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The structural instabilities or general nonthermodynamic phase transitions of the time-dependent
Hartree-Fock flow on the Bloch sphere are investigated for different SU(2) model Hamiltonians by
means of a simple geometrical construction. In particular, the generalized Lipkin-Meshkov-Glick
model is found to exhibit a variety of instabilities, opposite to the standard Lipkin-Meshkov-Glick
model which possesses only one ground-state (thermodynamic) phase transition. The relationship
between the fixed points of the time-dependent Hartree-Fock flow and the tangency points between
energy surfaces and the Bloch sphere is established. It is found that different Hamiltonians of the
class under study give rise to flow patterns whose invariant sets may contain either rotations or li-
brations, which in turn may be degenerate as well as nondegenerate, in contrast to previously investi-

gated models.

I. INTRODUCTION

The models for structural and dynamical features of
many-body systems based on Hamiltonians that commute
with the Casimir operator of a Lie algebra have deserved
attention in nuclear physics.! =¥ In particular, a two-level
model for fermions interacting via a monopole-monopole
force originally proposed by Lipkin, Meshkov, and Glick!
(LMG) can be formulated with exclusive resort to the gen-
erators of an SU(2) algebra. This property made room, on
one hand, for the classification of the spectrum of the sys-
tem with respect to the irreducible representations of the
rotation group,' and on the other, to the establishment of
a Hamiltonian flow on a compact Grassmann
manifold—the Bloch sphere—as the manifestation of the
mean field dynamics arising from the time-dependent-
Hartree-Fock (TDHF) procedure.’

The self-consistent phase diagram of the so-called stan-
dard LMG model has been investigated by Kan et al.,’
and several authors have contributed as well to clarifying
this interesting problem from several viewpoints.!°—1°
Departures between the TDHF and the exact dynamics
have been ascribed to the fact that the former gives rise to
two degenerate regions with local trajectories in phase
space,'!® and an alternative approach to a mean field
description of the motion has been proposed!® with good
perspectives. Since the appearance of degenerate invariant
sets in phase space is related to the parity symmetry of the
standard LMG Hamiltonian, a challenging task has been
the study of an SU(2) model for which such a symmetry
has been suppressed.!® The present work aims at an inves-
tigation of the TDHF evolution undergone by model sys-
tems with SU(2) Hamiltonians that combine the features
of both the standard and the generalized LMG models
with those of the parity-nonconserving model of Ref. 19.

For this purpose, in Sec. II we present an SU(2) Hamil-
tonian that contains a parity conserving and a parity-
nonconserving interaction and express the TDHF equa-
tions of motion as a vector Euler equation for the expecta-
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tion value of the quasispin vector operator. It is then seen
that the collective trajectories of the TDHF flow are ob-
tained from a simple geometric construction. This
viewpoint allows for a qualitative inspection and charac-
terization of structural instabilities of the phase flow—
catastrophes—that is extensively illustrated in Sec. III for
the general LMG model. Both the orbits on the Bloch
sphere and in the TDHF phase space are provided, the
latter being just mappings of the former. In Sec. IV, the
parity nonconserving interaction is introduced and it is
seen that the effects of symmetry breaking manifest them-
selves as the appearance of a set of orbits not present in
the former situation, i.e., nondegenerate librations. Some
exact calculations and their relation to the TDHF flow are
shown in Sec. V. Finally, the summary and conclusions
are presented in Sec. VL

II. TDHF DYNAMICS OF THE QUASISPIN VECTOR
FOR THE GENERAL SU(2) HAMILTONIAN

On the grounds of a two-level model with spacing € for
a many-fermion system with N =2 J particles, one usual-
ly introduces a quasispin vector operator J whose com-
ponents yield a basis for an SU(2) algebra.!~'° In order to
test some method in many-body physics, devised for ei-
ther structural or dynamical investigations, one then pro-
poses a Hamiltonian H@) that commutes with the
Casimir operator 3.3, whose spectrum consequently lies
on the irreducible representations of the SU(2) group. In

this work, we choose the Hamiltonian,
A=+ L3443+ 243,7 )

U, ~ ~ A A
(VAP ADE

where the curly braces denote the anticommutator. This
Hamiltonian belongs to a class that extends the one origi-
nally proposed by Abecasis, Faessler, and Plastino® (the
AFP model) to generalize in a nontrivial fashion the tradi-

(2.1
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tional LMG Hamiltonian! (corresponding to an interac-
tion strength U =0) so as to allow for one-particle—one-
hole excitations. The most important feature of the AFP
Hamiltonian is its parity-nonconserving character,?! and
recently, the TDHF dynamics for the case V' =W =0 was
examined. !’

For the current study we have decided to work in the
space of the g numbers (Fy=7 instead of the phase
space,”!>1317:18 since the geometry of the orbits can be
more straightforwardly described in the former. Indeed,
the motion of the so-called polarization vector J is given
by a vector expression, independent of the system of coor-
dinates. This fact presents us with two additional advan-
tages: On one hand, we may be able, in a number of situa-
tions, to find more convenient canonical coordinates than
the traditional ones;”!%'>171®8 on the other hand, in J
space one is prevented from encountering spurious singu-
larities such as those associated with mapping the poles of
the Bloch sphere on the (g,p) plane,”'’~! where
g =tan—Y(J, /J,) and p =J,.

As far as TDHF dynamics is concerned, it is well estab-
lished that it is a variational dynamics on a manifold of
coherent states—the Bloch sphere.?»?3 It is easy to show,
resorting to disentangling formulae,?? that on such a man-
ifold, the expectation value of a two-fermion operator
built out from the quasispin factorizes as

A —1

<TI%{Ji’Jj} §T>:—ANN—J1'J_,‘+'I4¥5U (2.2)

for i,j =x,y,z. With this prescription, we obtain, for the
model Hamiltonian (2.1), a TDHF Hamiltonian,

6—1HTDHF=E—1<T|I?|T>

1 1 X wJ
=J,+ §X+J§+ EX_J,,Z-F 7JxJz + —~
(2.3)
with the mean field strengths
XizNe_l(WtV), (2.4a)
== 6—1 U (2.4b)

It is clearly seen that Eq. (2.3) defines a family of quad-
rics, whose intersections with the Bloch sphere determine
the TDHF orbits. On the other hand, these orbits are the
locus of the polarization vector whose motion is given by
Ehrenfest’s theorem,

i%:(r} (3,877 . 2.5)
One should notice that the model Hamiltonian is of the
form

H=03+13&7, (2.6)

with & a symmetric matrix. Angular momentum commu-
tation rules then yield

d A A
E;Ji =€ QT+ Topen ({1} 2.7

whatever the reference state | ). In Eq. (2.7), the symbol
€;jx denotes the totally antisymmetrized tensor. Now, ac-
cording to Eq. (2.2) we have on the Bloch sphere

d

N—1
EI_J[ :Gijkﬂj']k +ox —“‘—N JjeikIJI

N -1
Qj +a1j——J1

~ Ji (2.8)

= €ijk

that can be written in an abridged way as a vector formu-
la,

d

EJ=VJHTDHFXJ (2.9)
if we agree on an extension of expression (2.3), otherwise
valid just on the Grassmann manifold, to the full J space.
It becomes then clear that whenever the interaction matrix
& is different from zero, the TDHF dynamics (2.8) and
the exact one (2.5) coincide if and only if the polarization
vector touches the Bloch sphere.

For the Hamiltonian under consideration, Eq. (2.8) then

yields the system

_19Jx X_ X
€ o =—J, l——J—Jz —-7.]ny , (2.10a)
aJ X X
—1 ¥y + 2 2
—_— = 1— e - ’ .
ety |+ =T (2.10b)
_,4J;
€ dr =X =X_WJ,+XJ,J, . (2.10c)

1II. THE TDHF ENERGY SURFACES
AND ORBITS OF THE GENERAL LMG MODEL

As quoted in the preceding section, the LMG Hamil-
tonian arises from (2.1) when the interaction strength U
vanishes. For the sake of limiting the possibilities that
may appear, we will restrict ourselves to positive parame-
ters ¥V and W, implying X >0, both in this and in the
following section. We then consider three cases, accord-
ing to whether X _ is equal to, larger than, or smaller than
zero.

A. X_=0

In this case the quadrics (2.3) are parabolic cylinders,
their axis aligned with the direction J,. If X <1, the
curvature of the parabolas on the (Jy,J;) plane at the
north pole is smaller than 1/J, the curvature of the
sphere. Accordingly, the intersections are single curves
linking the J, axis, and the phase diagram exhibits only
rotations. The north (south) pole corresponds to an abso-
lute energy maximum (minimum), and no orbit degenera-
tion exists. This situation is illustrated in Fig. 1, where
the trajectories of the TDHF polarization vector on the
Bloch sphere and the corresponding phase diagram are
displayed for X , =0.5.

When X, reaches the value unity, a phase instability
takes place, since the curvature of the parabola at the
north pole equals that of the sphere. Higher values of X
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J,/J (a)

® ABSOLUTE MAXIMUM
© ABSOLUTE MINIMUM

FIG. 1. The trajectories of the TDHF polarization vector on
the Bloch sphere (a) and the corresponding phase diagram (b)
for the selection X =X _=0,X, =0.5. The arrow in part (a) indi-
cates the direction of the velocity J. The axes follow the usual
right-hand convention, i.e., the J, axis is an outgoing one.

determine that those energy surfaces with their vertices at
any location J, such that J <J, <J (1+X,)/2 intersect
the sphere twice. This fact gives rise to two sets of orbits,
symmetrically located and energetically degenerated, that
do not link the J, axis and represent local oscillations or
librations. This is illustrated in Fig. 2 for X, =1.5. In
this case, two absolute (identical) maxima appear with
coordinates (J /X  )(+(X% —1)!2,0,1) in J space.

For strong interactions X , >>1, the TDHF Hamiltoni-
an reads

Hpup~ %XJ,? , (3.1)

indicating that the energy surfaces are essentially planes
lying parallel to the (J,,J;) one. Notice that although the
expression of the TDHF Hamiltonian is very simple in
quasispin representation, it becomes more involved in the
(g,p) coordinates (cf. Sec. II for the relationship between J
and gq,p). In this case, however, a proper selection of
canonical coordinates is p'=J, and g’ equal to the axial
angle with respect to the J, axis. Any possible motion is

31 (a)

FIG. 2. Same as in Fig. 1 but for an interaction strength
X +=1.5. It is seen that the elliptical point at the north pole in
Fig. 1 has undergone a pitchforklike bifurcation into a saddle
and two symmetric elliptic points.

just a rotation around this axis with a period

21 2wJ
T == (3.2)
TDHF i X .p
B. X_<0

In this range of interaction parameters (V > W) the
quadrics are one-sheet hyperboloids. Kan et al.’ investi-
gated the phase diagram in the case W =0 that consti-
tutes the most popular version of the LMG model. In
this case, X, = —X _, and the eigenvalues of the quadrics
are identical. When the common value | X | is less than
unity, only rotations occur. When X, =1 X_=-1), a
phase transition occurs, consisting of a simultaneous
departure of both absolute extrema from the poles and the
appearance of degenerate librations centered at the elliptic
points (J/X  N(+(X%4 —1)172,0,1) and (J/|X_ | )0, +(X?
—1)2,—1) at the northern and southern hemispheres,
respectively. This degeneracy can be viewed, on a geome-
trical basis, as a consequence of the fact that the vertex of
the hyperboloid lies off the sphere on the J, axis; one can
realize as well that the energy maxima at the northern
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hemisphere correspond, for given X, to those points
where a quadric becomes tangent to the sphere. The same
happens when X is different from X _, and can be appre-
ciated in Fig. 3 for X, =2 and X_=—1.5, where it is
clearly visualized that the maxima and minima are not
symmetrically located with respect to the equator as in the
case examined in Ref. 9. In the present case, two different
phase transitions have taken place, one for X _= —1 af-
fecting the south pole, the other for X | =1 involving the
north pole.

C. x_>0

The family of quadrics consists of a set of elliptic para-
boloids. When both X, and X_ are smaller than unity,
only rotations can take place. When X, =1for X_<1, a
bifurcation occurs that splits the maximum at the north
pole into two degenerate elliptic points at the location
J7xX N i(Xi —1)172,0,1). If, moreover, X_ increases

(a)

FIG. 3. Same as in the preceding figures for X=0, X, =2,
and X_=—1.5. It is seen that the elliptic point at the south
pole in Figs. 1 and 2 has undergone a pitchforklike bifurcation
into a saddle and two elliptic points. Only the elliptic point lo-
cated “in front” of the sphere is drawn. Notice that the separa-
trices going from the equator through the north pole or around
the elliptic points through the south pole are mapped on curves
with slope discontinuities in phase space. The latter is nothing
but a convention to express the continuity of such trajectories
and simply puts into evidence the impossibility of mapping a
sphere on a plane.

A SADDLE POINT
[J RELATIVE MINIMUM

| " Yo

FIG. 4. Same as in the preceding figures for X =0, X . =2,
and ¥ _=1.5.

while keeping X _ <X, and the latter at a value above uni-
ty, a second instability occurs that creates two rotation
zones. This is illustrated in Fig. 4 for X, =2,X_=1.5,
where one can appreciate the presence of two hyperbolic
points on the (J,,J,) plane with ordinate J,=J/X_. In
this case, the north (south) pole is a relative (absolute)
minimum. Since there exist now two saddle points lying
between the two rotation regions, the orbits closer to the
north pole possess degenerate partners below the separa-
trices.

If X, =X_ the quadrics become circular paraboloids
and the phase diagram presents horizontal lines, degen-
erate on both sides of the circumference J,=J/X if
X+ > 1, where the quadric is tangent to the sphere. Any
orbit has a period T =2m/e(J —X ,J,). It is worth notic-
ing that in this case the circumference J, =J /X consists
of energy maxima, each point being thus a fixed point. In
other words, the maximum is a line rather than a single
point as in the examples discussed above. In addition, all
energies in the interval eJ[1,(X . +1)/2] are degenerate.

IV. THE TDHF ENERGY SURFACES AND ORBITS
OF THE SYMMETRY-BREAKING HAMILTONIAN

In a previous work!® we presented a discussion of the
TDHF phase portrait of the Hamiltonian (2.1) with
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V=W =0. In this case, the quadrics are two-sheet hy-
perbolic cylinders bearing the J,, axis as a degeneracy axis.
In the most general case with nonvanishing V, W parame-
ters, the eigenvalues A and eigenvectors v of the quadrics
read,

Ao=X_, vo=(0,1,0), (4.1a)

) (4.1b)

A
Ae=X[m*t(m?4+1)?], vi= [—){3,0,1

with m =X, /2X. One realizes that if the three interac-
tion strengths X, X_, and X are simultaneously con-
sidered, a variety of quadrics appear according to the
many different ways of ordering these parameters and
selecting their signs. Far from making an attempt to clas-
sify the various possibilities, we would rather discuss in
detail a pair of examples so as to draw attention to the
richness of flows one has at hand. We will restrict our-
selves to the choice X _ =0, since in this case the J, axis is
a translation axis. Furthermore, this means V =W, so we
are disturbing the flow in Sec. III A; Fig. 5 illustrates the
deformation experienced by the flow in Fig. 1 when
X=X, and we can visualize it as a departure of the abso-
lute extrema from the poles. In contrast to the situation
discussed in Ref. 19, where the parameter X, vanished,
these extrema are not symmetrically located with respect

NYAL (a)

T T Tl/-\ll
1

J-/\/\
T ~—_ _ —
M

om

FIG. 5. Same as in Fig. 1 with X=X ,,X_=0.

to the equator.
One may establish the equations for the asymptotic
planes of these quadrics that read

X /2T +XT, =X 1 /2X ,
Jo=—J/X .

(4.2a)
(4.2b)

When either asymptotic plane intersects the sphere, the
phase portrait undergoes a splitting of one into two invari-
ant regions with different curvature of the trajectories.
This situation can be appreciated in Fig. 6, where both
planes have penetrated the Grassmann manifold and three
sets of librations and two sets of rotations can be identi-
fied. Such a figure is obtained for X , =1.5 and X =2.5;
one could regard it as a disturbance of the flow in Ref. 19
provoked by an interaction with strength X , , whose effect
is to lift an asymptotic plane lying at the equator to the
position described by Eq. (4.2a). However, in this case the
axis of the hyperbolic cylinder lies outside the sphere, its
coordinates being J(—1/X,X, /X) in the (J,,J,) plane. If
one changes the parameters—for instance, decreasing the
value of X ,—so as to bring the axis onto the sphere, a
new transition may take place since this tangency point is
a saddle. Further decrease of X, causes the saddle point
to bifurcate into two hyperbolic points, one in front and
the other behind the sphere, and a set of librations appears
around a relative minimum. The corresponding phase

(a)

~“ASYMPTOTIC PLANE %J.nu, :224,_
- x

J,/J 1

1

HYPERBOLIC CYLINDER AXIS

ASYMPTOTIC PLANE J, - _’l‘

® RELATIVE MAXIMUM

(b)

FIG. 6. Same as in the preceding figures for ¥, =1.5 and
X=2.5 (X_=0). A saddle point appears at the tangency point
between the sphere and a hyperbola branch.
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(a)

Vs ASYMPTOTIC PLANE

CYLINDER AXIS

:__, ASYMPTOTIC PLANE

FIG. 7. Same as in the preceding figures for ¥ . =1, X=2.3
(X _=0). In this case the saddle point in Fig. 6 has bifurcated
into one elliptic and two saddle points.

portrait is displayed in Fig. 7 for X . =1,X=2.3. In this
case, both asymptotic planes become separatrices, and all
possible combinations of orbits show up, namely, degen-
erate rotations, degenerate librations, as well as nondegen-
erate rotations and librations. Notice that previous to this
instability the period of the orbit on the vertical plane de-
fined by (4.2b) is finite and easily computable as

T=2m/e{1/[(X /X —(X*—= 1]} .

V. THE EXACT POLARIZATION

If one randomly chooses a set of initial conditions, it
appears that the exact polarization vector may draw regu-
lar and artistic geometric patterns. It is not our purpose
in this work to carry out a detailed systematics of the
many beautiful landscapes that may appear when one ex-
actly solves the Schrddinger equation in the Dicke basis
for the Hamiltonian (2.1). The enormous number of pos-
sible classifications according to the location of the initial
conditions on the Bloch sphere—so as to determine the
time scale within which the TDHF dynamics approaches
the exact one—makes this task a piece of work in itself
that is not our interest here. Indeed, up to now we mainly
intended to call the reader’s attention to the fact that
TDHF flow patterns in SU(2) models mean a far from ex-
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FIG. 8. The (Jx,J,) section of a trajectory starting at a max-
imum of the TDHF flow pattern for Y=0and X , =X_=2.

hausted field of research. In this respect, this section
points in an equivalent direction since it will be devoted to
illustrating the richness and variety of the polarization
trajectories that may appear.

We simply quote here three examples, all of them corre-
sponding to the selection X, =X_=2 and X=0 for the
interaction parameters. We remind the reader that in this
case, the energy quadrics are circular paraboloids and the
TDHEF orbits are rotations, with a circle of fixed points—
maxima—1lying on the plane at J,=J/X . It is then clear
that the expectation value of the projection J, is a con-
stant of the motion for both dynamics. Furthermore, ro-
tations on different half-spaces with respect to that plane
may be degenerate. If one solves the Schrédinger equa-
tion and evaluates the expectation value of the quasi-
spin operator as a function of time, sections of the exact
orbit on the coordinate planes of quasispin space can be
designed. Figure 8 displays the (J,J,) section of a trajec-
tory starting at a maximum with coordinates
J((x% —1)V%,0,1)/X,. It appears that the beautiful
periodic, symmetric pattern shown here is far from a
fixed point. One realizes that, since for the given initial
condition the velocity component tangent to the Bloch
sphere strictly vanishes at ¢ =0, this origin of the motion
is necessarily either a cuspidal or a fixed point. The form-
er has evidently been the choice of the system under con-
sideration.

Two degenerate TDHF rotations provide initial points

4,/

FIG. 9. Same as in Fig. 8 with initial condition on a TDHF
rotation at the point (J2,J5,J7)=J(0.6,0.0,0.8).
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FIG. 10. Same as in Fig. 9 for the initial point J(0.99,0.0,0.2).

with nonzero tangent velocities and with identical energy.
This is the case of the initial conditions J(0.6,0,0.8) and
J(0.99,0,0.2). The (Jy,J)) projections of the corresponding
trajectories are shown in Figs. 9 and 10, respectively. The
patterns are symmetric and periodic in both cases, and
one can appreciate the variations of the normal com-
ponent of the velocity that drives the exact polarization
into the sphere. It is seen that the TDHF dynamics is a
good reproduction of the exact one during four infini-
tesimal time steps—those time intervals located one
fourth of a period distant from each other—that corre-
spond to those short moments when the exact trajectory
lies almost tangent to the sphere. By contrast, in the case
displayed in Fig. 8 the four infinitesimal time intervals
collapse into four isolated points; thus, the TDHF orbit is
a bad approximation to the exact one except for a zero-
measure set.

A large number of examples are available; however, due
to the difficulties inherent to the nonobvious classification
we prefer not to present them in this work. It is clear that
no evident systematic exists; as an example, let us quote
here that if one chooses a TDHF maximum as an initial
condition, the exact trajectories seem to be delocalized in a
majority of cases, except when the amount of parity-
violating perturbation exceeds some figure that remains to
be determined.

VI. SUMMARY AND CONCLUSIONS

In this work we have investigated the many-fermion
dynamics generated by an SU(2) Hamiltonian that com-
plements the properties of the general LMG model! with
those of the parity-violating Hamiltonian in Ref. 19. The
TDHF dynamics is especially appealing in the SU(2)
frame, and it has been discussed at some length, however
not exhausting the variety of Hamiltonians of the adopted
general appearance given by Eq. (2.1). Rather than resort-
ing to an analytical or numerical study of the fixed points
of the dynamics, we have extensively utilized the geome-
trical method here proposed that places the emphasis on

the shape of the TDHF energy surfaces and the invariant
sets determined by their intersections with the Bloch
sphere. It is seen that even in complicated situations, i.e.,
those presented in Sec. IV, such a study is highly useful
for predicting characteristics of the phase diagram
without performing a numerical integration of the equa-
tions of motion. Some applications of this criterion might
be the following: (a) the observation that structural insta-
bility appears whenever a second-order contact between
the energy surface and the Bloch sphere takes place; (b)
the observation that degenerate orbits appear when the
vertex of the quadrics lies on the J, axis with | J, | >J; (¢)
the distinction between rotations and librations according
to whether or not the trajectories link the J, axis; (d) the
identification of absolute maxima as tangency points be-
tween quadrics and the Bloch sphere; (e) the identification
of a saddle point as a tangency point between the sphere
and the axis of the hyperboloids, etc.

It follows from the present study that in the general
LMG model (V' =W=£0,U =0), whenever both X and
|X_| are above unity, the assertion concerning nonde-
generacy of rotations’ ceases to be valid. This assertion is
only true when W =0. Moreover, if U does not vanish,
the property of librational degeneracy collapses as well.
An interesting by-product of the investigation presented
here concerns the richness of phase flows taking place in
the general LMG model when W is different from zero.
Indeed, one should recall that, being the two-body interac-
tion proportional to {J,,J_} diagonal in the Dicke
basis,! inclusion of this term in exact or static Hartree-
Fock calculations is trivial. The dynamical viewpoint
here adopted shows that the TDHF phase portraits are far
from trivial and the geometric construction proves its util-
ity in any attempt to classify and qualitatively consider
the possible situations.

As a final remark, we would like to mention that an at-
tempt to study and classify the exact trajectories accord-
ing to the invariant sets where the initial condition be-
longs on the Bloch sphere should be pursued. This is an
interesting task in view of the variety of and in many
cases the beauty of the patterns that may appear. We be-
lieve that a systematics relating the quality of a TDHF
description to the location of the initial wave packet may
be, on general grounds, a useful contribution to mean field
theory and calculations. In this spirit, a requantization of
the TDHF orbits should provide different degrees of ap-
proximation to the exact sprectum, and it should be useful
as well to examine this subject in future work.
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