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The coupled channel method for heavy ion scattering is greatly simplified by suitable transfor-
mations of wave functions in the case of large reduced mass.
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with

i = [(ItIz)I,L] and j=[(IiI2)I',L'] . (2)

The wave function u; (r) satisfies the following boundary

The coupled channel method is quite useful in treating
collective excitations enhanced in nuclear scattering. '

This method has succeeded remarkably in describing
scattering with a small reduced mass such as nucleon-
nucleus scattering' and scattering between light nuclei.

For heavy ion scattering with large reduced mass, on the
other hand, it is quite difficult to perform the coupled
channel calculation using current computational codes. It
is because low-lying collective states of high spin coupled
to the scattering system generate a large number of sub-
channels of diAerent orbital angular momenta, L. Then
the total number of coupled channels can be very large.

Furthermore, at energies well below the Coulomb bar-
rier, the coupled channel method is not feasible in the
fusion calculation. Otherwise, one needs too high a nu-
merical accuracy in solving the coupled equations. This
difficulty is closely associated with the strong L depen-
dence of the wave function at energies well below the bar-
rier.

In this paper we present a feasible method of solving
coupled equations for inelastic scattering under the as-
sumption that the factor of L(L+1) in the centrifugal po-
tential can be replaced by J(J+1), where J denotes the
total angular momentum. We show that this method
significantly resolves the difficulties noted above.

We start with coupled equations for inelastic scattering
between two nuclei for the total J

condition:
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where 1=42I+1. Here W(JLI'1, :IL') and (I I I Qi I I
I')

denote the Racah coefficient and the reduced matrix ele-
ment, respectively.

Now we consider a heavy ion collision where the re-
duced mass is large enough that Ii I /(2pr ) is neglected
near the barrier distance rb. Then we make a possible ap-
proximation:

Ii L(L+1) Ii J(J+1)
2p r2 2p r2

The diference between right- and left-side values in Eq.
(6) at r =rb amounts at most to It IJ/(prg). At energy
below and near the Coulomb barrier (the grazing angular
momentum =0), 6 IJ/(prb) becomes quite small. At

(3)
where Fq and HL are the regular and the outgoing
Coulomb wave functions, and k; denotes the wave number.
The T matrix TJ is defined by S;J =b;z —2ttTJ. U(r)
denotes the optical potential, et, &t,) the excitation energy
of spin I~(I2), and I the total spin. The interaction V is
generally expanded by the spherical harmonics Y&„as

V=+ V (r)Q„t„(1,2) Y„„(r), (4)
Xv

where Qi„(1,2) represents the operator of collective exci-
tation for the total system. With the interaction (4) the
matrix element (i I VI j) is reduced to the following form
with the help of the Wigner-Eckart theorem:
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energy well above the Coulomb barrier all the subchannels
for a given (I)I2)I, i.e., ) I,L =J—I),

~
I,J—I+2), . . . , ~ I,L+I), may be more or less equally

enhanced by the coupling interactions of roughly the same
strengths. This may allow one to average the centrifugal
potentials on L's, resulting roughly in Ii J(J+ I )/(2p»2).

We make a transformation of u; to @~I,l,~q under the as-J J
I

sumption (6):

err(r, r, ) =g (JOIO I LO)u;
L

This transformation assures the normalization property of
the transformed wave function. Then the original coupled
equation (1) is transformed as

(E —Hl 1 1)i)r(rr, )1= g g( —)") V)(I'O~OIIO)&(I1I2»I I Q. I I (IiI2)I )'W(r, 'I')I
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In deriving Eq. (9) we have utilized the following relation:
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where a, b, c, d, e, and f stand for angular momenta.
The wave function y(r, r, )r satisfies the following bound-

ary condition:

l

large in total.
In the conventional coupling interaction, which is usual-

ly given by the first order term in expansion on collective
variable, the coupled equations are further reduced. The
interaction is written as

V = g V~(r )Q„t„(1)Yi „(r) +g Vi (r )Qzt„(2) Yq „(—r),
A, v

(i2)
where Qq„[1(2)] denotes the collective operator of nucleus
1(2).

Here we make another transformation, which also as-
sures the normalization property of the wave function:
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which satisfies
where the suffix I specifies the channel (I(I2)I.

In contrast to Eq. (1), the reduced coupled equation (8)
does not depend on L, i.e., the subchannels. Consequently,
the number of coupled equations in Eq. (8) is equal to that
of the total combinations of (I(I2)I, while the original
equations specified by index [(I(I2)I,L] number I+1 for
each I in the normal parity spins and thus can be very
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where the suffix n specifies the channel (I(I2).
Then we find
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This equation does not depend on I or L, so that the num-
ber of the coupled equations is equal to the combinations
of spins Ii and I2.

Let us consider, for example, a scattering between two
different nuclei taking into account states of 0+, 2+, and
4+ for each nucleus. The number of coupled equations
(1), (8), and (15) are, respectively, 117, 29, and 9 for even
J(J~ 8). Therefore, we see that a coupled channel calcu-
lation using Eq. (1) is not practical for this system, but
calculations using both Eqs. (8) and (15) are feasible.

The numerical inaccuracy increases with decreasing en-
ergy below the Coulomb barrier when one solves the cou-
pled equations given by Eq. (1). The strong L dependence
of the magnitude of wave functions at the matching radius
may lead to divergence of the 5 matrix in the iterative
method. The present model resolves significantly this
problem, since both Eqs. (8) and (15) do not depend on L,

l

i.e., assume L =J.
Let us make numerical comparisons between the exact

and the reduced coupled channel methods. Since the re-
duced method contains only one partial wave L =J in each
(I)I2) I channel, it is a critical test of the model to com-
pare the inelastic angular distribution with the exact pre-
diction, which contains the interference among different
L's for each channel. To see the validity of the model with
variation of energy, we compare the energy dependence of
the fusion cross section.

We calculate the elastic, the inelastic, and the fusion
cross sections for Th+ ' O. Since the system has a
large reduced mass, the eff'ect of spins of low-lying states
on the centrifugal potential may be negligible. We, for
simplicity, take into account only the ground state and the
2+ (0.049 MeV) state in Th. The optical potential is
assumed to be of the Woods-Saxon form with the parame-
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12 10 TABLE I. Fusion cross sections for Th+ i60.
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ters V= —100 MeV, 8'= —20 MeV, ro=ri=1. 3 fm, and
ao=ai=0. 5 fm for elastic and inelastic scatterings. For
the fusion calculation the range of absorption potential is
determined so it will fit the cross section by the one-
channel WKB method: ri=1.15 and ai=0.25 fm. We
calculate fusion cross section by the usual prescription,

~F =~)('g(2J+ I » —g I ~;i I

'

where 5;~ =6;~ —2niT;~.
The coupling interaction is assumed to be the one given

by the left side of Eq. (15), i.e. , the first order derivative of
the optical potential on the deformation with the parame-
ter Pq=0. 25 (no Coulomb coupling and no reorientation
eA'ect).

In solving the coupled equation, we modified the Fox-
Goodwin method to speed up the calculation: The sub-
channels are suitably rearranged so that the nonzero ele-
ments in the matrix of simultaneous equations come close
to the diagonal elements. By this rearrangement the com-
puting time is greatly reduced, which is proportional to N

FIG. 1. Elastic and inelastic angular distributions for
' 0+ Th at E~,b =80 MeV. Solid and dashed curves show the
reduced and exact coupled channel results, respectively. In the
elastic cross sections the solid curve coincides with the dashed
curve.

(N =the total number of coupled equations), while the
time in the conventional Fox-Goodwin method is propor-
tional to N (as shown in Ref. 4).

Figure 1 shows the elastic and inelastic angular distribu-
tions at E~,b =80 MeV, which corresponds to the Coulomb
barrier height. The reduced method of Eq. (15) produces
almost the same elastic angular distribution as the exact
prediction (error (1% in each angle). It also reproduces
quite well the exact inelastic cross sections, except at back-
ward angles. This indicates that the interference of the T
matrix between diAerent L's becomes effective at back-
ward angles. However, this eA'ect may not be important in
the total inelastic cross section, since the backward cross
section is relatively small. Indeed, the reduced method
predicts the total inelastic cross section of 3240 mb, which
is close to the exact vaue of 3244 mb. It was found that
with decreasing and increasing energy the reduced method
reproduces the exact inelastic angular distributions, re-
spectively, worse and better than it does as seen in Fig. 1.

Table I shows the comparison of the fusion cross section
at energies between well below and well above the
Coulomb barrier. Obviously the reduced coupled channel
method gives excellent agreement with the exact one given
by Eq. (1). The error lies within 1%.

In conclusion, we have shown that in the scattering sys-
tem of a large reduced mass the coupled equations are
greatly reduced by the relevant transformation, especially
in the coupling interaction of the first order expansion of
the collective operator. We have also shown from the sim-
ple numerical comparisons that the reduced coupled chan-
nel method gives good approximations to the exact predic-
tions in the elastic angular distributions, the fusion, and
the total inelastic cross sections. The diAerence comes out
in the backward cross sections in the inelastic scattering,
although the magnitude is relatively small. It is interest-
ing to investigate further the validity of the reduced cou-
pled channel method in various systems.
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