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Heavy-ion collision theory with momentum-dependent interactions
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We examine the influence of momentum-dependent interactions on the momentum flow in 400
MeV/nucleon heavy ion collisions. Choosing the strength of the momentum dependence to produce
an effective mass m*=0.7m at the Fermi surface, we find that the characteristics of a stiff equa-
tion of state can be obtained with a much softer compressibility.

INTRODUCTION

A major goal in the study of intermediate energy heavy
ion collisions is to measure the equation of state of nu-
clear matter. The observable that shows most promise for
this measurement is the momentum flow in the collision.
It can be analyzed by the sphericity of the final state
momentum distribution,! or by the transverse momentum
within an inferred reaction plane.> At present, the best
founded theory for interpreting the experiments is based
on the Boltzmann equation, including a self-consistent po-
tential field and a collision integral of the Uehling-
Uhlenbeck form. We developed a technique for numeri-
cally solving the Boltzmann-Uehling-Uhlenbeck (BUU)
equation,’ and it has been successfully applied to momen-
tum flow and its dependence on the assumed equation of
state.>

The equation of state enters the theory via the function-
al dependence of the mean field potential on the particle
density in phase space. In the above-quoted studies the
potential was assumed to depend only on the ordinary
density, ignoring the well-known momentum dependence
of the field. For example, the attractive potential as seen
in nucleon scattering from nuclei weakens and becomes
small when the nucleon has an energy of a few hundred
MeV.% In theoretical potentials based on Brueckner
theory, the momentum dependence gives the particles near
the Fermi surface an effective mass in the range
m*/m =0.6—0.7. The overall interaction will be more
repulsive under the conditions of the heavy ion collision if
this momentum dependence is included in the BUU equa-
tion. Thus the effects of a stiff equation of state may
occur with a softer model.” Physically, there are two
mechanisms at work here. The average momentum of a
particle in the medium is higher in a heavy ion collision
than for cold nuclear matter at the same density; the
repulsive character of the momentum dependence implies
that the potential field will be shallower. Also, particles
will move with a higher velocity for a given momentum
than in free space, transporting momentum more effec-
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tively from one part of the system to another.

In this work we shall examine quantitatively the above
effects using a phenomenological model of the momentum
dependence. Momentum dependent interactions have
been applied previously to studies of momentum flow,®°
but only in mean-field theory, which is unrealistic at high
energy. Our model and some general considerations are
discussed in the following section. The section following
that describes our numerical study of the model.

MOMENTUM-DEPENDENT MEAN FIELDS

It is essential that a theory of momentum transport
respect the conservation laws. This will be guaranteed if
the dynamic equations are derived from an energy func-
tional. We assume the existence of such a functional and
call its interaction part W. Its derivative with respect to
density is the single particle potential,

Pp
In previous work, we chose U as a sum of powers of p,
omitting any p dependence. We now introduce an addi-
tional p-dependent term. The main origin of the p depen-
dence in Brueckner theory is the nonlocality of the ex-
change interaction. This interaction is attractive and im-
portant at low momentum, but it weakens and disappears
at very high momentum. The function of momentum
describing meson exchange interactions has these proper-
ties, and we adopt that parametrization,
1

1+(p—(p'))2/A*

Here p is the momentum of the particle, and A is a scale
parameter. Translational invariance is preserved by
measuring p with respect to {p’), the average momentum
of the other particles in the neighborhood. The density
dependence of this potential will be taken appropriately

for a two-body interaction, i.e., a linear dependence on p.
To make the model definite, we arbitrarily choose the

U(p)~
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momentum scale A=400 MeV/c, and adjust the strength
of the potential to make the effective mass satisfy
m*/m =0.7 at the Fermi surface for ordinary nuclear
matter density. This condition implies

dU(po.p) | 0.43 .
dp Pr m ’
the resulting p-dependent potential is given by
cp/,
Uy=—2PP0 e 75MeV, A=15p;.
1 P
+ A

The requirement that U be derivable from an energy func-
tional can be met by taking the p-dependent part of the
interaction energy to have the form

,0)f(p',r)c /pg
s (3)
p—<{p'))
A

W,= fdfzf(p
1+

Here f(p,r) is the nucleon density in phase space. Apply-
ing Eq. (1) to determine U, we find two terms, one being
Eq. (2) and the other given by

v=cl (—1L . @)

Po '
1 P
+ A

The expectation value in Eq. (4) is over the momentum of
the particles in the medium; it does not depend on the
momentum of the particle under consideration. The term
(4) was omitted in an earlier version of this work,'? giving
less effect of the momentum dependence.

We complete the model as in the previous studies by
adding an ordinary two-body potential and a density-
dependent potential. Additional parameters are con-
strained by the values of the density and binding energy of
nuclear matter at saturation. One parameter, the power of
the density dependence, is left free to vary the equation of
state. The full expression for the potential field is

Ulp,p)=+ap/po+b(p/po)°
cp/po p 1

+ . (5)
1+(p—(p))12/A? " po p |
1+
A
The corresponding potential energy density is
2 g 2
Wer=+2L 4 b o) co” L
2po 1+0 |po Po P
1+
A
(6)

For our momentum-dependent model we use a:%, and

obtain the other parameters by requiring nuclear matter
saturation at E = —16 MeV and pr=1.34 fm—!. We call
this the lightweight model, to distinguish it from the
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models with mass m*=m introduced earlier. The pa-
rameters for the lightweight, the soft, and the stiff models
are quoted in Table I.

To understand the differences in dynamics arising in
these models it is helpful to analyze the momentum trans-
port. A conserved momentum current II,, may be de-
fined when the energy functional depends only on the lo-
cal phase space density. The conserved current satisfies
the equation of continuity,

4R 4 v.fitr) =0, )

where p(r) is the momentum density at r. The momen-
tum current consists of two terms, contributing via the
particle current and from the potential field. The particle
part is given by

nﬁz:,rticlez E(Ufree_'_vp U)/,,Pvf(P,r) , (8)
4

where the free velocity is

free
Vo= (m24p2)i72

with relativistic kinematics. The potential field term is
9=8,(pU — W) . )
For a cold system the distribution function is a Fermi

sphere of radius pr, and the pressure is given by the longi-
tudinal momentum flux,

o+1 cp*/,
Y P 2l»"'o -
o+l p§ l+pr/A

(10)

For hot matter it is useful to express the pressure using as
a variable the free particle kinetic energy (per particle), T.
The formula is then

P=

wlw

T,o—%(,ii(—p——'z/’\2 > e
Po\[1+(p'" /AP IT 2 po
o+1 2

+—"—b9—-+£‘3~<—> .an

1+0 (pg)°  po \1+(p' /A2 /T

The single number used to characterize the momentum
transport is the compressibility of the matter at saturation
density. In nuclear physics the compressibility is conven-
tionally defined as in Eq. (13) below. Fixed entropy
transformations produce a scaling transformation of the
f(p), and the kinetic energy per particle varies as

2/3

’

L
p

T'=T (12)

The formula for the compressibility of cold matter at
p=po is
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TABLE 1. Potential model parameters for saturation at pr=1.34 fm~

! and binding energy of 16

MeV/nucleon. The first five columns quote the parameters in Eq. (5), and the last column gives the

compressibility from Eq. (13).

a b c A K
Model (MeV) (MeV) o (MeV) (pr) (MeV)

Lightweight —144.9 203.3 1 75 1.5 215

Soft —358.1 304.8 < 0 201

Stiff —123.6 70.4 2 0 377
93P | pz higher than in the soft model. However, the differences
20 _q |1 EE +a+bo+ 5 are rather small, and the lightweight model is closer to the
9 | 3 m | PF soft than to the stiff model. Thus we expect not to see
1A major differences in the physical observables between the
soft and lightweight models, from the dynamics in local

2 2 equilibrium.

—2c Pr. 1 5 . (13) To make a more detailed comparison between the argu-
* A PF ments from the bulk behavior and the actual dynamics of
1+ A the collision system, we shall examine the evolution of the
central density in some detail. This is simply related to

In Table I we quote the values of the compressibility coef-
ficient for the three models, calculated from Eq. (13). We
see that the lightweight model behaves like the soft model
near nuclear matter density. The question before us will
be how closely it resembles the stiff model under the con-
ditions of the heavy ion collision.

DYNAMICS OF CENTRAL COLLISIONS

Before proceeding with the numerical studies, we exam-
ine the behavior of the collision in the continuum limit,
where classical shock dynamics applies. The density in
the shocked region is determined from the conservation
laws of particle number, momentum, and energy. The
other variable besides the density to describe the shocked
matter we take to be 7. Then the equations for the
matter are the following two implicit equations for p and
T,

VoPo
Ps/pO_l
e=T;+Wlps,Ts)/p;s -

=M(p,,T,)/ps , (14a)

(14b)

Here p, and T are the density and free kinetic engrgy in
the shocked matter, v, is the velocity of the incoming
matter, pg is its momentum per particle, and e is the ener-
gy per particle. We consider 400 MeV/nucleon heavy ion
collisions, which gives in the c.m. system initial condi-
tions vg=0.43c, p =440 MeV/c, and e =84 MeV, taking
into account the binding energy of the initial matter. The
predicted shock conditions are shown in Table II. In Fig.
1, we show the equation of state for the models, starting
from the shocked matter at p; and T and expanding adi-
abatically according to Eq. (12). The lightweight model
has a stiffer equation of state than the soft model, as ex-
pected from the qualitative arguments. The maximum
density is lower, and the pressure at a given density is

the pressure in the middle, if the system comes into local
equilibrium. A simple argument can be made about the
time history of the central pressure, based on momentum
conservation. Given a rough knowledge of the initial and
final states, we know how much momentum is transferred
across the plane at longitudinal coordinate zero. This
momentum transfer must equal the integral of the pres-
sure over the plane and over time. The initial longitudinal
momentum density in each half plane is just the initial
momentum per nucleon times the areal density of nu-
cleons. The final state is roughly isotropic in momentum
space, so the longitudinal momentum density is about
— + of the initial, assuming we can neglect the transverse
spread in the particle distribution. Thus we expect the
momentum flux density to satisfy

80 T T T

Pressure (MeV/fm?)

Density (p/po)

FIG. 1. Equation of state for the various models. The pres-
sure is shown for the shocked matter from 400 MeV/nucleon
collisions of slabs of nuclear matter. The initial shock condi-
tions are determined from Eq. (14), and the subsequent expan-
sion from Egs. (11) and (12).
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TABLE II. Shock conditions for 400 MeV /nucleon heavy ion
collisions.

T, I1
Model Ps (MeV) (MeV fm—3)
Soft 2.62 121.3 50
Lightweight 2.52 96.5 51
Stiff 2.18 108.3 57
(14 3)popo2R ~ [ dt T, (p(1), T (1)), (15)

where 2R is the longitudinal dimension of one of the col-
liding nuclei. This integral can be expressed as an integra-
tion over the density achieved in the central region by de-
fining a density duration function,

gp= [ dr8(p’—p(n)) . (16)

Then the longitudinal momentum transfer density satis-
fies

3 Ps
3Popo2R =~ [ dpg(p)l(p,T(p)) . (17)

NUMERICAL APPLICATION

We solve the BUU equation using test particles to
represent the phase space density and the particle-in-cell
method to treat the mean field, as in Ref. 3. Hamilton’s
equations of motion for the test particles are modified by
the presence of the two new terms in the acceleration
equation,

p=—VU, (18)

and by the presence of a field term in the velocity equa-
tion,

;e P dU

r= m2apl) 7 + dp (19)
Previously, the calculation required storing the phase
space coordinates of the test particles and the density in a
spatial grid of cells. The new calculation requires in addi-
tion the average momentum of the particles in a cell (p’),
and also the average of the function 1/[1+({p’'))?/A%].
These changes have practically no effect on the time it
takes to do a calculation, since most of the time is con-
sumed in treating the collision integral.

The nucleon-nucleon scattering is treated by a model of
Cugnon et al.® This is a fit to the free scattering cross
section, and includes pion production by a A resonance
approximation.

On a numerical level, the calculation requires several
additional parameters. One of these is the number of test
particles to represent one physical particle, which we take
to be 60. Thus the calculation of Nb + Nb collisions re-
quires following about 11000 test particles. Another pa-
rameter is the cell size for the potential calculation. We
use cubic cells with a side of 1.5 fm. The arena size is 14
fm <13 fmXx21 fm, requiring about 13000 cells in all.
Finally, the time step size was taken to be 0.5 fm/c.

We now discuss a representative set of runs for 400
MeV/nucleon Nb + Nb collisions, using the various po-
tential models. Figure 2 shows the time history of the
density for the three models, taken at a fixed impact pa-
rameter b =2.1 fm. This is the average impact parameter
for the collisions which comprise the most central 7% of
the reaction cross section. There are significant differ-
ences between the soft and stiff models, with the central
density in the soft model rising to about 2.4 times nuclear
matter density, compared to the predicted 2.6 of the bulk
dynamics. The density in the stiff equation of state
reaches only 2.0py, compared to the expected 2.2. The in-
itial density increase in the lightweight model is slower
than for either of the others. This is because the particles
are moving faster and the overlap zone is larger at a given
time step. Eventually at middle times the density in the
lightweight model is about halfway between the soft and
stiff.

The next quantity we examine is the density duration
function g (p), which is plotted in Fig. 3. There is in each
case a peak, whose position indicates the average density
in the compressed phase. The area of the peak is propor-
tional to the time duration of the compressed phase. We
evaluated the momentum balance condition, Eq. (17), in-
tegrating the function g (p) numerically with the pressure
from Fig. 1. The results are shown in Table III. We see
that the momentum balance fails by about 40%, with the
bulk limit smaller than the actual momentum transfer. It
should not be surprising that the actual momentum
transfer is higher. For one thing, considerable time is re-
quired before the system reaches a local equilibrium. Be-

3.0 T T T T T

Density (p/po)

3.0 t + t t t

Density (p/po)

oo 1 1 1 1 1
0 5 10 15 20 25 30

(fm/c)

time

FIG. 2. Central density in collisions of 400 MeV /nucleon Nb
ions on an Nb target, at an impact parameter of 2.1 fm. The
lightweight model, shown as the dotted curve, is compared with
the soft model in the upper curve, and the stiff model below.
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FIG. 3. Density duration function g(p), defined in Eq. (16).

fore that, there is relatively more longitudinal momentum
transfer due to the directed motion in the longitudinal
direction. Also, to the extent that the system expands la-
terally, the effective areal density of nucleons is smaller
than assumed in Eq. (17). Note that the balance fails
more for the lightweight model than the others. The par-
ticle momentum transport in the initial phase is more ef-
fective with the faster moving particles.

The equilibration rate and speed of energy transport
can have important influences on the transverse momen-
tum. Transverse momentum is only generated effectively
by the particle transport after the system comes into local
equilibrium. The transverse momentum also depends on
the transverse area of the system, and this will be larger if
the equilibration takes place earlier when the system is
still extended in the longitudinal direction. The collision
rate tends to decrease with increasing stiffness, but the
lightweight model has a larger collision rate than the soft
model for the first 15 fm/c.

We now examine the observables related to transverse
momentum. The transverse momentum, as a function of
longitudinal velocity in the final state, is plotted in Fig. 4,
using the Danielewicz-Odyniec analysis technique to infer
the reaction plane from individual collision events. The
results show a significant difference between soft and stiff
models. This is easily understood from considerations of
bulk dynamics. The relevant quantity is the total momen-

TABLE IIl. Longitudinal momentum balance.
1000 MeV ¢ fm?

Equation (17), lhs
Equation (17), rhs
Soft 680 MeV ¢ fm?
Lightweight 540 MeV ¢ fm?
Stiff 670 MeV ¢ fm?
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FIG. 4. Transverse momentum generated in the collision.
Results are averaged over impact parameters between O and 3
fm. The predictions of the soft, the stiff, and the lightweight
models are shown as points, circles, and diamonds, respectively.

tum transferred across a plane perpendicular to the reac-
tion plane. The integral is similar to the one for the longi-
tudinal momentum density, except for an additional in-
tegration over area. The result would be independent of
the model, as in the longitudinal case, if the areas were the
same. However, the transverse area should scale as the in-
verse of the central density, so the models producing
higher density should have smaller transverse momentum
generated. The equilibration goes in the other direction,
with the stiff model taking longer and producing less

LIGHTWEIGHT
r—_— L 1 e
@
S
S SOFT
o
~
z
ol
1 1
STIFF
1 1
0 20 40 60

Angle 6 (deg)

FIG. 5. Flow angle for the Nb + Nb collision. The three his-
tograms show the results from the lightweight, the soft, and the
stiff models, going from top to bottom.
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transverse momentum at early times. From these argu-
ments we see why effects are small. The lightweight
model achieves a stiffer equation of state with a rapid
equilibration rate, and so can produce as much transverse
momentum as the stiff model. Finally, we also show the
flow angle comparisons in Fig. 5, which behave in a simi-
lar way. The flow angle distribution for the lightweight
model is close to the measurement of Ref. 1.

From comparison of the momentum-independent
models with the data, it has been concluded that the equa-
tion of state is rather stiff.* Our results show that a soft
equation of state can produce the same results when a
reasonable momentum dependence is included in the
model. A significant factor is the equilibration rate, and
this points to the need to study the NN collisional model
more closely. Studies at lower energies show a sensitivity
of polarizations to the assumed NN cross section;!® the
dependence of observables on the NN cross section needs
to be further explored in the intermediate energy regime.

In this work we have not attempted to compare the
transverse momentum distribution directly with data.
The plots in Fig. 4 show flat plateaus changing rapidly at
the midvelocity point. In contrast, the experimental data
show a smooth, almost linear variation of transverse

momentum with longitudinal velocity.!! The smoothness

may be due largely to the limitations of the detector ap-
paratus. The authors of Ref. 11 recommend making com-
parison after filtering the theoretical predictions with a
computer program that simulates the experimental detec-
tion conditions. However, we feel that we need to under-
stand the detector filtering better in order to draw con-
clusions from distributions that look quite different before
and after the filtering process.
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