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Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made
between mathematical and observable sum rules. Differences between nonrelativistic and relativistic
Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the
longitudinal response is proposed and tested numerically. This method is applied to the Ca data to
obtain the experimental Coulomb sum rule as a function of momentum transfer.

I. INTRODUCTION &c(q) —= j Rc(q, co)dco,

The Coulomb sum rule (CSR) in nuclei had first been
evoked as a means of studying the two-body correlations. '

In the recent years, measurements of separated longitudi-
nal responses in (e,e') experiments have motivated a
renewed interest in this subject. The attractive feature of
the classical, i.e., nonrelativistic, CSR is that it has a sim-
ple and model-independent limit when the three-
momentum transfer q becomes very large. This limit is
just the nuclear charge number Z. Then, the deviation of
the classical CSR from Z at finite q gives information on
the nuclear correlation function.

An apparently surprising result lies in the fact that (e,e')

experiments lead to integrated Coulomb responses which
are significantly smaller than Z (Refs. 6 and 7) even at q
values as large as 550 MeV/c. Would this mean that
correlation effects are so important, or is there a sizable
amount of strength which lies outside the measured ener-

gy region? To answer this question, one must keep in
mind that the classical CSR suffers from two defects
which may affect its usefulness. First, it is a mathemati-
cal sum rule where the Coulomb response is integrated up
to infinity over the energy variable co, whereas the physical
domain permitted by the kinematics of (e,e') reactions is
restricted to co smaller than q. Even at large but finite
values of q, the mathematical CSR does not strictly
represent a measurable quantity. Second, a nonrelativistic
description of nuclear structure may become questionable
when q and m are large as compared to the nucleon mass.

Quite generally, one starts from the Coulomb nuclear
response

Rc(q co)= g [ &n ~p(q) ~O) ['6(co —co„),
n&0

where p(q) is the nucleon point-charge density operator
and

~

n ) is a nuclear state with excitation energy co„. One
can then define a mathematical CSR,

and a physical (i.e. , observable) CSR,
q

Sc(q)= f Rc(q, co)dco . (3)

II. NONRELATIVISTIC SUM RULES

In a nonrelativistic (NR) approach, the nucleon field
operators g (x) and P (x) are two-component fields
which, respectively, annihilate and create a nucleon at
point x in a spin-isospin state a. The Fourier transform
of the point-charge density operator is

In this work, we discuss in some detail the properties of
Xc(q) and Sc(q) in the framework of a relativistic model
of nuclear matter. These sum rules have already been
studied in the same relativistic framework by various au-
thors, ' sometimes with errors which did not help to clar-
ify the issue. We shall stress the difference between the
relativistic sum rules and their nonrelativistic counter-
parts. In particular, we wish to dissipate the prejudice
that the high-q limit of the mathematical CSR must be
the charge number Z as a result of charge conservation.
We also propose a method for extracting an experimental
Coulomb response Rc(q, co) from the measured longitudi-
nal response RL(q, co). This allows one to construct an in-
tegrated experimental quantity which can be directly com-
pared to the sum rule (3) predicted by any model.

In Sec. II we briefly review for completeness the nonre-
lativistic CSR. The relativistic model of nuclear matter is
used to study the properties of the relativistic CSR in Sec.
III. Effects of nucleon form factors and the link between
the longitudinal and Coulomb responses are examined in
Sec. IV. A pseudoexperiment is used to test the accuracy
of the procedure of extracting the CSR from the longitu-
dinal response. In Sec. V the CSR extracted from the
measured longitudinal response in Ca is compared to
predictions of the relativistic model.
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p(q)= f d x e'~ "g g (x)QQ (x), and tt,
[g (x), Pp(x')I =5 p6(x —x'),

where Q =( I+r3)/2.
It is straightforward to derive the mathematical sum

rule (2) for a nucleus containing Z protons and N =3 —Z
neutrons. Using a closure relation for the nuclear states
and fermion anticommutation relations for the fields tij

one obtains

Xc (q)=Z+C(q),
where C(q) is the Fourier transform of the proton corre-
lation function:

C(q)= f d x d x'e ' '" "'g [(0
~ g (x)Qgp(x')Pp(x')Qg (x)

~

0) —(0
~ P (x)QQ (x)

~
0)(0~ gp(x')Qgp(x') ~0)] .

aP

Here,
~

0) is the exact nuclear ground state. One expects
the correlation function to be well behaved in coordinate
space, and therefore C(q) should tend to zero as q be-
comes very large. Thus, one obtains the familiar, model-
independent result that Xc (q) goes to Z asymptotically.

However, the mathematical sum rule does not have a
direct bearing on measured quantities in (e,e ) reactions, as
we have argued in the preceding section. Let us now ex-
amine the observable sum rule (3). It is no longer possible
to eliminate all excited states by a closure relation, and
hence this sum rule can only be studied within specific
models. For a general orientation on the behavior of
Sc (q) at large q values, we shall just look at the Fermi
gas model. The Coulomb response is

Rc (q tp)=2+ nz(1 nk )5—NR (k+q) k
2M

—CO

(8)

where the factor 2 accounts for spin degeneracy, and
nk ——e(kF —k), with k+ denoting the Fermi momentum.
It is easy to see that Rc (q, cp) is nonzero only when cp be-
longs to the interval [cp, to+], where

q2 2kF
co =Sup 0,

2M

q
2M

2kF
1+

When q is larger than 2(M+k ), cp is larger than q and
then the physical sumrule SCR(q) becomes identically
zero. This result follows from a strict interpretation of
the expression (8), where the energy conservation is writ-
ten in terms of the NR kinetic energies. As an ad hoc
remedy, these may be replaced by total relativistic ener-
gies, in which case the response function is nonvanishing
for any q. The example shows, however, that one should
be aware of the physical constraint co & q, which will have
its full effect in a relativistic calculation, as we shall see in
the next section.

The mathematical sum rule Xc (q) could still be a use-
ful quantity to consider in the range of q values up to
(2—3)kF. However, this would be sound only if a NR
description of the response function remains valid in this
energy-momentum region. Several authors have

shown' ' that the longitudinal response function is sig-
nificantly affected by relativistic nuclear dynamics. We
shall now examine the two sum rules (2) and (3) when the
nuclear structure is described relativistically. For simpli-
city, we consider the case of infinite nuclear matter treat-
ed in the mean field approximation. '

III. COULOMB SUM RULES IN RELATIVISTIC
NUCLEAR MATTER

A. The Coulomb response function

We start from an effective Lagrangian containing nu-
cleons coupled to isoscalar mesons, o and co. In the mean
field approximation, or Hartree approximation, the fer-
mion field operators obey the Dirac equation:

(i r) —M —Vx —go Vo)f(x) =0, (10)

where x =(t,x); V, and Vp are the scalar and timelike
vector self-energies originating, respectively, from cr and
co exchange. Since we are in a homogeneous medium, V,
and Vp have no space-time dependence. Equation (10) is
a linear equation quite similar to that of a free particle,
and its solution can be found in the same way. ' First, we
define an effective mass M* and effective energies Ek by

M*=M+ V, ,

Ek =(M* +k )'

(1 la)

(1 lb)

(ypEg —y.k —e„M*)w"(k)=0, (12)

where r = 1,2 for positive energy solutions (e„=+ 1) and
r=3,4 for negative energy ones (e„=—1). These
medium-modified spinors are formally identical to the
free ones with the free mass M replaced by the effective
mass M'. We normalize them according to'

w '(k)w"'(k) =5„„e„. (13)

It is easy to verify that the field,

4
g(x)= g g „e

Ek

—i(Ef t —e, k xI

(14)

We also introduce the spinors w "(k) for a particle in tQe
medium, as solutions of
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satisfies Eq. (10). In (14), 0 is a normalization volume,
and a„k is an annihilation operator for a nucleon in a state
(r,k) with energy Ek=e„Ek+ Vo. As a consequence of
the anticommutation relations for the fermion operators
a„k, the components of the field (14) satisfy the usual
equal-time anticommutation relations:

I g ( t, x), g&(t, x')
I
=

I g (t, x),g~(t, x')
I =0,

(15)
If (t, x),Pp(t, x')I =5 P(x —x') .

In the present model of infinite homogeneous medium,
the nucleon current j "(x)=P(x)—y"f(x) obeys the con-
tinuity equation just as in the free particle case. If we
denote by g(x) the fermion field at time t =0, the charge
density operator is again given by Eq. (4), where the a
sum now runs over the four spinor components in addi-
tion to the isospin components.

The nuclear matter ground state is

A+(k) =
2M*

and using standard trace techniques, one obtains

Rc(q co) =Rc(q w )+Rc(q ~)

where

(19)

(20)

These inequalities are easily obtained by using the relation
(lib). The inequalities (18) show that in the present
model only F-type excitations contribute to the observable
sum rule (3), whereas both types contribute to the
mathematical sum rule (2). Of course, Xc(q) will be in-
finite and one has to define a procedure to remove its in-
finities.

The Coulomb response function (1) can be calculated
directly. By introducing projection operators on positive
or negative energy states,

r =1,2
k (kF

r'=3, 4
all k'

a tgt (16)
l(Ek+ +E ) —q j

Rc(q, co)= ink(l nk+—)
2Ek+qEk

where
~

) denotes the vacuum. An excited state
~

n ) is
obtained by promoting a nucleon to an unoccupied state
with momentum k+q, leaving a hole with momentum k
either in the Fermi sea (type F) or in the Dirac sea (type
D). These two types of excitations are illustrated in Fig.
1. For an excited state of type F, the excitation energy is

&&5(co—Ek+q+Ek ),

[(Ek+q —Ek )' —q'l
RcD(q, co) = —Q (1—nk+q)

k 2Ek+qEk

X5(co—Ek+q Ek ) . —

(2 la)

(21b)

~n (Ek+q+ VO) (Ek + Vo) Ek+q Ek

whereas for an excitation of type D we have

~n (Ek+q+ VO) ( —Ek + Vo ) =Ek+q+ Ek

It is important to note that
F D
n (0, COn &q

(17a)

(17b)

(18)

The 5 functions in (21a) and (21b) and the relations (17)
and (18) clearly show that the domains where Rc(q, co)
and Rc(q, cu) are nonzero do not overlap. For cu &q, only

D

Rc is nonvanishing, whereas for co&q only Rc contri-
butes to Eq. (20).

B. Relativistic sum rules

~ k+q ~ k+q From the above expressions for Rc(q, co), and keeping
in mind the inequalities (18), we can calculate the sum
rule (3):

E„,+V,

M +V,

Sc(q) =Z —g nknk+q
k

+ ink

(E:+,+E.*)'—q'

2Ek+qEk

«k+q —Ek )' —q'

2Ek+qEk
(22)

—M+V,

F type D type
FIG. 1. F-type and D-type particle-hole excitations in nu-

clear matter.

This result just corresponds to the spacelike (i.e., co &q)
energy integral of the Coulomb response function (21a)
calculated by Matsui. As we have mentioned in the
preceding subsection, this observable sum rule only in-
volves F-type excitations.

The limit of Sc(q) as q goes to infinity can be seen
easily. The second term of Eq. (22) tends to zero, whereas
the third term tends to —Z/2, so that Sc(q) goes asymp-
totically to Z /2 when q becomes ver large. This
behavior is quite different from that of Sc (q) studied in
Sec. II. The nonrelativistic observable sum rule is zero for
q )2(~+kF), but this is due to the use of nonrelativistic
kinematics in a domain where this is not valid. Clearly,
Sc (q) becomes meaningless when q/M is not small
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compared to unity. Shown in Fig. 2 is Sc(q) calculated
for the two cases M* =M and M*=0.56M. The observ-
able CSR decreases somewhat with M* and approaches
the asymptotic value Z/2 faster as M* is smaller.

Let us now examine the mathematical CSR Xc(q) de-
fined by Eq. (2). It differs from Sc(q) by the integral
from q to infinity of the response function (21b), where
only D-type excitations are involved. We have

Sc(q)/2

Xc(q) =Sc(q)+Sc(q),
where

(23)

0.5

r, (q) =r,"+C(q) . (25)

Now, the anticommutation relations (15) automatically in-

volve negative as well as positive frequency components,
i.e., both Fermi and Dirac sea contributions appear.
Thus, the one-body part of Xc(q) is

rc —Z+2+1,
k

(26)

(Ek
Sc(q) = —g (1—n„+q) „, . (24)

2Ek+qEk

This quantity Sc.(q) is the timelike part of the mathemat-
ical CSR found by Matsui. We notice that Xc(q) was
also studied by Walecka in the same framework as the
present relativistic model, but with a quite different result.
The origin of this discrepancy lies in the fact that, in Ref.
5, Xc.(q) is calculated by casting it into a sum of one-body
and two-body contributions. While the one-body term is
correctly treated (i.e., both F and D-t-ype contributions
are present), the D-type excitations are discarded in calcu-
lating the two-body correlation function. Because of this
inconsistency, the quantity calculated in Ref. 5 corre-
sponds neither to Sc(q) nor to Xc(q). Actually, if one
does consistently separate Xc(q) into one-body and two-
body contributions using the complete anticommutation
relations (15) for the four-component fermion fields, one
gets

qr~,
4

FIG. 2. The observable sum rule S&(q ) calculated with
M*/M=1 (solid curve) and 0.56 (dashed curve) for kF ——1.42
frn

—'.

«k+, +Ek )' —e'
C (q) = —g nknk+q

k 2Ek+qEk

and a Dirac sea contribution,

(27)

C (q)= ink «k+q —Ek )' —V'

Ek+qEk

(E„* +Ez ) —q

2Ek+qEk

The results (25)—(28) are now identical to the relations
(22)—(24).

The field-theoretic method using anticommutation rela-
tions can also be used for calculating the observable sum
rule Sc(q). In this case, only positive frequency com-
ponents P'+ of the fermion fields are involved because of
the constraint ~ & q, as we have mentioned before. There-
fore, one must use the projected anticommutation rela-
tions,

where the second (infinite) term is the total proton num-
ber in the Dirac sea. Similarly, the correlation function
C(q), whose definition is given by Eq. (7), is the sum of a
Fermi sea contribution,

Ilt'+'(x), gp+' (x')
I
=

to obtain

e'" " " '[A+(k)y ] p,
k Ek

(29)

S (q)= —g d'xd'x'e' "+q'" "'(0~ P + (x)QA (k)Q+'(x') ~0)+C'+'(q)E' +
k k

(30)

where C +'(q) has the same form as Eq. (7) with all the
fields g replaced by P'+'. The calculation of Eq. (30) for
relativistic nuclear matter again gives the result (22), as it
should.

As they stand, Eqs. (23) and (24) give an infinite value
for Xc(q) because of the Dirac sea contribution. The re-
moval of divergences is a difficult task and leads to the
problem of renormalization of the starting Lagrangian. '

Keeping in mind that the remaining finite part of Xc(q)

may depend on the particular subtraction procedure
adopted, we just examine here the simple prescription of
subtracting out the vacuum contributions. In the case of
a free relativistic Fermi gas, i.e., when the self-consistent
self-energies V, and Vo are omitted, these contributions
are what remains from Eq. (24) when we set nk+q ——0 and
replace all energies Ek by free particle energies
Ek ——(k +M )' . We thus obtain the finite part of the
mathematical CSR:
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FG (Ek+q+ E~
)' q'—

Xc (q) = g ng(1 —ng+q)
k 2Ek+qEk

«k+q —E) ) —q
2 2

2Ek+qEk
(31)

In contrast to the nonrelativistic CSR which tends to Z
at large q, the relativistic mathematical CSR tends to
zero, as one can see from Eq. (31). Obviously, it is just a
mathematical object and one should not try to give it any
physical interpretation. On the other hand, if we use the
same subtraction procedure for nuclear matter, i.e., when
M &M, the remaining part of Xc(q) is finite at finite q
but increases linearly with q for M' & M.

IV. FROM THE EXPERIMENTAL DATA
TO THE COULOMB SUM RULE

Experiment gives us the longitudinal response function
RL" '(q, co) and, consequently, the longitudinal sum SL (q),
but not directly the Coulomb sum Sc(q). In view of the
particular high-q limit of the latter, which may be used as
a test of nuclear models and theories, one would like to
have a formula by which it could be obtained from the ex-
perimental data. First, let us examine what the experi-
mental results are supposed to represent by looking at the
relativistic Fermi gas model.

A. The relativistic longitudinal response function

In contradistinction to the Coulomb response function
for pointlike nucleons, which is a mathematical object, the
measured function corresponds to real nucleons having a
finite size (form factors) as well as an anomalous magnet-
ic moment. These features are contained in the nuclear
current, which is assumed of the conventional form

F2(q')
J"(q ) =FI (q )y"+i Ir o~ q„, (32)

2

F, (q )+ F,(q') =GE( q),
4M

F)(q )+aF2(q )=GM(q ) .
(33)

There is some uncertainty in the form factor Gg(q ).
The parametrizations suggested by Preston and Bhaduri'
and by Hohler et al. ' give comparable values of G~ over
a wide range of q, but Gz becomes negative when
—q )4 GeV for the parametrizations of Ref. 17. On
the other hand, the often used form

Gg(q )=x„(q /4M )Gg(q )

gives much larger values. In this work, we adopt the pa-
rametrization of Ref. 16:

where F] and F2 are the nucleon form factors and ~ is the
anomalous magnetic moment (lr =1.79 for a proton and
x.„=—1.91 for a neutron). In terms of the Sachs charge
and magnetic form factors, with p„=v„and pp: 1+Kp
being the total magnetic moments of the nucleons, F& and
F2 are given by'

Gg(q )=[1—q /(0. 71 GeV )]

GM'(q') =p„„Gg(q'),

Gg(q ) =v„[(q /4M )/(1 —5.6q /4M )]Gf(q ) .

(34)

'2
CO

X 2 Ek+ — T2
2

(35)

where

M*
T) ——F) + ~F2

M

2

T2 —— Fl — V F22 q 2 2

4M

(36)

The sum on r in Eq. (35) involves both protons and neu-
trons.

A realistic calculation of the longitudinal response (35)
must be done using the form factors F& and F2 deduced
from Eqs. (33) and (34). Notice that F& and F2 are not
equal and their difference increases with q . However,
just for the purpose of comparing our results with those
of Refs. 5 and 9, let us assume for the moment that
F~t ——F&~ F2 =F an——d F", =0, and define a simplified
response function where these factors are divided out:

RL(q, co) =RL(q, co)/
~

F
~

(37)

We note that if one calculates the sum rule SL(q) corre-
sponding to RI (q, co), its asymptotic value for

~ q ~

~ao
is only half of that given in Ref. 5. The origin of the
discrepancy is, of course, the same as we have seen earlier
for the CSR, namely the inclusion in Ref. 5 of undue con-
tributions coming from

~ q ~

&co excitations in the one-
body term as the result of the use of complete anticommu-
tation relations (15) for field operators.

Figure 3 shows the numerical results for the simplified
sum rule SL (q)/Z for M'/M= 1 and 0.56, and the non-
relativistic limit M /M= oo. The following remarks can
be made:

(i) The longitudinal sum rule depends on M*. This
dependence is, however, rather weak in the physical region
of interest (q & 1 GeV) because of a compensating effect
between the charge and magnetic contributions: When
M* decreases, the charge contributions (dominant at
small q) decrease, whereas the magnetic contributions
(dominant at large q) increase.

(ii) In Fig. 3 we also show the results of Walecka5 and
Matsui, for M'/M=1. For Walecka's result, we have
already seen that the very strong increase of SL with q is
due to the inclusion of pair contributions. Matsui s nu-
merical result is more surprising since he used the same
formulae as we do. We have checked that his result
comes from the use of the wrong sign for the proton
anomalous magnetic moment.

The longitudinal response function can be calculated
straightforwardly as in Sec. III ~ It involves only particle-
hole excitations from the Fermi sea and takes the form'

nk(l —nz+q)
RL(q, co) = g „„o(coEk+—q+Eg )

k, Ek(Eg +co)
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n„(1—n„+q}
Rc(q, co) = g 5(co —Eq+q+Eq )

E)*«k +~)
2 2

X2 Eg+—
2

1 —q /4 Ek+—
2

(38)

0.5

q/kF

To proceed further, let us assume that the quantity in the
large square brackets could be replaced by some constant
independent of the momentum k, namely that
Ek ——(M* +k )'~ could be replaced by some average
value E * =(M* +k )'~, the precise value of which will
be discussed later. The main reason for such an approxi-
mation is that, as k &kF «M*, any value of k would
make little difference. With this approximation, the
Coulomb response function becomes

2

FIG. 3. The simplified sum rule SL(q)/Z for M /M=1
(solid curve) and 0.56 (dashed curve). The long-dashed line
shows the nonrelativistic limit (M*/M= oo). The results of
Refs. 5 and 9 for M*/M =1 are also indicated. All curves cor-
respond to k~ ——1.42 fm

Figure 4 shows the results obtained by integrating the
longitudinal response function (35) for Ca, together with
the Saclay experimental data. This case is representative
of what one gets for other nuclei. The curves represent
the complete longitudinal sum rule SL(q), where the form
factors (33) and (34) are included. The Fermi momentum
is kF ——1.42 fm '. As already noticed above, SL(q) de-
pends only slightly on M'. Clearly, a fit to the data is
not possible with the Fermi gas model, unless some dras-
tic assumption is made about the form factors. "'

B. The Coulomb sum rule from experiment

Experiments give us RL"~'(q, co), i.e., for each q, a set of
data points over a range of co that is experimentally acces-
sible. Here, we propose a formula by which the CSR
Sc"~'(q) may be obtained from the data.

Let us write the Coulomb response function (21a) in the
following form:

Rc(q co)=R ~(q~co) 1 —q /4 E*+
2

(39)

where R "(q,co) can be identified from Eq. (38). The su-
perscript p for protons actually denotes only the depen-
dence on the proton Fermi momentum. One may also de-
fine similarly a function R "(q,co) for neutrons. For a nu-
cleus with Z protons and X neutrons occupying the same
volume, a reasonable approximation is R "=(N/Z)R
=kR . Using this approximation, the longitudinal
response function (35) becomes

Ri (q, ~)=R ~(q, co) (T/+A, T,")

—(T~)+A, T) )q /4 E *+—
2

2

(40)

Rc" '(q, co):—Rl'" '(q, co)/a (q, co),

~(q, ~)= (Tf+A, Tz) —(T&+A.T", )q /4 E'+—
2

2

(41)

where T' (i =p, n) are given by Eqs. (36).
Equations (39) and (40) clearly indicate the procedure to

be followed to extract the experimental CSR: Starting
from the experimental response function RL"~'(q, co), one
should define the following quantity at each energy point:

10
1 —q /4 E*+—

2

2 —1

0.3 0.4 0.5

q(GeV/c)

0.6

FIG. 4. The longitudinal sum rule SL(q) in Ca, calculated
with M*/M = 1 (solid curve) and 0.56 (dashed curve) for
kF ——1.42 fm '. The experimental data are from Ref. 7.

R&""' should be interpreted as the experimental Coulomb
response function from which the CSR is obtained by in-
tegration over the available range of co.

Obviously, such a procedure is based on the assumption
that the excitation spectrum results from a quasielastic
process with a current given by (32). Whether this is or is
not the case is another question which is outside the scope
of this paper and which may be answered only by the
comparison of theory and experiment.

Returning to the approximation that has been made to
obtain Eqs. (39) and (40), let us make the following re-
marks:
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(i) Concerning the choice of the average energy E *, we
know that 0(k (kF. The two limits of k define the
boundaries of a zone in which Sc" '(q) is supposed to lie.
A possible choice for k may be k =2ME'g, Eg being the
average binding energy of the nucleons (=16 MeV).

(ii) The factor ~ that divides RL
"~' in Eq. (41) depends

on M*, which is not known a priori. However, once a
value of M* is chosen to make the extraction, then the re-
sult must be compared with the theoretical result obtained
in a model having the same value of M*.

C. A pseudoexperimental test

As a test of the accuracy of the extraction procedure,
let us consider the pseudoexperimental results obtained in
the following way. We assume that the "experimental"
excitation spectrum, and the longitudinal response func-
tion obtained from it, is the result of a quasielastic process
induced by the current of Eq. (32). We assume, further-
more, that it is accurately described by the relativistic Fer-
mi gas model. Under these assumptions, for each value of
the momentum transfer q, we have at our disposal the fol-
lowing.

(i) A set of "pseudoexperimental" data points for the
longitudinal response function RL"~'(q, co) in the range
0 &co &

~ q ~

. They are given by Eq. (35).
(ii) A set of values for the "exact" Coulomb response

function which may be obtained from Eq. (38).
The test then consists of using the proposed extraction

procedure to deduce the "pseudoexperimental" CSR from
the "pseudoexperimental" longitudinal response function
of (i) and comparing it with the "exact" one obtained
from (ii).

Figure 5 gives, using again the parameters of Ca with
M*=M, the results of the extraction procedure corre-
sponding to the different approximations for the average
momentum: the two limiting dashed curves (k=0 and
k =kF ) and the solid curve corresponding to the optimum
choice k =2M@&. On the scale of the figure, the "exact"
Coulomb sum rule practically coincides with this solid

curve. This clearly shows the accuracy of the proposed
extraction procedure, even at relatively large values of the
momentum transfer. This conclusion remains valid for
M*&M and/or Z&X.

The above "pseudoexperimental" test also provides an
opportunity to examine the validity of other extraction
procedures. As the CSR is related to point-charge parti-
cles, all the extraction procedures consist of finding a fac-
tor, similar to the factor ~ (q, co) of Eq. (41), by which the
experimental response function has to be divided out in
order to eliminate, as completely as possible, the nucleon
form factors. The two methods that are closest in spirit
to ours are those of De Forest ' and Friar. This may be
seen as follows. The longitudinal response function is
essentially given by the squared matrix element:

~

M
~

=Tr
~
u(k+q)g u(k)

~

(Eg+ co/2)
T2 —T)q /4 Eg+E~«~+~) 2

2

(42)

~

M
~ I, o

——Gg (q )(1—q /4M )/(1 q /2M ) . — (43)

S,(q)/Z

where the u's are nucleon spinors (assuming M*=M) and
use is made of the energy conservation relation
co=E~+q —E~. Our method consists of making an ap-
proximation for the large-square-bracketed term in the
above equation, so that it can be divided out, but keeping
the energy- dependent factor that is characteristic of the
relativistic kinematics. This allows us to recover the rela-
tivistic Coulomb response function (38), where this
kinematical factor is present.

De Forest, on the other hand, preferred to recover the
nonrelativistic result and consequently proposed to divide
out the whole factor (42). Making the approximation
k =0, it can be shown that

Sc(q) /2 M'/M = 1

1,5
M = 0.56

k=k

~(a)
(b)

0.5—

0.5

q(GeV/c )

0.5
FIG. 5. The extracted Coulomb sum rule for various choices

of X. The solid circles show the exact values. Curves (a) and (b)
are obtained by using the dividing factors (43) and (45), respec-
tively. The curve (NR) shows the nonrelativistic CSR.

q(GeVic)
0,50.3 0.4

FIG. 6. The CSR in Ca extracted from the data of Ref. 7
(solid circles). The curves show the calculated CSR for two
values of M*//M.
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Obviously, within the same approximation, when this fac-
tor is divided out from Eq. (35), the result is just the non-
relativistic one, namely (neglecting neutron contributions)

+L(q ~)!~M —2/nk(l nk+q)~(~ +k+q++k)
k

(44)

with the understanding that the energy conserving condi-
tion be replaced by its nonrelativistic limit. Friar' s
prescription may be understood in the same spirit, with
the difference that, instead of the laboratory frame
(k=0), he chose the Breit frame of the nucleon by taking
k= —q/2 in Eq. (42).

Concerning the above prescriptions to extract the CSR,

let us make the following remarks:
(i) From a mathematical point of view, there is no

reason why one of the two sum rules derived from Eqs.
(38) and (44) should be preferred over the other. However,
if the sum rule is to be physically interpreted as the energy
integral of the strength of the charge operator, then only
the relativistic result (38) will be valid for any momentum
transfer q.

(ii) By including the kinematical factor whose k depen-
dence is correct only in the Fermi gas model, De Forest's
procedure may be more model dependent.

(ii) Strictly speaking, the dividing factor (43) is correct
only for protons. Since the experimental data include
contributions from neutrons, one should also add to (43)
the neutron contributions. With the parametrization (34),
the dividing factor becomes

I~ 1k=0 poto. + I~ k=o m-=Gg'(q')[i+~. (q'~4~')'~(l —5 6q'~4~')'l(l —q'~4~')~(l —q'~2~') . (45)

Clearly, the effect of the neutrons on the dividing factor is
small for all values of q . In Fig. 5 are shown the results
obtained by dividing the longitudinal response (35) by the
factor (43) [curve (a)] or (45) [curve (b)] and integrating
over co. These results should not be compared with the
relativistic CSR (solid-circles), but with the nonrelativistic
one, which the procedure is intended to reproduce. The
slight deviation of curve (b) from the nonrelativistic result
may be traced to the approximation k =0 in reducing Eq.
(42).

V. EXPERIMENTAL RESULTS AND DISCUSSION

Now that we have at our disposal a procedure to extract
the CSR that is accurate enough, at least in the Fermi gas
model, let us apply it to the experimental data. We divide
the experimental longitudinal response function at each
point (q, co) by the factor a (q, co) of Eq. (41) to produce
an experimentally extracted Coulomb response function.
The CSR is then obtained by integration over co.

Figure 6 shows the results obtained using the Saclay ex-
perimental data for Ca. On the same figure are given
the two curves representing the Fermi gas results for
M*/M=1 and 0.56. It is clear that, within the range of
acceptable values of the effective mass M*, there is no
way to reproduce the experimental results with the Fermi
gas model.

A number of possible explanations of this discrepancy
have been proposed, but up to now none has been com-
pletely satisfactory. Aside from effects of long as well as

short range correlations, which may reduce the theoretical
result by 5—10%, the two candidates that seem at first
most promising, as they may give quite sizable strength
reduction, are the following:

(i) The hypothesis that nucleons become larger in the
nuclear medium, "' with the subsequent change of the
form factors. This certainly is an exciting eventuality, as
it would mean that one starts to see already quark effects
in the nucleus. A serious shortcoming of the model re-
sides in the fact that by reducing the form factors, the
transverse response function is proportionally reduced and
would strongly deviate from the experimental results.

(ii) The relativistic mean-field approach for finite nu-
clei. Here, the reduction of the longitudinal strength is
due to the r-dependent effective mass, leading to a Percy
effect. ' The model has the virtue that it leaves the trans-
verse function almost unchanged, as required by experi-
ments. The Percy effect, however, is not sufficient to
reproduce the measured longitudinal response func-
tion 22& 23

It is obvious that more work, both theoretical and ex-
perimental, is necessary in order to have a clear-cut idea
about the origin of the missing strength. In this paper we
have laid down the basis for a comparison between theory
and experiment through the use of the CSR.
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