HYPERNUCLEAR HAMILTQNIAN

The Hamiltonian that describes the single-A or single-X
nucleus' contains the following parts:

H =HN +Hp +Hg +Hgp (1)

where HN denotes the purely nucleonic Hamiltonian and
is given by

HN ——g (T;+mN;)+ —,
' g V~(r;, r, ) .

The A part of H is

A

H~=mA+T'~+ g VAN(rA, r, ), (3)

and the X part is analogously

Hx ——m~+Tg+ g VxN(rg, r;) .

The last term in Eq. (1) is the XA transition interaction
representing the strong interaction conversion process
X+N~A +N,

HxA= g VxA(r~, r, ) . (&)
i=1

In all the above equations T denotes the kinetic energy,
r;, rj nuclear coordinates, and r~ the coordinate of the A
or X.

In our discussion we assume that each part of the Ham-
iltonian (except, of course, for HxA ) can be expressed in
terms of a one-body part that contains the kinetic energy
Tz, mass mq, one body nuclear potential Uz
( B=N, A, X), and a residual two-body interaction.

III. THE WIDTHS OF X-HYPERNUCLEAR STATES

There are some tentative experimental indications
from (K,~ ) and (K,m. +) reactions that relatively nar-
row X-hypernuclear states exist. The experiments point to
the possibility that in these reactions "substitutional ' X
resonances are observed in light nuclei and that the widths
of these resonances are of the order of several MeV.

These resonances are assumed to have a simple p-h
structure, i.e., of the form

~ gz~(Pz~) 'JT), where a nu-
cleon in a state pji is replaced by a X in a state 1t~~ to form
a X-particle nucleon-hole excitation. These states, it is be-
lieved, should decay through the conversion process
X+N~A+N. The most naive estimates of the conver-
sion widths give numbers of the order of 15—20 MeV,
considerably larger than the widths of the bumps found in
the (K,m. +—) experiments. Of course, these simple
theoretical estimates do not take into account various
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selection rules, correlations in the wave function, and all
kinds of cancellations which could result.

There have been several attempts to produce smaller
conversion widths. While there are some indications that
the X hypernuclei have a long lifetime, the explanations of
this fact have met serious criticism' and in most cases
were short lived.

It is well known that the calculation of the width of a
nuclear resonance is very sensitive to the detailed struc-
ture of the wave function of the initial state and of the
states into which it decays. For example, when one con-
siders the isobaric analog resonance (IAR) in a naive esti-
mate that does not take into account the precise particle-
hole composition of the analog state, one finds widths of
the order of several MeV, while the actual spreading
widths (I') of IAR's are 100 times smaller. It is only
when the cancellations' ' in the different ph contribu-
tions to I ' are taken into account that a substantial reduc-
tion occurs and the I' width turns out to be several hun-
dreds of keV. These cancellations are a result of the
underlying isospin symmetry. But even in this case the
widths are a factor 5—8 too large compared to the experi-
mental ones. ' ' Only after additional correlations are in-
cluded in the calculation' are the I ' for the IAR's re-
duced further.

Another example is collective multipole giant reso-
nances in nuclei. ' The basic components that make up
such states are 1p-1h excitations. The spreading widths of
such excitations are calculated by coupling the particle
and hole each to vibrational states. These couplings give
rise to self-energies for the particle and hole. The imagi-
nary parts of these self-energies are the individual widths
of the particle and hole. However, in addition to these
one should also take into account a correlation correction,
namely the exchange of a vibration between the particle
and hole. ' When the amplitude for this contribution is
added to the self-energy amplitudes, one often obtains a
reduction in the widths, sometimes by a factor of 2. '

We now try to apply some of the knowledge we gained
in the study of widths of "usual" nuclear states to the dis-
cussion of hypernuclear excitations. We will also present
some preliminary but simple estimates for these widths.

The width of nuclear (or hypernuclear) resonances can
be decomposed into two parts:

It+Il
where I ', the escape width, represents the decay of a state
due to the direct emission of the particle into the continu-
um, and I ', the spreading width, represents the spread of
the simple (doorway) nuclear state into the vast spectrum
of surrounding nuclear excitations. The escape widths for
the A strangeness exchange (or substitutional) states were
calculated in the past ' using a A-nucleon continuum
random-phase approximation (RPA). For these low-lying
states the A emission width I z turned out to be of the or-
der of several hundred keV for &C or zQ. Qnly in cer-
tain cases in lighter nuclei was the I A of the order of 2
MeV.

Because of the similarity of the X+N~X+N and
A+N~A+N interactions, the following statements can
be made. The average X potential is similar to the A po-
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FIG. 1. Schematic representation of the A- and X-
hypernuclear spectrum, for a nucleus with X —Z =2To & 0.
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FICx. 2. Diagram representing the coupling of a
hypernuclear single-particle state to a A single particle plus a k
vibration of the nuclear one.

tential and therefore the onset of the continuum will be
close in the two cases. Also, the matrix elements connect-
ing bound states and continuum states should not differ
very much for A and X states. Therefore one should ex-
pect escape widths for X hypernuclei (I x) to have similar
values as I p.

The problem of spreading width is different in the two
cases. In the A hypernuclei the low-lying states (including
the substitutional states) are surrounded by a dense spec-
trum of nuclear states but cannot connect to the above
states because of strangeness conservation in the strong in-
teraction. The number of A-hypernuclear states sur-
rounding the simple

~

AN ') configurations is small and
the AN interaction is weaker than the NN force. One
should expect therefore the I A for the low-lying states to
be small, of the order of a few MeV or less. In the case of

~

AN ') states involving deep nucleon holes (such as the
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Is»2), the spreading width could be larger because of the
substantial fragmentation of the nucleon-hole strength.
Also, here, as in the nuclear case, cancellations between
the spreading amplitudes of the hole and particle could
occur.

In the case of X-hypernuclear states the spreading
width I & could be subdivided into two parts:

I g= I gg+ I g~

The part denoted by I &~ is the result of the interaction
X+N~X+N and, because of the similarity of this in-
teraction to the A+ N~A+ N one, we expect I"&~ to be
of the same order as I"z, i.e., several MeV or less.

The new ingredient in the X hypernucleus case is the
fact that low-lying X-hypernuclear states (relative to the
X-nucleus ground state) find themselves at an 80-MeV ex-
citation energy in the A-nucleus system and are embedded
in a vast spectrum of A-hypernuclear states (see Fig. 1).
The conversion interaction X+N~A+N will couple the
A-hypernuclear states to the X-hypernuclear states and

give rise to I &&. It is I ~z that attracted so much atten-
tion ' in recent years.

It is clear that many of the A-nuclear states surround-
ing the X states are of np-nh nature with n ~ 3 and will
not couple to the latter through a two-body force. Also,
spin and isospin selection rules will greatly reduce the
number of states that can couple to given X states.

Guided by the theory of spreading width in usual nu-
clei, we will now apply the same methods to I ~&. For
simplicity, we will first assume a single-particle state for
the X, ttlj ). In nuclear physics the spreading width of
one-particle (or one-hole) states is calculated by first cou-
pling these to vibrational states. ' The particle plus vibra-
tions are not eigenstates, but serve as doorways, ' ' ' and
one has to assi n widths to these doorways.

Let the
~ Ql OJT) s.tates be coupled to A states of the

Aform
~ pl& AJT), where pl~' is a single-particle A state

and A. is a vibrational state (a giant resonance) of the nu-
clear core (see Fig. 2). The spreading width I zA in this
approximation is given by'

(Pl.OJT
~

VgA
~ Pl 'AJT) (ttll 'AJT

~
VgA

~ Ql OJT)
I qA ——2Im g (Eo+ m~ + a» El —m A

—el—~') l'I A—~(E~ ) I2
(8)

1 'x(E~)=rx(E ), (9)

where I x(E~) is the width of a nuclear vibration at the
energy of E~—80 MeV excitation.

In the case in which there is a single dominant doorway

~ gl; AJT) [i.e., we drop the sum in Eq. (8)] and for

r AA. « ( m r™A +E0 EA. + &»' El' ')

Eq. (8) can be simplified to

~
(gl OJT

~

V
~
tel;AJT)

~

I g(E )
I xw= 2

( m y —m A +Eo —El, +El. —6l )' (10)

The meaning of this expression is the following: the 2-
hypernuclear state mixes with surrounding, complicated,
multiparticle-multihole A-nuclear states only via the rath-
er small component of the 2p-1h doorway state

~ P~z AJT) admixed into the
~
P~&OJT). The spread of

the doorway into the more complicated states is represent-
ed by I ~~(E~). For "substitutional" states of the form

~
g». (P») 'JT), the same considerations hold; however,

one has to add the width of the single nucleon-hole and
the contribution which stems from the exchange of a vi-

Eo and E~ denote the nuclear core ground- and excited-
state energies, m ~,m& are the masses of the X and A, and
e~z and e~z are the single-particle energies of the X and A
in their respective potentials. The parameter I A~(E~) is
the width of the A+A, state evaluated at the excitation en-
ergy (E~) of the X-hypernuclear state. The interpretation
of this parameter is that if we place a (A+A, ) state at the
excitation energy of the X (i.e., —80 MeV) in the A hyper-
nuclear system, then it would acquire the width I Aq(Eq ).
It is quite reasonable to use the weak coupling approxima-
tion and write that

(ttl»OJT
~

V+A P~~'AJT)

= Vo
' f ttl (r)p„(r)Pll (r)dr, (11)

where p'„'(r) is the transition density' between the nu-
clear ground state and the vibrational state k. In the nu-
clear case (when only nucleons are involved) the above
matrix element is of the order of a few MeV. In the case
considered here we expect this matrix element not to
exceed the nuclear one because

~
V~A

~
&

~
VNN

~

.
Thus the ratio of the matrix element in Eq. (11) to the

denominator of 50 MeV when squared will be of the order
of,~ or less. The upper limit for the parameter I z~(Ez)
can be estimated crudely by first using the approximation
in Eq. (9) and using hydrodynamical models which yield a
power law dependence of the width on the excitation ener-

.23, 24

r'=r~',
with I o constant. Certain models predict 6=1—1.5.
From the above considerations we obtain

(12)

6

r,(E,)= r, (E, ) . (13)

bration between the X particle and the nucleon hole. '

We now make a crude estimate of I ~A using Eq. (10).
First, the denominator: m z —m z —80 MeV. We note
that the isovector k vibrations are the main contributions
to matrix elements in Eq. (8) or (10). Therefore
Eo —E~——30 MeV, for medium heavy nuclei, and the
denominator in Eq. (10) is about 50 MeV. (We have
neglected the small differences stemming from e~~

—e~~. )

The matrix element in the numerator for a zero range
force V~A ——Vo 6(r —r') can be written in the form
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For E~—30 MeV and E~—80 MeV and 5—1—1.5,

I =I (E )=(2.7—4.3)I" (E ) .l l l
(14)

From experimental studies of nuclear giant resonances,
l

one finds that I ~(Ex) ranges between 2 and 7 MeV and so
I ~~(Ex)=5—30 MeV. (We consider these numbers to be
definitely upper limits. ) We reach the conclusion that for
a single vibration A. and single 1tj~ j orbit,

I ~z (a few hundreds of keV .

Several different vibrational states A. and also several dif-
ferent $1 j' orbits may contribute in Eq. (8). In this case a
reasonable upper limit is

I ~z &several MeV,

and more probably of the order of 1 MeV. The primary
reason that the spreading widths of the X hypernuclei
turn out to be so small in this estimate is the fact that the
main doorways (the nuclear giant resonances) in the calcu-
lation of I ~& are far removed in energy from the X-
hypernuclear resonance considered. This should be con-
trasted with the usual nuclear single-particle spreading
widths where the resonances are close in energy to the vi-
brational states A. that contribute to processes analogous to
the ones in Fig. 2.

In summary, the width of a A-hypernuclear state has
an usually small escape width I z which is of the order of
several hundred keV. The spreading width Fz of the sin-
gle A is also probably of the same order and thus the main
contribution to the observed widths in (K,m ) reactions
of A-substitutional states is the spreading width of the
neutron hole. In the X-hypernuclear states we expect F~
again to be of the order of hundreds of keV and also I ~q
is expected to be of the same size as Fz. The additional
I ~z conversion width is, as estimated here, of the order of
several MeV or less. As in the case of substitutional A-
hypernuclear states, one should add also in the case of 2-
substitutional states the same spreading widths resulting
from the nucleon hole. Altogether, the X-hypernuclear
states in light nuclei should according to these estimates
be only slightly broader than the corresponding A states.

cleus), many A-nucleus states exist in which the A is cou-
pled to Tp ——1 nuclear excitations forming T =1 states,
which then can couple to the low-lying X-nucleus states
(see Fig. 1).

The situation is changed when we consider N & Z nu-
clei to which either a A or X is added. (To this category
belong also the so-called "substitutional" states in which a
nucleon in an N =Z nucleus is substituted by a A or X; in
this case, Tp ———,. ) In N )Z nuclear cores, Tp&0, and
the A will form low-lying excitations with total isospin
T = Tp while in the X hypernucleus low-lying (relative to
the X-hypernucleus ground state) excitations with
T =Tp+ 1, Tp, Tp —1 will be formed (see Fig. 1). (For
Tp =

&
the Tp 1 sta—te is, of course, not present. ) Now

the T = Tp A-hypernuclear low-lying states (for example,
the ground state) will mix through the strong force with
the T = Tp, X-hypernuclear states.

The coupling between A and X states was considered in
the context of charge symmetry breaking in zH and &He
in Ref. 25 and in the context of nuclear matter in Refs. 26
and 27.

Let us consider (as shown in Fig. 3) a A in a single par-
ticle state 1tj~~ and the nuclear core in its ground state, i.e.,

I 1(I OTp ) and the corresPonding T = Tp, X-hyPernuclearJ
state

I g~&OTp). The wave function
I grjOTp) will have

the form

I &IjOTp &
=

1/2
xO

Iflj p
p+

1/2

IA; -&Tp&
Tp+1

(15)

where cf denotes the isobaric analog state of the g.s.
I
0).

The matrix element

A 0&o g &xw Pt D&o)

is of one-body nature involving a X~A nuclear transition
potential as indicated in Fig. 4. In calculating this matrix
element we take into account the isovector nature of the
XN~AN interaction. Let us denote by v(r;, rq) this in-
teraction in the T = —, state. One can then express the

IV. THE COUPLING BETWEEN THE A
AND X HYPERNUCLEI IN X )Z NUCLEI

We will now consider a very special type of coupling
between A-hypernuclear and X-hypernuclear states. As
we will see, it is a coherent effect and involves a large por-
tion of the nucleons in the nucleus. The A is an isoscalar
(r=O) particle and therefore when coupled to an N =Z
nucleus in a Tp ——0 state will produce isoscalar hypernu-
clear states (i.e., T= Tp+w=O). On the other hand, the X
is an isovector triplet (r= 1) and when coupled to a Tp =0
nuclear state it produces isovector ( T—:Tp+w= 1) excita-
tions in the hypernucleus. The above-mentioned A-
hypernuclear states and the X-hypernuclear ones, al-
though having the same strangeness S = —1, cannot mix
via the strong force. At high excitation energies in the A
hypernucleus (certainly around 70—80 MeV excitation,
which corresponds to the low energies in the X hypernu-

OTO )

FIG. 3. Schematic representation of the coupling between a
A and X single-particle state in a hypernucleus with N —Z & 0.
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matrix element in Eq. (16) in terms of VxA written now in
the form

Ji
A(l j)

1 g v (r, , rl, )r;.P,V3
(17)

where r; denotes the nucleon isospin operator and P is de-
fined as

I
X) =P

I
A) in isospin space. The factor I/v'3

in Eq. (17) comes from the fact that

&XN, T= —,
' Ir PI AN, T= —, )= —v3.

Using these definitions and evaluating Clebsch-Gordan
coefficients, one obtains FIG. 4. Diagram for the one-body A~X transition potential.

1/2

(QlJOTp g Vx„plJOTp = J ltlj(r)plj(r)p, „(r')v(r, r')drdr'= f ltllj(r)UxA(r)fl (r)dr,A Tp+ 1

3 TQ

where p,„(r') is the excess neutron density (which is ap-
proximately equal to the isovector part of the nuclear
ground state density), normalized to N —Z and

1/2
To+ 1

Ux„(r) = (19)v'3 To
p,„, r' v r, r' dr'

is the one-body X~A nuclear transition operator involv-
ing all the excess neutrons.

The admixed A-nucleus and T =To, X-nucleus wave
functions are now

@jI(TO)=(1 a )'
I
AjoTo)+a

I OljOTo&

4&lj ( To ) = (1 —a )
' '

I Qljo To ) —a
I
fljOTo ),

where, in perturbation theory,

(20a)

(20b)

P&, OTo g Vxw QlJOTo
a=

m& —rn&

&O',
I

UxA
I
6', &

(21)

All the low-lying A-hypernuclear states will experience
a downward shift (compared to the unperturbed positions)

of the order of
2AEz ——a (mx —mA), (22)

while the T = To X-hypernuclear low-lying levels will be
shifted upwards by

b, Ex=a (mx —m~) .2 (23)

In the case of the A-hypernuclear states, all of the states
are shifted by approximately the same amount and there-
fore such shifts due to A-X mixing can probably be incor-
porated in the A-nucleon (AN) effective interaction. '

For the X hypernuclei, however, it is only the T = To lev-
els that are shifted (in the "substitutional" states in ' C,
for example, these are only the T = —,

' and not T = —,
' that

experience the shift). Therefore, the shift is not an overall
one for the entire X-hypernucleus spectrum.

Another parameter that would be affected by this A-X
mixing is the width of a X-hypernuclear state. In the dis-
cussion of Sec. III we have not specified the isospin of the
X-nucleus state. If we consider the X states with isospin
T =To, then an additional modification will occur be-
cause of the mixing of X-A configurations as in Eq. (20b).
In Eq. (8) or (10) one should replace

I
Q~~OJT) with the

admixed state @lj(To) as given in Eq. (20b). Therefore

[(I—a )' &gljO~To
I

Vxw
I
01j''j-ITo& —a&PljOJTo

I
VAN

I
0tj''~To&]

I rw- r', (E, ) .
(mx ™A+Eo—Ex+~I el J )—'' (24)

Let us now assume, as before, that glj —ltllj and that
V&z —VzN. Then for 1 —a =1,2

I &OljoJTo I vxw
I fl I'~To&

I zJ , (1—a)'r~l «x)
(mx —mA+Ep El, +elj. el~')— —

(25)

T = To+1 states.
We now make a very simplistic estimate of the matrix

element in Eq. (16). We assume that the X+N~A+N
interaction is similar to the isospin averaged
2+N~X+N interaction, i.e.,

I
VxA

I
=

I
VxN I. Ap-

proximating p,„,=[(N —Z)/A)p, where p is the nuclear
density, and, for To »1,

We note that now (25) has an additional factor of (1 —a)
as compared to Eq. (10). Thus one gets a reduction of the
conversion width for T = To as compared to, say,

I
Ux «)

I

= —
I
Ux(r)

I

1 N —Z
v'3 (26)
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where U& is the X-nucleus potential,

Ux(r) = f p(r') VzN(r, r')dr' . (27)

30 MeV N —Z
3

(28)

where the integration is over the sphere of radius R. The
X-nucleus and A-nucleus potentials are probably quite
similar and therefore we make an additional approxima-
tion that /~~=/~~ and that the integral in Eq. (28) is close
to 1. Thus,

(
A 30 N —Zq„07; g V„q„OZ;

3 A
MeV . (29)

Using the approximation in Eq. (26) and a homogene-
ous density distribution of radius R and also assuming
that the depth of X-nucleus potential U~ is equal to the
depth of the A-nucleus potential (approximately 30 MeV),
we can write

r/riiDTo X VxA PiiDTO)

This matrix element will be larger in nuclei in which
the ratio (N —Z)/A is large. Typically, for medium and
heavy mass nuclei this ratio is —,

' ——,'. The resulting ma-
trix elements are therefore of the order 3—4 MeV. Such
matrix elements would produce X-A mixing amplitudes a
[see Eqs. (20) and (21)] of the order of 0.05 (i.e., 0.25'///o

admixtures). The shifts in Eqs. (22) and (23) would be of
the order of 200 keV in heavy nuclei. The effect of this
type of X-A mixing will reduce the widths for the To X-
hypernuclear states as given by Eq. (25) by 10'. This
crude estimate indicates that this special type of X-A mix-
ing is small; however, it is based on a numerical choice for
the X-nucleus potential, a parameter that has not yet been
determined. The estimate also neglects the spin depen-
dence of the X+N interaction. It is of interest to consider
this kind of coupling when performing spectroscopic cal-
culations of X-hypernuclear states.
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