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Nuclear excitation in positron-K-electron annihilation
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We have calculated the cross section for nuclear excitation during positron-E-electron annihila-
tion. The calculations allow for the effect of the nuclear Coulomb field and for relativistic effects.
The results are compared to earlier predictions which were derived using the Born approximation,
and to renormalized Born approximation predictions. Our calculated cross sections are well below
the available experimental values.

I. INTRODUCTION

The first prediction of nuclear excitation during posi-
tron annihilation was made by Present and Chen' more
than three decades ago. The first experimental evidence
for the effect was found by Mukoyama and Shimizu,
who measured the cross section for excitation of the 1078
keV level of " In and obtained a value many orders of
magnitude greater than the theoretical predictions. Other
experimental investigations have also found cross sec-
tions much greater than the theoretical predictions. A
more recent detailed calculation made by Grechukhin and
Soldatov for " In also predicts a cross section which is
much lower than the experimental result.

The general assumption has been that the mechanism
was based on a direct resonant excitation of the nuclear
level, but it was recently proposed that a radiative non-
resonant mechanism could be sufficiently strong to ex-
plain the experimental results. However, Ljubicic et al.
have shown that the magnitude of the radiative non-
resonant process has been overestimated, and this has also
been shown in a more detailed analysis made by Pisk
et al. ' These calculations, while reasonably comprehen-
sive, employ the Born approximation and neglect the ef-
fect of the Coulomb field on the positron motion and al-
low only a partial influence on the K-electron motion. In
an attempt to improve the accuracy of the theoretical cal-
culations, we have made more general estimates which al-
low for both the effects of the nuclear Coulomb field and
relativistic effects.

II. CALCULATION OF THE CROSS SECTIONS

AL,M= J dr% (r)tO %LMo(r) . (2)

The matrix element for nuclear excitation in positron
K-electron annihilation can be found by multiple expan-
sion of the photon propagator between the charge currents
involved. For the leading multipole it is

S"= i 4m a/co'5(ep—+e co ) g NL'MAL—'M
M

In Eq. (1) M is the magnetic quantum number, eo and e
are, respectively, the total energies of the K electron and
the positron, and co' is the nuclear transition energy. NL'M

are the nuclear matrix elements for the 2 transition of
electric type (i =e), or magnetic type (i =m), and they
describe the process of nuclear y-ray emission.

In Eq. (2) the positron and IC-electron wave functions
are represented by 0'p and Oo, respectively, and the
multipole operators OL'M expressed in the conventional
gauge" are

Ot™M' i coV2/trh——L 'aYL„t (3)

In Eqs. (3) and (4) the h's are spherical Hankel functions
and YL and YL I are spherical and spherical vector func-
tions. The a's are Dirac matrices.

In calculating the cross section we assume the density
of final states has the form of a Lorentz shaped function
with a width I . For unorientated nuclei, and unpolarized
electrons and positrons, the cross section is found to be

0 =277 CXg I pm 21 +1

with the energy constraints

~
e+ eo —~) & r/2 .

In Eq. (5) g is the statistical weight, and I p is the
ground state transition width of the excited level which
has a total width I . The momentum of the incident posi-
tron is represented by p, and p, v represent the spin labels
of the K electron and positron.

To calculate the matrix elements ALM we assume Dirac
Coulomb-type wave functions for the IC electron and posi-
tron. ' The K-electron wave function is given by

for the 2 -pole magnetic transition, and for the 2 -pole
electric transition as

Ot'M —— co& 2/tr[i (L—/L+1)' hL 'YtM

+(2L+1/L+1)' hL" ~a YL I t] .

(4)
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(9)1GO~ y2 o

F+1/2 1p

wave function is chosen to representand the positron wave
'

to re resent
asymptotica y all distorted plane wave wit an
spherical wave

n')ll =4' gp I (p, v)(f2(Q 2( , AJ2'P
jim

I' =1+1,j=1+—,', (8)
where

p., (p, v)=(&,2m&— )

and X is a two-c P-corn on n spi 0
herical spinors, and theIn Eqs. —

d are derived in the Appen-
7) (9) the Aq'(m are sp e

radial functions G, F g
dix.

sentation we were able to separateVr'ith the above representation w
the radial integrations rom

1 r momentum alge-
L

trix elements
in results for the electric 2-bra we obtained the following resu s o

pole transition:

2I+
I I+ 2 3/' ( + /'1. )R4

I I. —(I/2) L
glw"I =—co («+» IRI+R2+2R3

I L+( /I2), L +I+I RI+ 2

(10)

where the radial integrals are

2 (1)G(RI)JI = f dr r f&2hL

2 (1)F(R2)J( ——f dr r gjlhL

2 (&) F(R3),2 d« F2 hL IF,
2 (&) GdP' P' gjlAL

+(L+1)
I

R'I+R2
I L (I/2) L

/ 2
]

(R4) ( f,
tic 2, - ole transition we ob-In the case of the magnetic -po

d the following result:

' ' '= —~'lL
I

R'I+R2
I L+(I/2), LLM

III. RESULTS AND DISCUSSION

cross sections for resonant nonradiative
'

us multi oles, are s own as a

f the resonant nonradiative excitation is i ustra edence of e
2 If we compute t e ra ia

agree wit eh th earlier estimates found using t e
proximation.

onable correction canrestin to note t at a reason
1

'
b renormalizing thebe made to the ear e 1r ier calculations y ren

at the nu-e ositron wave unction ap
c eus. eTh renormalized cross section 0.

& can e

where the radial integrals are

2 (&)F(R'I)JI= f dr r fJ.IhL F,
(13)

2 (&)G(R2)22= f dr r gjthL G .

rais are calculated in the Ap-All the defined radial integra s are
pendix.

o ~ osF(Z, e),—— (14)

-2410-

e 0. is the cross section calculated gusin the Born
13a ', and F(Z, e) is the Fermi factorapproximation, Ref. 10, an
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FIG. 3. The differences between the cross sections expressed
in percentages for various multipoles, as a function of the in-

cident positron energy. The atomic number Z =50 and nuclear
energy level co=1078 keV are assumed. o., o.&, and o.& are,
respectively, the cross section calculated in this work, the cross
section calculated using the Born approximation (Ref. 10), and
the renormalized cross section given by Eq. (14).
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I

l (r i+ iv)
I

'
2(y —i)F=2e (1+yi) (2pR ) ', (15)

I
l (1+2ri)

I

'

where R represents the nuclear radius, and the other
quantities are defined in the Appendix.

The differences between the cross sections calculated in
this work and the Born approximation and the renormal-
ized Born approximation values are shown in Fig. 3 as a
function of positron energy, and in Fig. 4 as a function of
Z. As one would expect, the renormalization procedure
works best for larger positron energies and for lower Z
values.

The nuclear Coulomb field is expected to have similar
influences on the radiative, nonresonant process. This is
illustrated in Fig. 5, where a comparison is made between
the Born approximation (the momentum distribution of
the K electron is taken into account) and renormalized

5- / I
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FIG. 5. The cross sections for the radiative nonresonant pro-
cess as a function of the incident positron energy. The atomic
number Z =50 and nuclear energy level co=1078 keV are as-
sumed. The primed multipoles represent the renormalized cross
sections, and multipoles without primes are the cross sections
calculated in the Born approximation.

Born approximation predictions.
The present calculations are quite comprehensive and

they further reduce the theoretical value for the excitation
cross section, for the assumed mechanisms. Consequent-
ly, the experimental results are even much larger than the
general range of our predictions, and it seems clear that
much remains to be done if we are to have a quantitative
understanding of the excitation of nuclear levels during
positron annihilation.
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FIG. 4. The Z dependence of the cross section differences for
various multipoles. The nuclear energy level co = 1078 keV is as-
sumed. The descriptions of o., o.~, and ~~ are the same as in

Fig. 3.

APPENDIX

—XrG = N[(l +r~) 2/]'~ (2ir) ' e

—XrF=N[(1 —ri)/2]'~ (2Ar) ' e

where

A, =maZ, yi ——(1—a~Z2)'~2,

and the normalization constant is

N =[(2X)'/1 (2y, +1)]'".

The positron functions are given by

(A 1)

The radial parts of the wave functions used in Eqs. (7)
and (8) are Dirac Coulomb-type wave functions. ' The
K-electron functions are given by
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g i [( &+m ) /2&] 1/2e i yw/2 v—w/2

I (2y+1)

X(2pr)y 'I j e
—'1",

f i
— [(& m )/2&]1/2eiyn/2 —'vm/2

I (2y+1)

X(2pr)y '[ j+e

with

(A2)

obtain the result

K„(a,c)=2i '(2p)y '(2k) '

I al c —a
.k —r —r(

Xg [n, k]
(21 )@+1

X dt t' '(1 t )' —' '(u 2p—t)
0

where u =p —co —i A. and

where

j+ (y —i—v)F(—y+ 1 iv—;2y+1;2ipr)

+(~ iv')F(y—i v;2y+ —1;2ipr ),

( —n, k)(n + l, k)
(l, k)

where (a,b) are the Pochhammer's symbols

&=+(j+—, ) for j=l+ —, ,

y=(& —& Z ), v=aZe/p, v'=aZm/p .

In the above equations a, Z, m, e, and p are, respectively,
the fine structure constant, atomic number, mass of the
electron, positron energy, and positron momentum. Also,
F(a;b;x) represents the confluent hypergeometric func-
tion and I (x ) represents the gamma function.

Using these representations of the wave functions and
multipole operators Ot~ given by Eqs. (3) and (4), the ra-
dial integrals defined by Eqs. (11) and (13) can be ex-
pressed as a linear combination of the integrals

K„(a,c)= f dr r (2pr)y '(2Ar) '

X e '1'"e "F(a;c;2tpr )h„'"(d'or ) . (A3)

h„"'( )x=i " 'x 'e'" g (n + —,,k)( —2ix)
0

where

(A4)

To calculate the integral (A3) we used the following: (a) a
series expansion for the spherical Hankel function'

I'(a +b)
I (a)

R, =i(e+rn)' '(1+y1)' 'H QCL, [ ]
0

L —1

R3 —i (e m)' —( 1 —y1)' H g CLk 1[ ]+—
0

L —1

R~= (e+m)' (1+y—1)' H g CL~ 1[ ]
0

L
R', =i(e m)'l (1+—y1)' H g CL[ ]+,

Q

L

R; = —(e+m)'"(1 —y, )'"H g C"[ ]
0

(AS)

The remaining integration in Eq. (A7) is recognized as
a representation of the hypergeometric function given by
Eq. (A6).

The final answer for the radial integrals is

R, =(e—m)'"(1 —y )'"H g C"[ ]
0

In Eq. (AS) we introduced(n +k)!
k!I (n —k+1)

(b) the integral representation for the confluent hyp«-
geometric function'

F(a;b;x)= 1(b) '
xi a —1 b —a —1dt e"'t' (1 t)—I (a)I (b —a)

(AS)

and

L+1—y —
y1(2g/

—
)1/2 — /2 I (y

I-(2y+1)
I (y+y1) xyzy

[I (2y, +1)]'/2 SpM

( l, k)(l + l,k)—
( l, k)(1 —y —y1, k)

(A9)

and for the hypergeometric function'

I c 1

I b I c —b 0

X (1 tx) . (A6)—

By introducing expansion (A4) and representation (AS)
into the integral (A3), one can perform r integration and

[ ]+=(y i v)F(y+y1 k; y+ 1 —iv—;2y+ 1;x—)

+ (~ i v')F(y+ y, —k;y—i v;2y+ 1;—x ),
where

x =2p/u,

y =2m/u,

z =2k/u .

(A 10)

(A 1 1)
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