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The finite Pauli repulsion model of Walliser and Nakaichi-Maeda and the orthogonality condition
model are two microscopically motivated potential models for the description of nuclear collisions
which, however, differ from each other in the way they incorporate antisymmetrization effects into
the nucleus-nucleus interaction. We have used a+a scattering at low energies as a tool to distin-
guish between the two different treatments of the Pauli principle. Both models are consistent with
the presently available on-shell (elastic) and off-shell (bremsstrahlung) data. We suggest further
measurements of @+ a bremsstrahlung including the coplanar laboratory differential cross section in
Harvard geometry at a-particle angles of around 27° and the y-decay width of the 4* resonance at
E. .. =11.4 MeV, because in both cases the two models make significantly different predictions.

I. INTRODUCTION

The a+a system has served for a long time as a well-
studied tool to understand the nuclear interaction between
composite particles and to learn about the effects of the
Pauli principle on the relative motion of the fragment nu-
clei. Buck et al.! constructed an Il-independent a +a po-
tential of Gaussian form factor with which they were able
to describe the elastic @ +a data at energies E <15 MeV.
Based on the idea of the orthogonal condition model
(OCM)? they incorporated the repulsive effect of the Pauli
principle into their model via the picture of the Pauli for-
bidden states,’ which they simulated by unphysical bound
states in the potential. The treatment of the Pauli princi-
ple by Pauli forbidden states originates from microscopic
many-body theories of nuclear collisions describing the
fragment nuclei by their respective harmonic oscillator
ground state wave functions (with equal width parame-
ters) in which case it is possible that the relative wave
function of the fragments has to be orthogonal to certain
states (the Pauli forbidden states), or otherwise, these
components will lead to vanishing many-body wave func-
tions caused by antisymmetrization. For the a+ a system
these microscopic theories result in two (one) Pauli forbid-
den states for the /=0 (/=2) relative wave function,
while there is no Pauli forbidden state in the higher par-
tial waves.

Although the potential of Ref. 1 reproduces the on-shell
properties of the 2a system very well, it gives rise, on the
other hand, to the 3a overbinding problem. This means
the ground state energy of the 3a system calculated using
the potential' of Buck et al. as an effective a+a interac-
tion is lower by roughly 7 MeV compared to the experi-
mental binding energy of the '2C nucleus and should be-
come even lower if the model space for the '>C nucleus is
not restricted only to that of a configuration of three a
particles. Although the 3a overbinding problem throws
some shadow onto the justification of the a+a potential
of Ref. 1, it in itself, however, does not bare enough evi-
dence to rule out this particular a+a potential as the
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overbinding can also be explained by the existence of a
repulsive 3a interaction.

Recently, Walliser and Nakaichi-Maeda* showed that
the 3a overbinding problem can also be solved if in the
a+a interaction the Pauli repulsion is not described by
the orthogonality to strictly Pauli forbidden states—or in
other words, by the truncation of that part of relative
motion space which is spanned by the Pauli forbidden
states—but rather by a nonlocal repulsion term of finite
strength allowing also those states which are forbidden in
the OCM description to play a role in the dynamics of the
system. Combining this description of the Pauli repulsion
with an attractive local a+a potential of Gaussian form,
Walliser and Nakaichi-Maeda were able to determine the
on-shell properties of the 2a system (which they did by
comparing their results with those of the Buck et al. po-
tential rather than with experimental data as they did not
include the Coulomb interaction within their study) and
simultaneously to approximate the energies of the two
lowest 0 levels in '2C very well.

Based on this remarkable success, the treatment of the
Pauli principle in the finite Pauli repulsion model
(FPRM), as the authors called their model, might be
viewed superior to the one of the OCM. However, be-
cause of the imponderability introduced by the third «
particle, the '?C system does not allow one rigorously to
distinguish between the two different ways of describing
the Pauli repulsion. Since we believe that this question is
of vivid interest to the entire field of nuclear collisions be-
tween composite fragments, it should be settled experi-
mentally using a test case which allows for stricter con-
clusions. We will argue in this paper that studying nu-
clear bremsstrahlung in the a+a system at energies
E <15 MeV provides such a suited test case, whereby our
argumentation runs as follows: It is well known that a
particles are relatively compact and that the ¥ channel is
the only open channel in the a +a system at E <15 MeV.
These facts leads us to the conclusion that for studying
low-energy a+a bremsstrahlung, other fragmentations of
the eight-nucleon system can be safely neglected. The
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same is true for internal contributions of the a particles
considering the various quantum numbers of their ground
state. One therefore expects that in this energy regime nu-
clear bremsstrahlung in the @ +a system arises from tran-
sitions between a+a relative wave functions and might
give unambiguous information about the effects of the
Pauli principle. On the other hand, the above given con-
siderations allow us to study a+a bremsstrahlung at
E <15 MeV in the framework of a nuclear potential by
employing the effective interactions of the OCM and of
the FPRM and by looking for different predictions of the
two models. We have performed such potential model
calculations and, in fact, found that the bremsstrahlung
cross sections calculated on the basis of the OCM and
FPRM deviate from each other up to a magnitude which
is detectable by present day experimental techniques.

We would like to mention that Ref. 5 reports a similar
study to the present one discussing the different treat-
ments of the Pauli principle in the OCM and in
phenomenological models which simulate the Pauli prin-
ciple by a repulsive core.

Our paper is organized as follows. In Sec. II we will
give a brief description of the potential model for nuclear
bremsstrahlung, while the results of our calculation as
well as our conclusions are presented in Sec. I1I.

II. THEORETICAL BACKGROUND

The following presentation of the theoretical back-
ground of our study follows closely the outline given by
Refs. 5—7. In Ref. 7 Baye and Descouvemont have
developed a microscopic model to study nuclear brems-
strahlung, while subsequently in Ref. 5, a potential model
of structureless particles has been presented on the basis
of their theory. Both models have been applied to the
a +a system; the deviations between their results could be
explained in terms of differences in the nuclear phase
shifts, therefore demonstrating that a reproduction of the
(experimental) phase shifts is an important ingredient in
any meaningful study of nucleus-nucleus bremsstrahlung
and that an explicit consideration of internal degrees of
freedom is not necessary for the a+a system.” We will
study in the following, the low-energy a+a bremsstrah-
lung in the nuclear potential model of Ref. 5 employing
the a+a interaction of Buck et al. and of Walliser and
Nakaichi-Maeda (including a Coulomb part) which both
reproduce the experimental a+a phase shifts for £ <15
MeV. Note that the nuclear potential model has also been
successfully used in the study of nuclear bremsstrahlung
for other nuclear systems.®®

The y transition under consideration is of E2 type.
Hence the differential bremsstrahlung cross section
do/dE from an a4+« scattering state at energy E; in the
partial wave /; into a final state at energy E, with angular
momentum [, emitting a photon of energy E,=E;—E;
is given by>’

do  80e*(2l;+1)
dE, — 3(fic)*kksk,

(1,200 ;02| I(5ky) |2, (1)

where k;,k, are the wave numbers in the initial and final
scattering states, respectively, and k, is the wave number

of the photon (E, =#ick, ). The radial matrix element is
defined as’

1=6 [ dx g, (x)jy(kx) 2

1
dx | x gl"(X)

— 3+ D=L+ 1) 6]

o 1 d . .
X fo dx;g,/(x)g,i(x)g[sz(kx)], (2)

where j, is the spherical Bessel function of order 2. The
relative wave functions g; are determined by solving the
Schrédinger equation of relative motion
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dxz—? +VC(X)—E gl(x)

=— [dx'Vixx)g(x) )
using either the a +a potential of Buck et al.,’

X2
V(x,x")=Vopexp | — =5 |8(x —x'),

(Vo= —122.6225 MeV, a =2.132 fm), (4)
or a potential based on the FPRM,*

Vix,x")=Vyexp

8(x —x)+ X a,br(x)px’),

T a?
(@=2.132 fm), (5)

and adopting the Coulomb potential V(x) from Ref. 1.
The strength parameter V in Eq. (5) is determined below.
The second part describes the Pauli repulsion of finite
strength. It is a sum over those oscillator states forbidden
in the conventional OCM picture [these are the (Os) and
(1s) states in the partial wave / =0 and the (0d) state in
partial wave [ =2]; however, differing from the latter as
the strength parameters a, are finite (aq,=_8%w,
apg=a,;=4%w, iv=12.3 MeV, Ref. 4) rather than infin-
ity as the OCM. For the width of the oscillator wave
functions Walliser and Nakaichi-Maeda adopt b =1.4 fm.
Note that the potential of Ref. 1 can also be written in
form of Eq. (5), adopting the wave functions ¢, as the
bound states of the potential (4) and letting the parameters
a, approach infinity (a,— o).

The scattering states in Eq. (3) are normalized asymp-
totically to

g1(x)—I;(kx)—exp[2i(8; +0,)]0;(kx) (6)

with I;=(0;)* =explio;)(G;—iF,;), where F; and G, are
the regular and irregular Coulomb functions, respectively;
8;,0, are the nuclear and Coulomb phase shifts. Note
that the integrals in (3) have been evaluated numerically,
improving their convergence by employing the contour in-
tegration method of Ref. 10.

Finally we are interested in the coplanar laboratory dif-
ferential cross section in Harvard geometry where the
latter imposes the following conditions on the angles of
the a particles in the laboratory frame [Q;=(8;,¢;),
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i =1,2] and on the angle of the photon [(Q,=(6,,4,)],
for which we assume that it is identical in the laboratory
system and in the c.m. system: 6,=0,, ¢, =¢,=¢,=0,7.
The photon angle 6, is not observed in these experiments.

The desired cross section in Harvard geometry can be
most easily calculated starting from the coplanar labora-
tory cross section which is given by>’

4. s 2n o2
d3o pivssin“6sin”6, . . , . ,
= X X5, (221 —1]j0)I1;00]'0)(;1;00| JO)
d0,d0,d6, W(Zﬂﬁ)4ﬁsin5(9}+02)§ iy 2 |JO)U; 17001 j°0)(J; ;00 |
Il
lIp 2
X 1l 2 Y08 Y] @)

The momentum of the incident particle is p; vy is the
relative velocity in the exit channel. The various c.m.
variables appearing in (7) have to be calculated as func-
tions of the laboratory angles, which in Harvard geometry
is rather straightforward, yielding’

E7,=E,~(l—tan261) ,

Q,=0.
Finally, the quantities X, , are defined in the present case

(8)

as
X,i,f:i’f*’f+2:4/91_77—2<21f+1)(21,.+1)
% exp[2i (8, +01.)] -5 b2
exp[2i (8; +o0,)]—
i s ck, 0 00
1 3/2
— | I(%k,). 9
> (k) )

The coplanar laboratory differential cross section is then
obtained from Eq. (7) by integration over the photon angle
6, and by multiplication with a factor 2 to account for the
case of identical nuclei.

III. RESULTS

The first step we have to take in evaluating the brems-
strahlung cross sections is to calculate the a+a relative
wave functions in the initial and final states. However, in
doing so we face the problem that the a +a potential has
been determined in Ref. 4 without considering the
Coulomb interaction and has consequently been compared
previously only to other theoretical results rather than to
experimental data. Although the Coulomb interaction is
known to be rather small in the a+a system we found
that by simply adding the Coulomb potential, which has
been used in Ref. 1, to the FPRM interaction does not
reproduce the experimental a + a phase shifts well enough
to allow for a meaningful study of nuclear bremsstrah-
lung. We have therefore refitted the local part of the
FPRM potential by adjusting its strength parameter to the

o

[

experimental a+a phase shifts and by adopting the
Coulomb part of the a+a potential from Ref. 1. We find
that by slightly lowering the depth of the local Gaussian
potential to Vo= —118.065 MeV (in Ref. 4 the parameter
Vo= —117.427 MeV has been used) the experimental
phase shifts in the partial waves / =0 and / =2 are well
reproduced at energies E <15 MeV including the broad
2% resonance at E =2.9 MeV. Furthermore, we can state
that the potential exhibits a narrow resonance in the par-
tial wave /=0 corresponding to the experimental ®Be
ground state at E =92.1 keV with an experimental width
of '=6.8+1.7 eV.!! However, due to numerical inaccu-
racies, we are not able to determine the exact energy posi-
tion of this resonance in the FPRM. Note that this is at
variance with the potential of Buck et al., which is known
to reproduce the properties of the ®Be ground state reso-
nance. The numerical inaccuracies are caused by the fact
that the FPRM potential is nonlocal, while the potential
of Ref. 1 is a local one [see Egs. (4) and (5)].

The FPRM potential as determined for the partial
waves [ =0,2 does not reproduce the experimental phase
shifts in the partial waves / >4. Since it is the goal of the
present paper to derive some experimentally detectable
differences in the a+a bremsstrahlung cross sections
caused by the different treatments of the Pauli principle
in the conventional OCM picture and the FPRM and
since there are no effects of the Pauli principle in partial
waves / >4 in both models, we simply adopt the potential
of Ref. 1 for determining the relative wave functions in
the partial waves / >4. In Fig. 1 we compare the a+a
phase shifts calculated with the potential of Buck et al.
and within the FPRM using the presently adjusted poten-
tial with the experimental phase shifts. Based on the ex-
periences given in Ref. 5, the reproduction of the experi-
mental data is good enough in both cases to be confident
that possible differences showing up in the bremsstrah-
lung cross sections calculated on the basis of the two
models are not caused by trivial differences in the nuclear
phase shifts.

Having determined the initial and final nuclear wave
functions, we are able to calculate the bremsstrahlung
cross sections. Considering that the only experimental in-
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FIG. 1. Comparison of the a+a phase shifts calculated from
the potential of Buck et al. (Ref. 1, solid line) and from the
present FPRM potential (dashed line) with the experimental
phase shifts (Ref. 14) in the partial waves /=0 (open circles)
and / =2 (solid circles). In the partial wave / =4 (squares) the
two potentials have been assumed to be identical.

vestigations of a +a bremsstrahlung at low energies have
been performed in Harvard geometry choosing the labora-
tory angles to be 8;=35° and 6,=37° (Refs. 12 and 13),
we have calculated the corresponding coplanar laboratory
differential cross sections at these angles to check at first
whether the two different a+a interactions of Refs. 1
and 4 are consistent with the existing experimental data.
The calculated cross sections are displayed in Fig. 2.
Several observations are important for the present study
as we will discuss in the following:

(1) For both a +a potentials the overall agreement with
the data at 6,=35° (Ref. 12) is good; they also produce the
data at 6,=37° (Ref. 13) for E; <6.5 MeV. As has been
pointed out similarly in Refs. 5 and 9, the calculations do
not show the structure seen in the experimental cross sec-
tions at E; =~6.5 MeV. In Refs. 5 and 7 it was doubted
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FIG. 2. Laboratory differential cross sections in the Harvard
geometry at 6, =0,=35° and 37° calculated from the potential of
Buck et al. (Ref. 1, solid line) and in the FPRM (dashed line).

The experimental data are from Refs. 12 and 13.

that this structure has a physical reality.

(2) The two potentials result in nearly identical cross
sections at energies E; <7.5 MeV for 6,=35°and at E <7
MeV for 6,=37° at higher energies the cross sections cal-
culated withing the FPRM are always slightly larger than
calculated for the a + a potential of Ref. 1.

Combining the observations (1) and (2), we like to con-
clude that both potentials are consistent with the presently
available data and more experimental information is need-
ed to distinguish between the two different treatments of
the Pauli principle. In the following we want to discuss
where to look for in future experiments.

To understand what kind of experiments we are looking
for, one has to recognize that it is the effect of the Pauli
principle on the relative wave functions we are after. It is
well known that the effects of the Pauli principle are short
ranged and therefore one can only expect to find clues
about how the Pauli principle influences the relative wave
functions, if the experiment is set up also to probe the nu-
clear interior region. To get an impression about the devi-
ations caused by the different treatment of the Pauli prin-
ciple in the OCM and in the FPRM, we have displayed
the / =0 and [ =2 scattering states at £ =3 MeV as cal-
culated in the two models in Fig. 3. Note that the /=2
state is at resonance at this energy. One clearly observes
from Fig. 3 that the range of the Pauli principle is rough-
ly 3.5 fm; for separations larger than that, the two respec-
tive wave functions are identical as they are calculated
from phase-equivalent potentials. For distances x <3.5

x (fm)

FIG. 3. Comparison of scattering wave functions at E =3
MeV in the partial waves / =0 and 2 calculated from the poten-
tial of Buck et al. (Ref. 1, solid line) and in the FPRM (dashed
line). The vertical scale is in arbitrary units.
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fm the Pauli repulsion is active in both models leading to
the typical nodal structure in the wave functions associat-
ed with the Pauli forbidden states. However, one also ob-
serves that the different treatment of the Pauli principle
in the two models results in slightly different positions of
the nodes and in different amplitudes of the oscillations in
the wave functions at short distances. One can therefore
expect that experiments which involve transitions from or
into / =0 or / =2 nuclear states (remember that there are
no effects of the Pauli principle in the partial waves [ >4)
and which are sensitive to the nuclear interior region
x <3.5 fm might allow one to distinguish between the
two suggested treatments of the Pauli repulsion. We will
discuss in the following that this is indeed the case, but
first we like to mention that for the desired experimental
distinction it is not sufficient that only one of the nuclear
states involved is at resonance, while the other is non-
resonant.

This supposition is confirmed by the results shown in
Fig. 2. The strong increase of the cross sections in the en-
ergy range E; ~5—7 MeV is caused by the fact that the
capture transitions in this energy regime lead partially to
the broad 2% resonance in the final channel. However, we
do not find differences in the predicted cross sections cal-
culated from the potential of Buck et al. and in the
FPRM caused by the fact that the initial states in this en-
ergy regime are all nonresonant.’

To look for suited inter-resonant transitions in the
a+ a system, one has to consider that in the OCM as well
as in the FPRM a Pauli repulsion is only active in the
partial waves /=0 and /=2. This suggests that one
should look for the present purposes for experiments
which are sensitive to the electromagnetic transitions be-
tween the lowest 2% and 0" states and lowest 4 and 2
states in ®Be.

Ideally one likes to measure the ¥ width of the 2% reso-
nance in ®Be at E =2.94 MeV, as in this case the nuclear
interior region of both the initial and final states are af-
fected by the Pauli principle. Unfortunately we were not
able to calculate within the FPRM the E 2 transition from
the 2% resonance into the 5Be ground state due to the
above mentioned numerical problems we had with the fi-
nal narrow resonant state.

However, we are able to make some quantitative predic-
tions about the expected outcome of future experiments
involving the resonant transition from the broad 4% reso-
nance in 5Be at E ~11 MeV into the 2% state at E =2.94
MeV. One possible kind of experiment is to measure the
laboratory differential cross sections in Harvard geometry
choosing the angle 6, appropriately. Note that in the pre-
vious experiments the angles correspond to ratios
E,/E;=0.43 (6,=37°) and 0.51 (6,=35") and hence the
discussed resonant transitions have not been observed in
full strength. It should, however, be emphasized that the
difference between the laboratory cross sections calculated
from the potential of Ref. 1 and in the FPRM for angles
6,=35°,37° and at energies E; >8 MeV (see Fig. 2) are
caused by the onset of the resonant transition as the corre-
sponding energies correspond to transitions from the low
energy wing of the 4™ resonance into the high energy
wing of the 2% state.
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FIG. 4. Laboratory differential cross sections in the Harvard
geometry at 8, =6,=27.5° calculated from the potential of Buck
et al. (Ref. 1, solid line) and in the FPRM (dashed line).

To match the two resonances optimally the angle 6,
should be chosen as 6,~27.5° (E, /E;=~0.73). In Fig. 4
we have displayed the laboratory differential cross sec-
tions in Harvard geometry for this angle calculated for
the potential of Ref. 1 and in the FPRM. The cross sec-
tions for both potential sets clearly exhibit a resonant
structure reflecting the dominance of the 4% to 2% transi-
tion. More interesting for the present discussion is the
finding that the FPRM predicts over the entire energy
range larger cross sections than the potential of Buck
et al. On top of the 4™ resonance, the FPRM estimates a
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FIG. 5. Bremsstrahlung cross sections for the transition from
the 4* resonance in the entrance channel into the 2% resonance
in ®Be, integrated over the energies of the final resonance, as cal-
culated from the potential of Ref. 1 (solid line) and in the
FPRM (dashed line).



1636 D. KROLLE, H. J. ASSENBAUM, C. FUNCK, AND K. LANGANKE 35

cross section of roughly 26 ub/sr’ which is some 35%
larger than the predictions of the potential of Buck et al.
(19 ub/sr?). Based on experimental accuracy achieved in
the measurements of the cross sections at 6,=35° and
6,=137°, we are quite convinced that the differences in the
cross sections predicted by the two models are large
enough to be resolved by a measurement of the laboratory
cross sections in Harvard geometry at 60, =27.5°.

Another experiment which allows us to distinguish be-
tween the two different treatments of the Pauli principle
is the determination of the ¥ width of the 4% resonance at
E =11 MeV due to E2 decay. We have calculated the y
width of the 4% resonance from Eq. (1) by integrating
over the energies of the final 2% resonance covering the
range Er=2—4 MeV. Our results are shown in Fig. 5.
We find a maximum cross section on top of the resonance

of ~130 nb for the potential of Ref. 1 and of ~180 nb
within the FPRM. Approximating the o(E) cross sec-
tions near the resonance energy by a Breit-Wigner param-
etrization, we find the quotient ', /T, ~1.2X 1077 for
the potential of Buck et al. and ~1.7X1077 in the
FPRM. Adopting the calculated a width of the 4™ reso-
nance as its total width (', =~ 3.85 MeV), these ratios cor-
respond to y widths of T',=0.45 eV (19 W.u.) and of
~0.64 eV (26 W.u.), respectively. Again, we are con-
vinced that the differences in the predictions of the two
models are large enough to be resolvable by experiment.
Such experiments might be either direct measurements of
the capture cross sections or indirect measurements in
which reactions like ''B(p,a)®Be are used to populate the
4% resonance, and then the I, /T ratio is determined
from a-y-coincidence measurements.
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