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Liquid-gas and superconducting phase transitions of nuclear matter calculated
with real time Green's function methods and Skyrme interactions
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Real-time finite temperature Careen's function methods with pair cutoff approximations are ap-
plied to the calculation of the equation of state of symmetric nuclear matter. The liquid-gas and the
superconducting second-order phase transitions of nuclear matter are studied using, respectively, the
normal and abnormal pair cutoff approximations. Several versions of the Skyrme effective interac-
tions are employed. Significant differences are found between the pressure-density isotherms at fi-
nite temperature given by different Skyrme interactions, although they give quite similar ground
state nuclear matter properties. The critical temperatures kaT,'" for the liquid-gas phase transition
given by various Skyrme interactions range from —15 to -20 MeV. A strong dependence of k~ T,'"
on the combination 3 t &+ 5t2, t

&
and t2 being two parameters of the Skyrme interaction, is observed.

For nuclear matter at normal density, nonvanishing energy gap is obtained only for the Skyrme in-

teractions SkI and SkVI. The critical temperatures for the superconducting second-order phase
transitions for these two cases are, respectively, 0.5 and 0.345 MeV. Dependence of the energy gap
on the nuclear matter density is discussed.

I. INTRODUCTION

Finite temperature Green's function methods are very
useful tools for studying thermodynamical properties of
many-body systems. These methods may be classified
into two general types: one using imaginary time vari-
ables and the other using real time variables. They are
usually referred to, respectively, as the imaginary-time
(IMT) and the real-time (RT) Green's function methods.
In statistical and solid-state physics, these methods have
been used rather frequently. ' However, their applica-
tions to nuclear physics problems have been relatively
scarce. There have been nuclear structure calculations
based on the finite-temperature IMT Green's function
methods. However, as far as we know, the rather power-
ful and interesting RT finite-temperature Green s function
method has not yet been used to treat nuclear physics
problems. In this paper, we wish to use this method to
study the first-order (liquid-gas) and second-order (super-
conducting) phase transitions of symmetric nuclear
matter, within the nonrelativistic framework of treating
nuclear matter as a system of nucleons interacting with
some effective nucleon-nucleon potential.

Phase transitions in nuclear matter are a topic of much
current interest. Recent medium energy heavy-ion experi-
ments have indicated the occurrence of the liquid-gas
phase transition of nuclear matter, its critical temperature
being estimated to be k&T, =15 MeV. ' The Green's
function methods mentioned above provide a convenient
theoretical framework for carrying out such phase transi-
tion calculations. Here we have a choice of two
methods —the IMT and the RT Green's function method.
An advantage of the IMT Green's function method is its
systematic perturbation (diagrammatic) expansions for
various thermodynamic quantities such as the grand po-

tential Q. On the other hand, the RT Green's function
method is particularly suited for nonperturbative treat-
ments of phase transitions. An example is its treatment
of the superconducting phase transition, where the order
parameter is the expectation values of the abnormal Coop-
er pairs.

The choice of the nucleon-nucleon effective interactions
to be used in treating the phase transitions also plays an
important role in deciding which of the above two Green's
function methods is more convenient for calculation. If
one intends to perform a microscopic phase transition cal-
culation of nuclear matter starting from a realistic
nucleon-nucleon potential such as the Paris interaction, '

then the IMT Green's function method is apparently a
better choice. This is because in such calculations one
usually needs to make partial summations of certain
classes of diagrams to all orders, and the diagrammatic
formulation of the IMT Green's function method is par-
ticularly suited for doing so. Such a calculation is, in
fact, being carried out by Kuo, Yang, and Song. "

It is well known that gross properties of nuclear sys-
tems can often be described rather successfully by model-
space nuclear calculations using empirical effective in-
teractions such as the Skyrme effective interactions. ' '
An undisputed advantage of such calculations is that
many results can be obtained analytically and are there-
fore physically more transparent than those obtained from
microscopic calculations using realistic nucleon-nucleon
interactions. Thus there are definitely advantages in first
carrying out nuclear phase transition calculations using
empirical effective interactions. For them, the RT
Green's function method appears clearly to be a con-
venient and natural choice. Together with the normal and
abnormal pair cutoff (to be denoted by NPC and ANPC,
respectively) approximations to be discussed later, this
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method provides an expedient scheme for calculating the
Green's functions directly and from them various thermo-
dynamical properties can be conveniently calculated. In
fact, this method, together with NPC and ANPC approxi-
mations, has been used rather successfully in treating vari-
ous problems in statistical and elementary particle phys-

14 16

In this paper, our primary aim is to study and calculate
the first- and second-order phase transitions of symmetric
nuclear matter using RT Green's function methods with,
respectively, the NPC and ANPC approximations. To
simplify our calculations and, moreover, to make them
physically more transparent, we will carry out our calcu-
lations using the rather successful Skyrme effective in-
teractions. In fact, we will use several (seven) different
versions of such interactions and study and compare the
results obtained.

To a large extent, our study is motivated by the recent
work of Jaqaman, Mekjian, and Zamick (JMZ). ' They
have carried out a very interesting calculation of the
first-order (liquid-gas) phase transition of nuclear matter
based on finite temperature Hartree-Fock theory. As ex-
plained later, the theoretical framework provided by the
RT Green's function method with the NPC approxima-
tion and that by the finite temperature Hartree-Fock
theory are equivalent to each other. But there is an essen-
tial difference between their calculation and ours. In their
work, they started out with an interaction of a general
Skyrme effective interaction type. Based on this, they
have obtained an interesting result that the critical tem-
perature, pressure, and density of nuclear matter can be
expressed directly in terms of the ground-state nuclear

0gross properties —the binding energy per nucleon, E q, the
kinetic energy per particle, E z, and the effective mass
(m*/m)0. Thus their calculations were formulated and

carried out mainly in terms of E g, E x, and (m*lm)0.
Hence it is a main interest of their work to study the
dependence of the liquid-gas phase transition of nuclear
matter on the above mentioned ground state nuclear gross
properties, but not directly on the characteristics and
strengths of the various components of the Skyrme effec-
tive interactions.

Our interest and purpose are somewhat different and
more microscopic. %'e are interested in studying the roles
of the various components of the Skyrme effective in-

teractions in the liquid-gas phase transition of nuclear
matter. Thus we will carry out our calculations using the
Skyrme interactions throughout, and give our results
directly in terms of the Skyrme interaction parameters.
In this way, we will be able to study, for example, which
components of the Skyrme effective interactions are most
influential to the liquid-gas phase transition of nuclear
matter.

Jaqaman and co-workers have not studied the second-
order superconducting phase transitions of nuclear matter.
To our knowledge, this type of calculation seems to have
not yet been done for nuclear matter. As stated earlier,
we will carry out such calculations using the RT Green's
function method and ANPC approximation. Again, the
Skyrme interactions will be employed. It is our hope that
our calculations may lead to some experimental investiga-

tion of this type of nuclear matter phase transitions.
In the following, we first briefly describe some essential

features of the RT Green's function method and the NPC
and ANPC approximations. This is carried out in Secs.
II—IV. The theoretical formulation obtained in these sec-
tions is then applied, in Sec. V, to calculate the equation
of state, critical temperatures for liquid-gas and supercon-
ducting phase transitions, and other thermodynamic prop-
erties of nuclear matter. Certain thermodynamic proper-
ties of nuclear matter have been calculated by Brack
et al. ' using the Skyrme interaction SkM*, and by Sauer
et al. ' using the Skyrme interaction SkyIII'. Our results
will be compared with theirs. Some concluding remarks
are presented in Sec. VI.

II. FINITE TEMPERATURE REAL TIME
GREEN'S FUNCTION METHOD

There are basically two types of finite temperature
Green s function methods, one with imaginary time vari-
ables and the other with real time variables. The former
is more familiar. Because the finite temperature real time
Green's function method has been relatively unfamiliar to
nuclear physicists, we describe briefly some of its basic
features in this section. This is also necessary for discuss-
ing the normal and abnormal pair cutoff approximations
on which our calculations of nuclear matter phase transi-
tions are based.

We consider the retarded thermal Green's function

G»(t, t') = i e(t —t')[—(A (t)B(t') ) ri(B (t')A —(t) ) ]

—:((A(t),B(t'))) . (2.1)

Here, 6 is the usual step function, and t and t' are both
real time variables. The grand canonical ensemble aver-
age ( . . ) is defined as trI . exp[P(Q —H)]], where
H =H —pX, p and N being, respectively, the chemical
potential and the number operator, and 0, is the thermo-
dynamic potential. A(t) and B(t') are both Heisenberg
operators, i.e.,

A (t) iHtA —iHt (2.2)

and similarly for B(t'). We consider A and B each to be
a product of Fermion operators; then, rt in Eq. (2.1) is
given by ( —1)t', where p is the number of permutations
needed to reorder AB into BA.

We intend to calculate G»(t t') by way of i—ts equa-
tion of motion, which is obtained from Eq. (2.1) as

+(([A,H]„B(t'))), (2.3)

where [ . ], stands for (exp(iSEt) )(AH —MA )

X(exp( iHt)). It is easily —seen that Eq. (2.3) does not
form a closed set of equations. Suppose 2 is a single Fer-
mion operator a;. The commutator [a;,H], contains, in
general, terms of the form aj akat. Then, clearly, Eq. (2.3)
tells us that Gz~ is coupled to higher order Green's func-
tions of the form G =((a~aka~, B)). Similarly, the equa-
tion of motion for G will be coupled to G, and so on.

i G»(t —t')—=5(t —t')[(A (t)B (t') ) rt(B (t')A (t) )]-dt
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In this way, they form an hierarchy of infinitely many
coupled equations, and from them we cannot get the solu-
tion of Gzz unless some truncation approximations are
made. The pair cutoff approximations to be discussed in
later sections are for this truncation purpose.

The above thermal Green's functions are useful in cal-
culating various thermodynamic properties. This is usual-
ly carried out by way of the time correlation function

F~„(t t')—=(B(t')A(t)) . (2.4)

If we have obtained the Green's function G„~, then F~~
is given by

G~rr(E +i 0+ ) Ggrr(—E i 0—+ )F» (t —t') =i —00 ef'E —q

ing, we will describe two types of pair cutoff approxima-
tions for calculating the Green's functions.

III NORMAL PAIR CUTOFF (NPC)
APPROXIMATION

The normal pair cutoff (NPC) approximation for the
single particle Green's function is used in our first order
phase transition calculations and is briefly described here.
In fact, the single particle Green's function is the case
where the NPC approximation can be most transparently
explained. We start from a Hamiltonian H =H —pN
given in second quantized form as

H=p(~ —p)alai+ 2 p(ij I

I'I ki)a;ajafak (3.1)
jikl

X e
—E(t-')dE,

where the Fourier transform of Gzz is defined as

(2.5) where the single particle states (i,j,k, l) and energy e are
defined by the unperturbed Hamiltonian Hp.

Following Eq. (2.1) we define the retarded single parti-
cle Green's function as

oo iEtGas(E) = G~a(t)e' '« .
2'IT

(2.6)

As usual, P is Ilk&T, where T is the temperature and krr
the Boltzmann constant. 0+ denotes an infinitesimal pos-
itive number. As demonstrated later, various thermo-
dynamic quantities such as the Fermi-Dirac distribution
function and internal energy can be calculated directly
from the above time correlation function. In the follow-

(3.2)

The equation of motion for G &2(t t') is—
. d

G(2(t —t') =5)25(t —t')+ (( [a~,H)„a2(t') )) . (3.3)

Using Eq. (3.1), the above becomes

G~2(t —t'):——i B(t —t')[(a&(t)a2(t')) —r)(a2(t')a~(t) )]
—= ((a&(t),a~(t'))) .

i G(q(t —t') =5)q5(t t')+(E) —p—) G) (2t —t )
dt

+ -,
' g I 5, , (ij I

v
I
ki ) (((a,'a, a„)„a,'(t') )) —5, , (ij I

v
I

ki ) (((a ta,a„)„a,'(t') )) I,
ij kl

(3.4)

where ( . . ), stands for (exp(iH))( )(exp( iHt)). —
Clearly, Eq. (3.4) does not form a closed set of equations for G&2(t t'). Now we—introduce the normal pair cutoff

(NPC) approximations under which the ((. . . )) quantities of Eq. (3.4) are approximated according to

(((aj a~ak)t, a 2(t') )) =5JI (a~ a~ ) ((ak(t), .a2(t') )) 51k (aj ak ) ((—ai(t), a2(t ) )), (3.5)

and similarly for (( (a; atak )„a2 (t') )) . Under these approximations and using the symmetry property
(ij

I

I Iki) =(j'
I

I Iik) Eq. (3.4) becomes

G»« —t )=5»5« —t )+«, —P)G»(t —t')+ g [(IJ I
V Ikj) —(lj

I
V flak) j(a, a, )G„,(t

jk
(3.6)

We see clearly that the above forms a closed set of equations of motion for the finite temperature single particle CJreen's
function.

For nuclear rnatter, the single particle wave functions are of definite linear momentum p, and G&2 is diagonal in p.
We consider the interaction to be spin and isospin independent. Thus we rewrite Eq. (3.6) as

i G(t t')=5(t t—')+(e —p)G (t——t')+ —g (p, k
I

V Ip, k)(ak at, ~ )Gp (t t')—
qa'

(3.7)
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1
G E = (3.8)

where Ez is given by

Ep =ep —jt+g g &p, k
I

V
I p, k &nk

k

where a and a' represent the spin isospin variables (s„r, )

and ( s,', r,' ), respectively. We now make a Fourier
transform as indicated by Eq. (2.6). Then Eq. (3.7) be-
comes

—iE& (.i —t')

( ak ~(t )ak, (t) ) =
pg k+ l

(3.1 1)

Taking the limit of t ~t, we obtain the Fermi-Dirac dis-
tribution function under the NPC approximation as

nk &ak, k, ~~a
(3.12)

The internal energy U=(H) is calculated using the
same NPC approximation. The result is

—g &p p —e I
V lp ep&—np q. - (3.9)

Here, g is the single particle spin-isospin degeneracy, i.e.,
g =(2s + 1)(2r+1)=4, and nk is the occupation number

nk = &ak, ak, (3.10)

gyeknk+ y (k k
I

V lk k )nknk'
k kk'

+ —,
' g (k, k q I

v —
I

k —q, k)nknk
kq

(3.13)

and similarly for nz q. Note that Ez and nk are both in-

dependent of a.
The above is just the finite temperature Hartree-Fock

theory. Thus we see that the NPC approximation
described above is equivalent to the finite temperature
Hartree-Fock theory. The Hartree-Fock single particle
energy Ez is to be calculated self-consistently. This is be-
cause nk of Eq. (3.10) is itself dependent on Ek Consid. er

time correlation function (ak (t')ak (t)). Using
Eqs. (2.4), (2.5), and (3.8), we readily obtain

IV. ABNORMAL PAIR CUTOFF (ANPC)
APPROXIMATION

We consider again the retarded single particle Green's
function ((a~(t), az(t'))) of Eq. (3.2), and similarly we
study its equation of motion (3.4). Unlike the NPC ap-
proximation indicated by Eq. (3.5), we now approximate
the Green's function within the curly braces of Eq. (3.4)
according to

«(aj alak )t' a2(t ) » =~j!&aj aI & «ak(t) a2(t ) » ~jk &aj ak & ((al(t) a 2(t ) »+lk(alak & &&aj (t) a2(t ) && (4.1)

where k denotes the time-reversed state of k. We note that Eqs. (4.1) and (3.5) are identical, except that Eq. (4. 1) has an
extra third term which contains the factor (aiak ). This is a "number nonconserving" factor, a feature well known in the
BCS theory of superconductivity. To be more explicit, the basis wave functions used here are not the eigenfunctions of
the number operator. Consequently, the average value (akak ) is generally nonvanishing. (akak ) is the order parameter
for the second order phase transition.

Substituting Eq. (4.1) into Eq. (3.4) gives the equation of motion for G&2(t t') as—
i G)p(t t') =5)p5(t t')+(e—( —jt)Gtp(t —t')—

dt

+ g I & 1j I

v
I
kj & & 1j I

v
I
jk & I

—
& a, a, & Gk~(t —t')+ g & 1j I

v
I

kk & & akak &Fj 2(t (4.2)
j,k j,k

where the new retarded Green's function F is defined as E =(E —jt)+g g (p, k
I

V Ip, k)nk
k

F)p(t t'): ((a )(t),a2(—t'))) —. (4.3)
(4.5)

Similarly, we can derive an equation of motion for
F&2(t —t'). Thus, under the ANPC approximation, we

have a closed set of coupled equations for the Green's
functions G and F.

Similar to the derivation of Eq. (3.8), we obtain the
Gorkov-type coupled equations for G and F as

S, = g (p,p I
V

I
k, k &v„,

k

with

(4.6)

(E —E~)Gp (E)+&~Fp (E)= 1

(4.4)
nk = (ak ak ) and vk = (ak, ak, (4.7)

ApGp (E)+(E+Ep)Fp (E)=0,
where Ez and Az, the energy gap, are given by

Note that (k,a) is the time reversed state of (k,a). From
Eq. (4.4) we have
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and

G~ (E)=
21r E2—(E2+Q )

(4.8)
V. RESULTS

A. Liquid-gas phase transition

(E)=-
(E2+ Q2 )P P

(4.9)

nk and vq are calculated from the respective time correla-
tion functions, as indicated by Eqs. (2.4) and (2.5). The
results are

1
ll = ~ 1—

P tanh[ 2 p(Ep+hp)'/ ](E2+g2 )1/2

and

(4.10)

2 (E2+ g2 )1/2
(4.11)

Equations (4.5), (4.6), (4.10), and (4.11) form a set of self-
consistent equations. As temperature tends to zero, they
reduce to the familiar BCS gap equations (at zero tem-
perature).

The energy gap 6P is now temperature dependent. Sup-
pose there is enough pairing interaction in nuclear matter;
then we expect to have a nonvanishing gap near zero tem-
perature. A question of much interest is whether this gap
may vanish as temperature increases? The temperature
T, at which this gap vanishes is the critical temperature
for the second-order superconducting to normal phase
transition of nuclear matter.

In this section we apply the NPC method described in
Sec. III to calculate the liquid-gas phase transition and
some other thermodynamical properties of nuclear matter.
We have chosen to use the Skyrme effective interac-
tions' ' in our calculations for two considerations. First,
they are relatively simple to calculate with and their usage
will enable us to obtain analytic results for many physica1
quantities of our interest. Second, as pointed out by
Beiner et al. ,

' the Skyrme effective interactions have
been quite successful in describing the ground-state (zero
temperature) properties, such as binding energies and
charge radii and densities, of a large number of nuclei. A
drawback of these interactions is that they contain a num-
ber of adjustab1e parameters and these parameters are not
uniquely determined. In fact, there exist many different
sets of such parameters which are practically equivalent in
reproducing certain ground-state nuclear properties. Thus
it will be of interest to calculate the thermodynamical (fi-
nite temperature) properties of nuclear matter using these
different versions of the Skyrme effective interaction and
compare their results. For example, it should be of in-
terest to compare the critical temperatures kI1T, for the
liquid-gas phase transition of nuclear matter given by
these different versions of the Skyrme effective interac-
tion.

The Skyrme effective interactions used here are of the
general form

V12 = tp5(r1 —r2) + 2 r1 [5(r1—r2)k +k' 5(r1 —r2)]+ t2k ' 5(r1 —r2) k + ,' t3p 5(r, ——r2) (5.1)

where to, t~, t2, and t3 are parameters determined phenomenologically. p is the nuclear matter density, and the exponent
o is also taken as a parameter. ' ' k and k ' are, respectively, (V1 V2)/2i—and —(V1—V2)/2i. As shown in Table I,
we employ seven versions of Skyrme interactions, ' ' denoted SkI—SkVI and SkM".

To carry out our calculation, we need to solve Eqs. (3.9) and (3.12). Thus, a first step is to evaluate the plane-wave ma-
trix elements of V12. Using Eq. (5.1), we have readily

1 t3
& q1q21 I'121q3q4~ 5K,K tp+ p + (k12 k34) +(il+t2)k12 k34 (5.2)

where Vp denotes the volume of the nuclear matter system. The relative and center-of-mass moment are defined, respec-
tively, as k12 ——(q1 —q2)/2, K12 ——q1+q2, and similarly for k34 and K34. It is convenient to change the momentum vari-
ables in Eq. (5.2) as q1~k'+q, q2~k —q, q3~k', and q4~k. Then we are dealing with the matrix element

TABLE I. Skyrme effective interactions. Parameters for SkI—SkVI are taken from Ref. 13, and
SkM from Ref. 18, and similarly for the saturation Fermi level kF and incompressibility coefficient K.

SkI
SkII
SkIII
SkIV
SkV
SkvI
SkM

tp

(MeVfm )

—1057.3
—1169.9
—1128.75
—1205.6
—1248.29
—1101.81
—2645.0

t&

(MeV fm')

235.9
585.6
395
765
970.56
271.67
410.0

(MeV fm')

—100
—27. 1

—95
35

107.22
—138.33
—135.0

t3
(Mev fm'+'~)

14463.5
9331.1

14000
5000

0
17000
15 595

kF
(fm ')

1.32
1.30
1.29
1.31
1.32
1.29
1.33

K
(Mev)

370
342
356
325
306
364
216.7 1

6
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(k+q, k' —q ~
VI2

~

k, k'), where q is the momentum transfer and k+k' is the conserved center-of-mass momentum.
Substituting Eq. (5.2) into Eq. (3.9) gives

g —1 t3 1
Ez ——(ez —p, )+ to+ —p d k nk+

(2m. ) 6 (21r)

(g —1)t, (g +1)t,
4

+
4 f (p k )'nkd'k, (5.3)

g2p 2

Ep —— op+
2m

(5.4)

and then nk is given as

(1+Z —I fHPk2/2m
)
—I (5.5)

where Z is the fugacity

where nk was given by Eq. (3.12). Remember that Eqs.
(5.3) and (3.12) are to be solved self-consistently. This
may be facilitated by using an effective mass approach,
where E~ is expressed as

energy density. %'ithin the context of the finite tempera-
ture HF approximation, ' the thermodynamic potential
Q is given by Op+0&", where Qp is for the noninteract-
ing HF system and 01 " is due to the interaction
V —U ". Usually, one determines the chemical potential
from the relation

p= nkk dk . (5.12)

By inverting this equation, one obtains

t3 3 kaT dm*
po op to+ p g g~p

(5.6)

By comparing Eq. (5.3) with Eq. (5.4), it is readily found
that

~ P n n —1+ktIT ln P + g B„p"
4 „2n —1

(5.13)

3 kyar dm* 4eo= 4p 'o+ p

and

m'=m 1+ (3t, +5t, )
8A

(5.7)

(5.&)

Note that we use pp to denote the above chemical
potential, because Eq. (5.12) is obtained from n
= —( I)flo/I)ILI ) Tv, I.e., it is for the noninteracting system.
To obtain an approximate chemica1 potential p& with in-
ternucleon interactions, we first calculate the approximate
free energy f, =(Ao+Q, ")/Vo+pIIP, which is obtained
as

In the above, f5/2(Z) is '

f5/2(Z)= dx x ln(1+Ze " ),
and for small Z it can be expanded as

(5.9)

ao
( 1)I+IZ Ifs/2(Z ) = (5.9')

(5/2

is the thermal de Broglie wavelength [2M /
(m*k2IT)]' . We note that in the limit of T~O, eo of
Eq. (5.7) becomes

t3 3t1+5t2 kI;
~p= 4P tp+ —P + (5.10)

Now we are in a position to obtain the equation of state
p (p, T) for nuclear matter, p, p, and T being, respectively,
the pressure, density, and temperature. For a system of
noninteracting nucleons with a HF (Hartree-Fock) exter-
nal potential, the pressure is given as '

P;„(m*)=k2I T f5/2(Z) . (5.1 1)
k3

%'e are, however, considering a system of interesting nu-
cleons. In zero-temperature HF calculations, it is well
known that the ground state energy is given by the sum of
the HF single particle energies and the lowest order poten-
tial energy (P ~

V —U "~ P). U "is the HF single parti-
cle potential, and P is the unperturbed ground state. Here
the situation is similar and we need to take into account
the interaction V —U " in calculating p (p, T), and this is
done as outlined below.

We use the relation p = f +PILI, where f is —the free

r

pfI ——, top + p —+k&T pin

oo

+k2IT g " p" .
n=2

(5.14)

In the above equations, 8„denotes the expansion coeffi-
cients in

—,f5/2(»= g &np" .
A,

3 n=1
(5.15)

u= stop + t3p + +0+ 1 ~+2 3 p dm
16 2 m' dp

P;d(m *),

(5.16)
where P;d can be expressed as a power series in p using
Eqs. (5.11) and (5.15). The above is an iterative scheme
for calculating the pressure for a system of interacting nu-
cleons. It is of interest to note that using a different
method of derivation Ref. 17 has obtained the same equa-
tion of state as above.

As the temperature approaches zero, Eq. (5.16) becomes
2/3

I = stpP+ t3P + +-a+1 ~+2 2 R 3m

16 5 2m 2 P

2/3

+—„(3tI+5t2)
I

(5.17)

From fI, we calculate pI ——(Bf I/(3P)z-. Then the pressure
is given by p =ppI fI, which leads to—
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The internal energy U = (H ) can be calculated from Eqs. (3.13) and (5.2), giving

Vp g 1 vo t3 1 vo 3t 1+St2 2U= f d knkek+ f d kd k'nt, nk to+ —p +— f d kd k' (k' k—) nknk
(2m. ) (2~) 6 2 (2m )

In the limit of T~O, U becomes the nuclear matter
ground-state energy Ep, namely

2, e~—+—to+ —p p+ ,o (—3t~+Stq)pkF . (5.19)

This agrees with the result given by Ref. 22. The pressure
at zero temperature is p =p B)(Eall)leap, which agrees
exactly with Eq. (5.17). This provides a consistency check
for our method for obtaining the pressure as given by Eq.
(5.16).

Using the Skyrme interactions given in Table I, we have
calculated the pressure-density isotherms of nuclear
matter using Eqs. (5.11), (5.15), and (5.16). (We consider
low-density regions, and hence terms of the order p and
higher are neglected. ) Qur results for the Skyrme I, III,
VI, and M* interactions are shown in Figs. 1—4. (Our re-
sults for SkIII and SkM* are in good agreement with
those of Refs. 18 and 19, respectively. ) As shown, the iso-
therms are generally of the form given by a typical van
der Waals interaction. Generally speaking, the shapes of
the isotherms shown by these figures look similar to each
other, but a more detailed comparison reveals that the iso-
therms given by different Skyrme interactions can, in fact,
be very different.

As an example, we compare in Fig. 5 the k&T=6 MeV

2.0

Bp

Bp
(5.20)

Using this relation and Eq. (5.16), we have calculated the
above quantities using the Skyrme interactions of Table I.
Our results are given in Table II, together with the critical
pressures. The effective masses at the critical densities
and at the ground state saturation densities are also given.
As shown, there is a rather large variation of the critical
temperatures, ranging from 14.60 to 20.12 MeV. The re-

(5.18)
I

isotherms given by the seven Skyrme interactions of Table
I. A shown, the isotherms given by the interactions II,
IV, and VI are rather close to each other, but the others
are indeed quite different. Thus, if some of the finite-
temperature isotherms of nuclear matter can be deter-
mined by or deduced from experiments, then they may be
used as a sensitive test of the various Skyrme
interactions —to see which set of the Skyrme interaction
parameters can best describe the finite-temperature prop-
erties of nuclear matter. We note that the ground state
( T=O) properties of nuclear matter predicted by the vari-
ous Skyrme interaction parameters of Table I are really
not significantly different from each other, and therefore
they cannot provide a sensitive test of the Skyrme interac-
tion parameters.

Now we turn to the critical temperature k&T,'" and
density p, . As is well known, they are determined by the
condition

l.5

l.5

I.O

0.5

.l5
I

I
p (tm s)

-1.0

/6.0

k~ T= O.O MeV

—I.O

6.O

O.0MeV

FIG. 1. Nuclear matter isotherms calculated with the
Skyrme I interaction. Pressure p, density p, and temperature
k& T are in units of MeV fm, fm, and MeV, respectively. FICE. 2. Same as Fig. 1, except for the Skyrme III interaction.
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FICs. 5. Comparison of the k&T=6 MeV isotherms given by
various Skyrme interactions.
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FIG. 6. Correlation between the critical temperature k~ T,"'
and the effective mass (m*/m)p, for the various Skyrme in-
teractions.

tion centered at the Fermi surface, namely

a, k, —D(k&k, +D
0, otherwise

(5.24)

X tanh(P/2)(Ek+ 6') '", (5.2S)

with

g (k) = to+ ,' t,p + —,
' t, (k', +k') —. (5.26)

%'e can now carry out an iterative solution of the gap
equations (5.21), (5.23), and (S.25), using the following
procedure. First, we assume a set of initial values for 6,

where ko is determined by nk ———,', n being the Fermi-
p 2

Dirac distribution function. We use D=0. 1 fm, which
is a reasonable choice because the energy gap should be
significant only within a narrow shell around the Fermi
surface. Equation (5.24) is a strong but reasonable re-
quirement imposed on the energy gap. With it, Eq. (5.22)
becomes

kp+D

2(2~)3 ko D — (E2+g2)1/2d kg(k)

p, and Ek. (We use a set of momentum space Gaussian
mesh points to discretize Ek.) Using them, we calculate
new values of Ek and p frotn Eqs. (5.21) and (5.23). The
new value for b. is then determined from Eq. (5.25) based
on the new Ek values. The procedure is repeated until sa-
tisfactory convergence is reached.

We have calculated the above gap equations using the
Skyrme interactions of Table I. At normal nuclear matter
density (i.e., p=2kF/3' with kF given by Table I for the
respective interactions), nonzero energy gaps are found for
SkI and SkVI only. As displayed in Fig. 7, at zero tem-
perature the gaps are 0.99 and 0.67 MeV for SkI and
SkVI, respectively. As temperature increases, the gaps
stay constant for a while and then abruptly drop to zero at
the critical temperatures kT,' ' as indicated by the arrows
in the figure. (Goodman has studied heated rotating nu-
clei using a finite temperature Hartree-Fock-Bogoliubov
approach and has observed similar behavior for the pair-
ing energy gap. ) The values of kT,' ' for Skl and SkVI
are, respectively, 0.5 and 0.345 MeV. Thus for these two
interactions our calculations indicate that nuclear matter
at normal density and temperature below the respective
kT,' ' values is in a superconducting state.

To get some insight into the above results, it is helpful

TABLE II. Critical temperatures (k&T," ), densities (p, ), and pressure (p, ) for the liquid-gas phase
transition of nuclear matter. The effective masses at p, and at pp—the ground state saturation
density —are also given, denoted by ( m */m), and ( m */m)p, respectively.

k&T,"' (MeV)

p, (fm ')
p, (MeVfm )

(m /m),
( m /m)p

SkI

20.12
0.061
0.399
0.963
0.913

SkII

16.75
0.58
0.331
0.779
0.577

SkIII

17.95
0.056
0.330
0.893
0.760

SkIV

16.00
0.057
0.333
0.703
0.471

Skv

14.55
0.048
0.276
0.744
0.382

SkVI

20.05
0.055
0.367
0.980
0.949

SkM*

14.60
0.052
0.210
0.920
0.789
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VI. DISCUSSION AND CONCLUSION

We have applied the real-time finite temperature
Green's function method with pair cutoff approximations
to the derivation of the equation of state of symmetric nu-
clear matter from the Skyrme effective interactions.

First, we have considered the normal pair cutoff ap-
proximation. This enables us to obtain in close form the
single-particle Green's function from which the nuclear
matter chemical potential p is derived. The free energy of
nuclear matter is calculated from p, and then we obtain
an equation of state expressing the nuclear matter pres-
sure as an analytic function of its density and temperature
and the parameters of the Skyrme effective interactions.
The entire procedure is rather straightforward, indicating
that the finite temperature pair cutoff Green's function
method can be a very useful tool for treating nuclear
matter.

We have found that the equations of state given by the
various Skyrme effective interactions are significantly dif-
ferent from each other, although these interactions give
quite similar ground state properties of nuclear matter.
The critical temperatures kT," for the liquid-gas phase
transition given by them are also significantly different
from each other. The lowest value for kT,"' is given by
SkV as 14.55 MeV, while SkI gives the highest value as
20.12 MeV. If some of these finite temperature nuclear
matter properties can be determined experimentally, then
they may be very useful in discriminating the parameters
of the Skyrme effective interaction.

The abnormal pair cutoff approximation is then em-
ployed to treat the superconducting (section order) phase
transition of nuclear matter. This leads to a set of self-
consistent equations for deriving the pairing energy gap or
the order parameter 6 as a function of temperature, densi-
ty, and the parameters of the Skyrme interactions. At
normal density, only SkI and SkVE give nonvanishing en-

ergy gap at zero temperature, with superconducting criti-
cal temperatures being 0.5 and 0.345 MeV, respectively.
Since the other Skyrme interactions of Table I do not give
such energy gaps, and among them SkM* is probably a
more realistic effective interaction than SkI and SkVI, our
results seem to indicate that nuclear matter at zero tem-
perature and normal density is more likely in a normal
state than in a superconducting state.

We have found that there is a strong dependence of the
energy gap on the nuclear matter density. At normal nu-
clear matter density po, the energy gap is either zero or
rather small as indicated above. But at a density -po/2,
there is usually a sizable energy gap of —1—2 MeV. This
means that nuclear matter with density in the vicinity of
p+2 may well be in a superconducting phase. It should
be of much interest to further study the thermodynamic
properties of nuclear matter in this density region. We
are carrying out such studies and will report our results in
a future publication.

The present Green's function method can be extended
to treat asymmetric nuclear matter. A preliminary study
in this direction is in progress.
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