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A molecular orbital theory for the 3a transfer process has been formulated and applied to the
160 +-28Sj scattering case. The a transfer mechanism has already been applied successfully in the in-
terpretation of the anomalous large angle scattering between 4N nuclei. It would be worthwhile to
test whether the alpha transfer mechanism can also explain the nonstatistical intermediate structure
of the excitation function often found in 4N nuclei scattering. The excitation function at 180° is
known to be much more sensitive to the details of the optical potential than are the fits to the angu-
lar distribution. Both the experimental data of the excitation function at 180° in the energy region
from 14 to 52 MeV and all thirteen differential cross sections in the energy region 18.67—34.80 MeV
can be fitted well simultaneously with a common set of parameters.

I. INTRODUCTION

160 +288i is one of the most thoroughly investigated
scattering systems.*~2! Its excitation function has been
accurately measured in a wide energy region from 14 to
52 MeV at the backward angle region, and shows a com-
plicated structure, as shown in Fig. 1. There exist many
peaks with widths on the order of 1—3 MeV. The life-
times of these peaks are much too short to form a com-
pound nucleus and have nearly the same order of magni-
tude as that of direct potential scattering of two nuclei
passing through each other. This might indicate that cer-
tain nonstatistical structures could be formed momentari-
ly with weak binding potential during the colliding pro-
cess.

Scattering differential cross sections in the whole angle
region are available in 13 different energies from 18.67 to
34.80 MeV, as shown in Fig. 2. The rising oscillatory
structure observed in the large angle region changes sys-
tematically with increasing incident energy. This set of
experimental curves furnishes an ideal case with which to
test different models proposed for interpreting these
anomalous phenomena.

Many theoretical models have been put forward in an
attempt to explain these anomalous phenomena, the rising
oscillatory structure in the large angle region (ALAS) and
the intermediate nonstatistical structure (INS) of
160 + 288i.°~2! Some modified optical potentials with
surface correction or with additional parity dependent
terms were proposed to fit these experimental data. Ko-
bos and co-workers'?>!® found that two optical potentials
were needed. One describes the data at eleven energies be-
tween 18 and 29 MeV and the other for two energies, 31.6

and 34.8 MeV.
A number of model independent expressions have also

been sought for the potential of this scattering sys-
tem.”!2~!18 Good fits were obtained with the measured
angular distribution. However, when no constraints were
placed on them, the resulting real potentials were not
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unique. A short range repulsive term has been introduced
into the real part of the optical potential to explain the
large angle scattering data at higher energies, in order to
deal with the strong resistance and the dynamical effect,
to prevent interpenetration as the two nuclei overlap each
other.'’—%!

Besides these phenomenological optical potential
models, another possible approach is consideration of the
a-transfer contribution in the scattering. It has been suc-
cessful in the interpretation of ALAS for certain scatter-
ing cases between 4N nuclei, by considering one and two
alpha particle transfer in the scattering processes, such as
160 + ZONC, IZC + ZONC, and 160 + 24Mg.1-3

For this %0 + 28Si elastic scattering case, in addition to
the direct potential scattering, one could expect two kinds
of transfer processes to occur: a '2C cluster transfer and
the transfer of three alpha particles from 2%Si to '°0O. As
it is well-known that there is substantial possibility for an
a particle to be formed at the surface of a nucleus, during
the scattering process of '®0O with 2!Si three alpha parti-
cles may be formed. These a particles will interact with
the nuclear cores and temporary molecular orbits may ex-
ist. Eventually, these a particles will be shared by the
cores and, as a result, they may be transferred.

Since the two nuclear cores are identical in this case,
one cannot distinguish experimentally the direct optical
potential scattering from the scattering with three alpha
particles transferred. In the backward angle region one
may detect both the '°O scattered backward by the optical
potential and also the target core %0 after 28Si transferred
three a particles to the incident nucleus. This may be the
reason why there is a rise of the cross section when ob-
serving 'O in the backward angle region. By adding the
contribution of these two kinds of processes, the ALAS
may be explained rather naturally. The interference of the
direct and transfer waves gives rise to the oscillatory
structure of the angular distribution at large angles. It is
expected that the formation of molecular orbits in the
combined scattering system results in the intermediate
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FIG. 1. Excitation function for 'O + ?!Si in comparison
with a 3a transfer molecular orbital model prediction.

nonstatistical structure of the excitation function.

Since the a particle has the largest binding energy, it
has the most probability of being formed at the surface
and in the overlapping region of the colliding nuclei.
Furthermore, since the correlation between a particles is
weak, the possibility of the formation and transfer of a
12C cluster in the scattering process could be small. The
contribution of '?C transfer in the scattering is then
neglected.

A molecular orbital theory has been formulated for the
3a transfer mechanism in the scattering process, with the
assumption that all the a particles stay at the ground
states. Taking the indistinguishability of both the identi-
cal nuclear cores and the a particles into consideration,
one finds that there exists a set of four possible molecular
orbits. The total potential energy for the scattering sys-
tem is now different for different orbits. In addition to
the ordinary optical potential for the direct scattering, for
each molecular orbit a particular exchange potential ap-
pears. Due to the symmetry properties, these exchange
potentials are quite different from each other. Some are
repulsive and some are attractive in the overlapping re-
gion.

The total potential energy of the system which now in-
cludes the optical, Coulomb, and exchange potentials has
been plotted numerically. In many cases it actually gives
the Morse-type potential with a shape which has a shal-
low attractive well in the overlapping region needed to
form molecular orbits and which becomes repulsive for
closer separation of the two cores. It is found that the 14
experimental curves of both excitation functions and an-
gular distributions available can be reproduced fairly well
simultaneously with one set of parameters chosen in the
calculation.

II. MOLECULAR ORBITAL (LCNO) THEORY
FOR 3a TRANSFER MECHANISM

Consider a colliding system composed of two identical
nuclear cores Cy and Cyy, with three a particles revolving
about them. Since the correlation between the a particles
is weak, the residual interaction between them is neglected

where h; is the Hamiltonian for the ith « particle, and vl
and vy are its interaction with cores I and II, respectively.

Let the wave function of a valence particle be
<I>pl_(I,II,i), which satisfies

hi®, (LILi) =€, ®, (LILi) . 2)

Under the two-state approximation the valence particle a
can stay in the ground state binding to either core I or II.
Its wave function is then expressed by the expansion of
these ground states of two identical cores, ¢; and ¢;;. ¢;
satisfies (1 +V;)¢;=€¢;, j=LII,

@, =[2014-p;8)17*[d1(i) +pidu(i)] - 3)

This expression ensures the exchange symmetry property
of the two identical cores, 8= (¢ (i) | ¢y(i)).
Neglecting the recoil of the nuclear cores, one gets

€, =€+(K+pJ)/(1+p;8), (4)

where e=(@;|7+v;|¢;) is the interior binding energy,
K={¢1| v | ¢1) the direct integral, and J = (| vy | d1;)
the exchange potential. When the correlation between the
valence particles is neglected, the total molecular orbital
state function can be written as
Py prpy = <1>p1<1>p2¢p3
3

=TT [2(1+p;8)1 [ $1(i) +pibu(i)] . (5)

i=1
It satisfies

<(DP|P2P3 [ (I)p']pép;

6 .6 L,
PPy PPy P3P3

and its energy is

3
6P1P2P3:3€+ 2 (K +p;J)/(1+p;5) . (6)

i=1

Since in Eq. (5) p; can be *1, in the expansion there are
all together eight independent molecular states. Further-
more, if one also takes the identical symmetry property of
the valence particles into consideration, these eight states
have to be combined to get a complete orthonormal set of
four totally symmetrical wave functions:

q)1=¢

—_———

Po=C, .,
Qy=3""AP_,  +P,  +P,, ),
(I)4:3—1/2(¢)+__+q)_+_+q>__+) .

These form the four possible molecular orbital states for
the system considered, with two identical spinless nuclear
cores and three identical spinless valence particles. ®,;
and ®; correspond to odd partial waves, while ®, and &,
correspond to even partial waves. Now expand the wave
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FIG. 2. (a) Differential cross section for '®O 4 ?®Si in comparison with a 3a transfer molecular orbital model prediction.
E=18.67—21.10 MeV. (b) Differential cross section for 'O + ?%Si in comparison with a 3a transfer molecular orbital model predic-
tion. E=21.56—24.30 MeV. (c) Differential cross section for 'O + Si in comparison with a 3a transfer molecular orbital model
prediction. E=26.20—34.80 MeV. In the E=26.20 MeV case a dashed curve is drawn to show the calculation with the exchange

potential deliberately deleted. It shows that the exchange potential appears to play a major role for the rise in the backward angle re-
gion.
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function of the system in terms of these possible molecu-
lar states,

V= 2 C, F,(LIND®,(1,11,123) , (8)

where F,u(I,II) represents the relative motion of the nu-
clear cores. As one knows,

@,(IL1L,123)=(— 1 )#@,(LIL,123) .

F, should have the following symmetry property against

exchange of nuclear cores:

F,(LD=(—-1*F,(LII) .

DL, =[2(1£8)]1" 1 1)y(2)b1(3) £ (1
Drix=[6(118)(1£8+8)]~'*{[n(1
+[e1(1

)éu(2)éu(3)] ,

)p1(2)¢1(3) (1)

The first term in Eq. (10a) expresses the state with three
valence particles bound on a core. It is called an ionic
state. The other three terms in Eq. (10b) express states
with two valence particles bound on one nuclear core and
the third particle bound on another core, and are called

mixed states. &, may be then written in terms of these

two kinds of states:
@, =[2(1—8)]"[(1+8+8) "2,
=321 -84+8)1" D,
@, =[2(148)]" V2 [(1-6+8)'2®,
+3172(148+8)' 2.1,
Dy =[2(1+8)]" 3121+ 848112,
+(1-8+8)"2d 1,
1-8)1"12[312(1—8+8H) 2,
—(14+8+8Y)' 2k, 1.

(11

(1)4:[2(

Now let us solve the integral
(P, |E—H|V¥)=0.

Under the two-state approximation, one obtains the wave
equation of the relative motion of the cores for different
molecular states,

(E -—T[,H—VI‘"—E”)F#:O, [J':1,2,3,4 . (12)

The combinations of the scattering amplitudes of outgo-
ing F, give the differential cross sections.

One can see from Eq. (12) that, in addition to the opti-
cal potential V) which causes the direct scattering,
another potential or energy term, €,, which may be called
the molecular orbital potential, appears from the contribu-

For (—1)#=1, F, contains only even partial waves, while

for (—1)*=—1, F, has odd partial waves. The molecu-
lar states satisfy
(@, |P,)=5,, and (@, |h|D,)=¢€,5,,

From Eq. (6), one gets
€,=3[e+ (K —J)/(1-8)],
6=3[e+(K +J)/(1-8)],

)61(2)h1(3) L1 ( 1y (2)p(3)]

9
€3=3¢+2(K +J)/(14+8)+(K —-J)/(1-8),
€,=36+2(K —J)/(1=8)+(K +J)/(1+8) .

Expand Eq. (5) and define
(10a)
2)on(3)]1+[d1( 1) (2)d1(3) + by 1)dy(2)d1(3)]} . (10b)

tion of forming molecular orbits and exchanging valence
particles. E in Eq. (12) is the center of mass energy of the
system.

The €, are different for four different molecular states,
as shown in Eq. (9). Different partial waves will en-
counter different potentials, either attractive or repulsive.
It is this molecular orbital potential which causes the ris-
ing oscillatory structure in the large angle region and
gives the intermediate structure in the excitation function.

The outgoing wave function of the colliding system can
be found easily:

\Pout"%[(fl +3f3 )q)i;n+(f2 +3f4) 10n]elkR/R

— ik
[(f1—f3)Prix— (f2—f)PFix]e’ R/R
where the f; are the scattering amplitudes of the outgoing
waves from different molecular states. The differential
cross sections for the two processes are then expressed in
terms of the four scattering amplitudes:

d

E_g‘ :'117|f1+f2+3f3+3f4|2’ (13)
dg =5 | fi—fa—f3+fal?. (14)
aQ mix 6

Equations (13) and (14) give the differential cross sections
for the ionic channel and mixed channel, respectively.

For the colliding system '®O + 28Si the direct scattering
process '°0O(%8i,%%Si)!'°0 and 3a transfer process
160(?851,'°0)*!Si are indistinguishable experimentally.
These are in the ionic channel.

The one a transfer reaction process 160(2881,24Mg)*°Ne
and two a transfer reaction processes '°0(*%Si,”’Ne)?*Mg
are also indistinguishable and these are then in the mixed
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TABLE 1. Optical potential parameters. R; =R0,«(A,-I/3+A %/3), i=V,W,C.

Vo Vi Roy ay

W, W, Row aw Roc

14.649 0.283 1.363 0.472

—6.001

0.444 1.245 0.497 1.000

channel. In this work calculations have been carried out
only for the scattering case.

III. ANALYSIS OF THE POTENTIALS

In this treatment of the 3a exchange mechanism, an ad-
ditional molecular orbital potential €, appears in the total
potential of the colliding system, as shown in Eq. (12),
le= VI,II -+—6#.

In the expression of €, in Eq. (9), € is the ground state
energy of an a particle bound to the nuclear core. This
small constant value can be taken from the experimentally
determined value. The direct integral K is the average in-
teraction of a valence particle with one core and it is gen-
erally included in the optical potential:

Vin(R)+3K(R)=V,5(R)=VP(R)+ VUR) .

An ordinary Woods-Saxon type potential is taken for the
optical potential.

Since our calculation covers a certain range of energy,
the amplitudes of both real and imaginary potentials are
taken to be energy dependent. V=V,+V{E and
W =W+ WE. The optical potential parameters are list-
ed in Table 1.

In the evaluation of the exchange potential in

J={(¢1|vu|du) , (15)

the interaction between an a particle and the nuclear core
vy is taken to be the double-Gaussian-type potential,

v=ve T e T i (16)
As the colliding energy increases, the distance between
cores, and also the distance from valence particle to core,
become closer. The interaction v; may also change with
energy. We have assumed it to be energy dependent:
Vi =V;o + U1 £, i =1,2. The values chosen for the param-
eters of the double Gaussian potential are shown in Table
II.

As seen in Table II, the coefficients of the energy
dependent terms v;; and v,; in the double Gaussian po-
tential turn out to be small.

In Eq. (15) a wave function of the independent particle
model is used for the nuclear orbiting wave function out-
side %0,

TABLE II. Parameters for the a-'°0 interaction.

Vio V11 81 V20 U2 82
(MeV) (MeV) (fm) (MeV) (MeV) (fm)
711.7 0.117 0.380 —517.3 0.448 3.637

d(r)=8"1ma?) "3 [(2—V'6)+V'8/3(r /a)?]

xexp(—r2/2a?), a7n

which has been derived from an a-cluster model of 4N
nuclei.?>2 The harmonic oscillator length parameter
a=1.25 fm is chosen to give the experimental mean
square radius of ?8Si. The advantage of applying the in-
dependent a particle model and a Gaussian potential is
that the exchange potential J can be integrated easily in
closed analytic form, as given in the Appendix, although
there will exist an inconsistency between Eq. (16) and (17).

If the overlap integral § is neglected in the expression €,

o 100711 T T T T7T
C E=25.0MeV
P T ___.
= I
E YPTH) ooooe
sol- YOPT+3J -——-a-a-a -
ob—L 1
_50-
_ [ K SR R S R B
Y12 3 4 5 6 7 8 9
R(fm)

FIG. 3. The combined potentials of the optical and exchange
potentials in four possible molecular orbital states. Two of these
potentials, V. +J and Vo, +3J, are purely attractive, while the
other two, V,,—J and V,, —3J, show short-range repulsive
core and a shallow potential well which provides favorable con-
ditions for forming molecular orbits.
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FIG. 4. (a) Total potential of the 'O + 23Si scattering system in a possible molecular orbital state Vopt +Vc—3J + V. for odd par-
tial waves L =1—37. Centrifugal potential ¥V, =L (L + 1)#*/2mR?. (b) Total potential of the '°O + 28Si scattering system in a possi-
ble molecular orbital state Vop+ Vc+3J + V. for even partial waves L =0—36. (c) Total potential of the '°O + *Si scattering system
in a possible molecular orbital state Vi, + V¢ +J + V. for odd waves L =1-37. (d) Total potential of the %0 + %Si scattering sys-
tem in a possible molecular orbital state Vo= Vc—J + V. for even partial waves L =0—36.
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in Eq. (9), the molecular orbital potential will be €, ~ —3J,
€,~3J, e3~J, and €4~ —J. €,, €3, and the optical poten-
tial have the same sign as the Vo, +3J and V,+J
shown in Fig. 3. Nevertheless, €; and €4 have the opposite
sign compared with the optical potential. V,, —3J and
Vopt —J show repulsive cores and potential wells in the
overlapping region. These potential wells should provide
the favorite condition for forming molecular states of the
colliding system.

If the Coulomb and centrifugal potentials V(L) are also
included, the total potential for the four different molecu-
lar orbital states, Vopt +Veou + 3J+V (L), Vopt + Vcoul
—3J+4 VL), Vopt+Veou +J+V(L), and Vo + Vou
—J 4 V(L), are plotted in Fig. 4. As can be seen, in some
cases, for certain partial waves, shallow potential wells
still exist in the overlapping region.

IV. COMPARISON WITH EXPERIMENT

According to the experimental data available, differen-
tial cross sections for the '°O 4 28Si scattering system
have been calculated in the energy region from E=18.67
to 34.8 MeV. The excitation function at 180° has also
been calculated in the energy region for E=14—50 MeV.
The theoretical results of differential cross sections are
shown in Figs. 2(a)—2(c). Good agreement is reached
with the experimental data.*—°

The common feature of these angular distributions in
Fig. 2 is that in the small angle region the Rutherford
scattering dominates, and in the larger angle region nu-
clear attraction starts to counter the Coulomb effect and
makes the experimental curve come down, with some dif-
fraction oscillations. However, after reaching a certain
angle the curve starts to rise again, with a more vigorous
oscillatory structure.

As we discussed before, the elastic scattering ampli-
tudes come from two contributions, one from direct po-
tential scattering and another from elastic transfer.
Direct scattering contributes mainly in the forward angle
region, while the elastic transfer scattering contributes
mainly in the backward angle region.

If the Coulomb effect were absent, one might expect the
experimental curve to be roughly symmetrical about a
minimum at 90°. As the incident energy increases, more
partial waves with smaller angular momentum are in-
volved in the formation of molecular orbital states, as
shown in the analysis of the total potential. The shallow
potential well moves into a deeper region and the transfer
process is strengthened. The minimum then shifts toward
the smaller angle region. Due to the interference and the
energy dependent diffraction, more peaks, with narrower
widths, appear.

In order to show more clearly the role played by the ex-
change potential in the angular distribution in the calcula-
tion for the E =26.2 MeV case, the exchange potential is
deliberately deleted and the optical potential remains.
There will be no rising oscillatory structure as shown in
Fig. 2(c). The exchange potential appears to play a major
role for the rise in the backward angle region.

With the same set of parameters chosen for the angular
distributions, the excitation function at 180° has been cal-

culated and plotted as shown in Fig. 1. The number of
peaks, their widths, and amplitude all agree fairly well
with the experimental curve. The widths of these peaks
are mostly on the order of 1—3 MeV. Their lifetime is
about the same order of magnitude as the time for the nu-
clei to travel across the nuclear potential region. It indi-
cates that molecular states are formed only temporarily in
the collision process. This may be expected from the ex-
istence of shallow potential wells in the overlapping re-
gion, as shown in Fig. 4.

The agreement of theoretical and calculations with the
number of peaks of the experimental curve may confirm
the prediction of the occurrence of four possible molecu-
lar orbital states by the theory. The possibility of choos-
ing one common set of parameters to reproduce both the
angular distributions and the excitation function en-
courages us to believe that the 3a transfer mechanism
might be a significant process in what is actually happen-
ing in the '®0 + 28Si scattering.

V. DISCUSSION

When two nuclei approach each other and start to over-
lap, all the nucleons will interact with each other. De-
pending on the incident energy, these nucleons may un-
dergo excitation, regrouping, transfer, or may form a
compound nucleus and break up. Of course, these two
colliding nuclei may also maintain their internal structure
while being elastically scattered. In this case a one-
particle optical potential is then assumed to describe the
elastic scattering. However, in a rather wide energy re-
gion the collision between two heavy ions can generally
proceed in many different ways. The substitution of this
many-body problem of a system with two 4N nuclei by a
one-particle optical potential may be too strong an as-
sumption.

For this scattering system of %0 with 28Si, we have as-
sumed 3a exchange to be the main process in the transfer
mechanism. If the nuclear cores are identical, one will get
the desired parity dependent exchange potential to inter-
pret the anomalous phenomena observed. A process with
12 nucleons exchanged between two identical '®O cores is
then more likely expected to occur. Since the a particle
has the highest binding energy, an a cluster should have a
greater probability of being formed and transferred in the
overlapping region than other kinds of clusters.

The possibility of the formation and transfer of a 12C
cluster in the scattering process may also be small. In our
previous study of the scattering system '°0 + 2*Mg, cal-
culations were performed for two cases: transfer of one
*Be cluster and two-a-cluster transfer. It was found that,
for fitting the experimental data, an unreasonably large
value is needed for the spectroscopic factor for the case of
8Be transfer, while for the 2a transfer case the adjusted
value agrees with the experimental spectroscopic factor.

In order to interpret the large number of peaks observed
in the excitation function of the scattering system
'2C 4 2C, Michaud and Vogt noted that with a two-body
Imanishi approach there was no way of obtaining this
large number of resonances while retaining any reasonable
potential well radius.?> They have already proposed a
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mechanism wherein the resonances correspond to inter-
mediate cluster states of three alpha particles moving rela-
tive to the remaining '2C core. By introducing additional
degrees of freedom in the form of these three alpha parti-
cle clusters about an assumed undisturbed '>C core, they
were able to accommodate the increased number of reso-
nances. The '>C nucleus breaks up during the collision
process.

In this treatment the recoil of the cores has been
neglected. This appears to be very serious when the
transfer of three a clusters between cores of mass 16 is
considered. However, for a three-particle system formed
by two identical cores plus one valence particle, Fonseca
and Shanley made a systematic investigation and found
that the Born-Oppenheimer approximation yields remark-
ably good results for the binding energies and wave func-
tions, even when the mass ratio of core to valence parti-
cles is not large (M /m >1).>* In LCNO theory the 3 a
particles are supposed to be transferred through the for-
mation of molecular orbits around the cores. The recoil
effect caused by the transfer of three alpha particles this
way might not be as serious as that caused by a direct 3a
transfer process in a distorted-wave Born-approximation
treatment.

The potential between heavy ions has been one of the
most challenging and well investigated problems in nu-
clear physics. Many microscopic models based on ap-
proximations to the many-particle Schrodinger equation
with the consideration of the exclusion principle have
been established, such as the resonating group model, gen-
erator coordinates method, etc. Due to the difficulties of
solving the many-body problem, no exact solutions could
be expected, although some behavior of the heavy-ion po-
tential may be predicted.

The a-cluster model reduces the many-body problem to
a few-body problem. In particular, due to the spinless na-
ture of both the valence particles and the nuclear cores the
treatment becomes most simple to handle analytically. It
can be seen clearly how a strong repulsive core is created
by the consideration of symmetrical exchange properties
of the identical cores and identical valence particles in the
exchange potential. This gives a strong resistance for
preventing the interpenetration of the two colliding nuclei.
It also shows how a shallow potential well is formed in
the overlapping of the two nuclei by the consideration of
both the optical potential between the cores and the in-
teraction between valence particles and the cores.

In order to attain physical insight into the problem, the
treatment is kept as simple as possible. Improvements, of
course, can be made in many ways.
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APPENDIX

An exact expression of the exchange potential can be
obtained in closed form by using an independent a model
wave function and a double Gaussian potential for the a-
core interaction. The independent @ model wave function
is written as :

—ar?

bi=(A,+Ad,r})e” ", i=LII
with A4;=—0.06734609a ~3/2, A4,=0.24466788a "2,
and @=0.5a ~2. The double Gaussian potential is

—Ar? —A,r?

v;=v,e A +v,e Mt i=LII

with A;=1/g% and A,=1/g2.
The exchange potential can then be integrated easily as

J={(¢; [ v |¢H>

2 2 2
=3 3 3 Awdilia r+a),
i=1k=1j=1

where
3/2
T 2
I ,B) = —[aB/(a+B)]R
1, B) a+B e ,
Inap=—— 134 @ g2l (a,B)
a+B 2 a—f-ﬁ 11V, ’

I (a,B)=1(Ba),

1

15  2a—pB)l+a*+p?
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— 4+ RZ

IZZ(a’B)Z 4 2(a+/3)

2

aB R4

+
a+f
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