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Boson representations of fermion systems
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The correspondence between the SD fermion and sd boson spaces is investigated. A method is
discussed for generating boson images of fermion Hamiltonians. The boson Hamiltonians obtained
are at most two-body and, in general, non-Hermitian. Applications to a quadrupole-quadrupole in-
teraction are presented. E2 operators are also studied. Fermion spectra and E2 matrix elements are
well reproduced in the boson space.

I. INTRODUCTION

In recent years, considerable interest has been devoted
to the description of low-energy nuclear spectra in sub-
spaces of the full shell model space built in terms of col-
lective pairs. A number of investigations' " have been
carried out to test the effects of the truncation of the
model space on physical observables such as energies,
B(E2)'s, quadrupole moments, etc. Working mostly
within a pairing-plus-quadrupole model, it has been ob-
served " that drastic truncations to subspaces including
only pairs of low angular momentum (L &4) can still
keep the values of these observables (referring to the low-

lying states) quite close to those obtained in the full space.
A description of the nuclear properties in such restrict-

ed subspaces is more transparent and appealing than the
one that a straightforward application of the shell model
could give. Even in these subspaces, however, a realistic
microscopic description of nuclei with several active nu-
cleons in different j shells is still a difficult task. This has
to be ascribed to the great complexity of the commutation
relations of the fermion operators.

Mapping the above fermion subspaces onto correspond-
ing boson spaces in which bosons replace collective pairs
offers a way to escape these problems provided that re-
sulting boson operators are easy to handle. Since the in-
troduction of the interacting boson model' (IBM), much
effort has gone into trying to understand the mechanism
of such a mapping. Up to now, however, especially the
treatment of deformed systems does not appear fully satis-
factory and calls for further investigations. This work is
devoted to this subject.

In this paper I will concern myself with the correspon-
dence between the fermion SD and the boson sd spaces,
i.e., spaces formed by L =0 and 2 fermion pairs and bo-
sons, respectively. I will discuss a mapping procedure be-
tween these spaces and show detailed applications of the
procedure for systems of nucleons interacting with a
quadrupole-quadrupole ( QQ) residual interaction. The ef-
fectiveness of the method will be tested by comparing cal-
culations performed in the fermion and in the boson
spaces.

All the applications which will be presented in this pa-
per will refer to the case of nucleons moving in a single j
orbit. This has made it possible to perform exact fermion

calculations without running into serious computational
problems. Extensions of the procedure to the case of
many j orbits as well as to larger spaces (for instance,
SDG and sdg spaces) appear, however, possible.

The paper is organized as follows. In Sec. II, I will
present a method to generate boson images of fermion
Hamiltonians. In Sec. III, fermion spectra will be com-
pared to the corresponding boson ones. In Sec. IV, I will
study electromagnetic transitions between fermion and bo-
son eigenstates. Finally, in Sec. V, I will compare the pro-
cedure discussed in this paper with previous approaches
and draw some conclusions.

An account of this work has already been presented in
Ref. 13.

II. THE MAPPING PROCEDURE

[H, ,S']
~
0) =~,S'

~
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[Hp, D„] i

0) =egD„
i
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[[Hp,S ],S ]=a~S St+a3(D D ),
[[Hp,S ],D„]=a,S D„+a,[D D ]„'
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J=0,2, 4

)&a7[D D ]„+„.

(2)

These commutation relations guarantee that HF does not

I begin this section by recalling some results of a work
of Ginocchio and Talmi. '

Let the L =0 and 2 pair creation operators be defined
in single j orbit as

eoS = ~ [ajaj ]
2

tzD„= [a~. a~ ]q,~2
and let Hp be a fermion Hamiltonian (at most two body)
having the following commutation relations in the SD
subspace,

35 1530 1987 The American Physical Society



35 BOSON REPRESENTATIONS OF FERMION SYSTEMS 1531

couple the SD subspace to the rest of the fermion space.
This Hamiltonian has, then, a class of eigenstates which
belong to this subspace, i.e., which are some linear com-
bination of states of the type

(S ) '(D )ygM l0), (3)

where J is the total angular momentum, M is its projec-
tion, and y is an additional quantum number which iden-
tifies unambiguously the states.

A boson Hamiltonian can be constructed which satis-
fies the same commutation relations in the sd boson sub-
space. This Hamiltonian has the form

HB =& n +6dnd+ —,a&n, (n, —I )+a2n, nd

+ —,[a3(d .d )ss+a4s s (d d)]

+[a5s d [dd] +a6[dtd ] .ds]

a7[dtdt] .[d d]
J =0,2, 4

(4)

Here, n, =s s, nd ——g„d„d„,and d~=( —1)"d
It follows from the commutation relations of Hs that

this Hamiltonian has the same eigenvalues as HF in the
SD subspace, as well as a set of eigenstates which are the
same linear combinations (a part from a normalization
factor) of the boson states

as the eigenstates of HF are of the states (3).
A complete analysis of this correspondence can be

found in Ref. 14. Here, I only stress the following proper-
ties of Hz. (i) H~ contains at most two-body interactions
and, (ii) it is, in general, non-Hermitian. As a conse-
quence of the latter property, the correspondence between
fermion and boson eigenstates is such not to preserve
orthogonality.

The derivation of the Hamiltonian (4) clearly relies
upon the existence of commutation relations of the type
(2). Such relations are quite unlikely to occur, in general,
and only special Hamiltonians have been found which
satisfy them. ' In normal cases, then, the procedure just
discussed is of no utility.

Let us suppose, however, that in correspondence to a
given HF one can derive a new fermion Hamiltonian A F
such that (a) it has commutation relations of the form (2),
and (b) it is "equivalent" to HF in SD, i.e., it has the same
eigenvalues and eigenstates as HF in SD. Starting from
A F (and all one needs to know, in practice, are the com-
mutation relations of ~F in SD), one can now apply the
simple procedure of Ginocchio and Talmi to generate a
boson image of HF in the sd boson subspace. Searching
for A F is therefore equivalent to searching for the boson
image of HF in sd. This is the way that has been fol-
lowed to derive this Hamiltonian.

As a first step toward the construction of A F, let us
consider a projected Hamiltonian HF whose commutators
in SD are defined as follows

[H', r „]l
0) =[H, r „]l

0),

HF= —Q Q Q =[a,ajl' (8)

is rather complicated and is given in the Appendix. For
clarity, I show here its explicit expression for j =—", ,

H~ ———0.833n, —0.807nd —0. 144n, nd

—0. 167(d .d )ss —0. 105s s (d d)

+0.250s td t [d d ] +0.286[d d ] ds

+0.041[dtd ] [d d] +0.135[d d ] [d d]

+0.035[d d ] .[d d]" .

For N & 2 nothing can be said, a priori, about the,
equivalence of HF and HF and, consequently, the boson
Hamiltonian (9) is not necessarily a good boson image of
HF. It is indeed plausible that neglecting non-SD com-
ponents in the commutators of HF can have important
consequences. In such cases, in order to satisfy the re-
quirement (b), one should be able to take into account the
effect of these components by suitably "renormalizing"
HF. A possible way to do that is suggested by the
generator-coordinate method' (GCM).

This method consists of searching for solutions of the
Schrodinger equation which are of the form

lq&= f d~f(~)ly(a)&, (10)

and therefore solving the Hill-Wheeler equation

f [&y«) lHF ly(a )& E(P(a) lP(u'))]f(a')da'=0.

Depending on the choice of the generating states
l
P(a) ),

[[H', I „],I „]l
0) =P' '[[H, l „„],I „]l

0) .

Here, I q„are either S (A. =O) or D„(A,=2) pair creation
operators and P'2 ' is an operator which projects into the
SD subspace when acting on states with two pairs of nu-
cleons. We notice that in single j orbit

[HF r~] l

o & =&K'~„
l
o &, (7)

so that no explicit projection into the SD subspace has
been introduced for this commutator. Commutators (6)
are of the form (2) and thus a boson Hamiltonian can im-
mediately be associated to HF. However, in order to
understand the meaning of this Hamiltonian, one needs to
investigate the effects of the projection into SD.

The simplest case to study is that of a system of N =2
pairs. One can now verify that matrix elements of HF
and HF between SD states are identical. As a conse-
quence, both these Hamiltonians have the same eigen-
values and eigenstates in this subspace. In this case, the
projected Hamiltonian defined in Eq. (6) has the proper-'
ties (a) and (b) discussed above (A F=HF) and thus gen-
erates an exact boson image of HF.

The general expression for the boson Hamiltonian
which one constructs in correspondence to a QQ Hamil-
tonian
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the states (10) may eventually contain the exact solutions.
If we suppose that this is our case,

I
P(a)) being SD

states, it follows that the property (b) of A F is certainly
satisfied if the equality

&4(~) IHF I
P(~')) =&4(~)

I
~F

I

0«')) (12)

holds for any choice of a and a'. If non-SD components
of the commutators of H~ play a significant role, one
should find that

&W(a) IHF IP(a'))~&4(a) IHF IW(~') (13)

Equation (12) suggests a way to renormalize HF in order
to take into account the effect of these components. What
one should find is an "extra" interaction 8'possessing the
property (a) and such that

&P(a)
I
HF

I
P(a')) = &P(a)

I
HF+ W

I
P(a') ) (14)

for any choice of a and a'. How I have been looking for
this term, in the case of a QQ interaction, is described in
the next section.
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III. COMPARISON OF FERMION
AND BOSON SPECTRA

4

N=4, , j=23 2

A straightforward way of investigating the role of the
non-SD components of the commutators of (8) is that of
comparing the spectra of Hz and Hz. Two examples of
this comparison can be seen in Figs. 1 and 2, for j =—",

and N =3 and 4, respectively. Clearly these components
play a very important role, especially with increasing X.

0'

Q-Q

FICs. 2. See caption of Fig. 1, but for N =4.

0 —0'

0+
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0'

In particular, the projection (6) has the effect of lowering
the ground state energy and reducing the moment of iner-
tia of the system.

In order to apply the renormalization procedure dis-
cussed in the preceding section, we have first to choose
the generating states

I
P(a) ). My choice has been
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FIG. 1. Spectra of fermion and boson Hamiltonians generat-
ed in the SD and sd spaces (j = z, N =3). HF is the Hamil-

tonian of Eq. (8); HF is the projected Hamiltonian defined in
Eq. (6); HF is the renormalized Hamiltonian defined in Eq. (17);
H&' is the boson image of HF',' H~ is the Hermitian part of H&'.

Spectra are given in absolute values.

I (t (a) ) = (s +aDO)"
I
0) .

M(a )
(15)

W =(a —1)HF+b, (16)

with a and b real coefficients, could be appropriate. I
have assumed this expression for S' and I have fixed the

In spite of the simplicity of (15), it has been shown that a
state of this form provides a good description of the in-
trinsic state associated with the ground state band of a
system of nucleons interacting with a QQ interaction.
Matrix elements of HF —Q Q and co——rresponding HF
are shown in Figs. 3 and 4 (diagonal ones at X =3 and 4)
and in Figs. 5 and 6 (examples of nondiagonal ones at
%=3 and 4). Differences are very evident also in this
case.

By looking more carefully at the difference between the
matrix elements of HF and those of H~, we can notice a
very interesting fact: this difference behaves quite simi-
larly to the matrix elements of HF. This is illustrated in
Figs. 7 and 8 (diagonal matrix elements, N =3 and 4,
j = —", ). Similar results are found also for different j or-

bits. This suggests, then, that an expression of the type
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FIG. 3. Diagonal matrix elements of the fermermion Hamiltoni-
ans of Fig. 1 between intrinsic states (15); N =3,j =

2 .
FIG. 5. An example of nondiagonal matrj. x elements of the

fermion Hamiltonians of Fig. 1 between intrinsic states (15);
23

(17)H~ =—H~+8 =aHF+b

articularly in the region near the minimum of the energy
1 f d f r these coefficients are shown

d —.Their dependence on g an
X is rather smooth. That of the coefficients a =aj(N&, in

h
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coefficients a and b by requiring that the equality (14 be
satisfied for the Hamiltonian duced by the analytical expression

2+ AJ
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The matrix elements of (17) can be observed m Figs.
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FIG. 4. See the caption of Fig. 3, but for N =4.
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FIG. 6. See the caption of Fig. 5, but for N =r N=4.
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&C(ct) H,'-H, ~4(o.)&

TABLE I. TThe coeff~cIents a =aj(N) and b =bj.(N) of Eq.
~ ~

(17) obtained as described in the text f d ff
an

ex or i erent values of j

0.0-
1.00
0.00

3

0.80
—0.40

0.61
—0.92

(I) -O.l—
C

q$

Ld

-0.2-

-0.3-

N=3, j=

1.00
0.00

0.90
—0.13

0.82
—0.26

IV. E2 OPERATORS

where Hg is given in Eq. (9). As result of the mapping
procedure, then, one finds a boson Hamiltonian whose

asic structure is that fixed at N =2 [E . (9), b hq. , ut which
has to be rescaled at larger N according to (19).

FICx. 7. Dia onal
(15) of H' —H

g matrix elements between intrinsic t tc sacs
F, these Hamiltonians being those discussed in

Fig. ; =3) j = —, .

Hg' aj (N)Hg~+ ——bq (N), (19)

the spectra of HF also compare much better with those of
F (see Figs. 1 and 2). The Hamiltonian (17) fulfills, by

definition, requirement (a) of Sec. II and, as we have just
seen, requirement (b) is satisfied also, at least to a good ex-

PI
tent, so that HF =A F. This Hamiltonian is therefore
ready to be mapped onto the boson space and, by doin
this, one gets

y oing

Having constructed fermion and boson spectra, we now
turn to electromagnetic transitions. In particular, I wish
to investigate whether, in analogy to what is observed for

20
t e Hamiltonians, where the boson zeroth dero or er approxi-
mation has been found to work well, the E2 one-bod
fermion operator

we, e one-body

'rF"=[a, a, j' (20)

can be effectively mapped onto a one-body boson opera-

of E2 m
tor. The testing for this operator will b th
o matrix elements between corresponding fermion
and boson eigenstates.

A
late to the n

preliminary problem which one has t f '
has o ace Is t at re-

ate to the nonhermiticity of the boson Hamiltonian (19).
Already, a glance at the coefficients of (9) suggests, how-
ever, that the importance of this nonhermiticity should be
imited. A simple way of verifying that consists of ex-

pressing 19) as a sum of its Hermitian part and its anti-
Hermitian part,

& 4 (ct) I H, —H, I 4 (o,) &

HB'+ (Hg') H~ (H~ )
t—

2
+

2
(21)

0.0—

U)

C

-0.5-
UJ

N=4, j

0.5-

aI(N)

J=41 2

I

-3

R

FICz. 8. See the caption of Fig. 7, but for N =4.

N (PAIRS)
FIG. 9. The coefficients a =aj(N) of Eq. (17) obtained as

described in the text, for different values of j and N (dots). The
lines are given by Eq. (18).
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T~ a[d——s +std]+P[d d] (22)

and of comparing spectra of the full Hamiltonian and of
its Hermitian part (=Hz). Examples of this comparison
can be seen in Figs. 1 and 2. Differences are hardly no-
ticeable. In view of these results, I have taken the Hermi-
tian part, Hz, of H~' as the final boson image of the fer-
mion Hamiltonian (8) and have evaluated E2 transitions
between its eigenstates.

The most general one-body, Hermitian, rank-2 tensor
operator which one can form in the sd space is the IBM
operator

-2.0-

.29Q"".- 2' ~36

.05

.41

—.4 0
Q:;

.59

.03

.06

.08

50 (N = 2, j = 23/2 )

+0

—.33

—.39

sd

.03

.00 .01

59
L 0'

.05

.25
Q;:::;:2' .33

+0

1/2

a~ (N)
2 2 2

pj. (N)= —10' .
J J J

The approach I have followed to fix the coefficients a and
P has been that of equating the two matrix elements cor-
responding to the transitions 0~ -2~, 2+&-4+& in the fermion
and boson spaces. The values of a and P obtained in this
way, for different values of j and N, are shown (dots) in
Fig. 10. In correspondence to these values, one calculates
the E 2 matrix elements shown in Figs. 11—13 (N =2,3,4
and j= —", ). For completeness I also show, in Fig. 14, a
calculation referring to the case N=4, j=—,. A good
agreement is found between fermion and boson matrix ele-
ments.

The dependence of the coefficients a and p derived on j
and X is well described by the analytical expressions

1 2 1 2
1/2 1/2

aj(N)= N — 1+
J J

(23)

FIG. 11. The spectra of H~= —Q.Q and of the correspond-
ing boson Hamiltonian Hz for N =2, j =

~ . Also shown are
E2 matrix elements between their eigenstates (states are con-
structed with angular momentum projection M =0). When no
sign is indicated, the absolute value is given.

sponding ones in SD. At larger N, similar to what has
been observed for the Hamiltonian (19), only a rescaling
of this operator by means of an appropriate coefficient
aj(N) has been found necessary. The boson E2 operator
which emerges from this analysis is therefore different
from that which would be obtained in terms of the pro-
cedure of Otsuka, Arima, and Iachello (OAI).

V. DISCUSSION AND CONCLUSIONS

(lines in Fig. 10). An interesting feature of this behavior
is that the ratio

(24)

is independent of N.
For N = 1, Eqs. (23) define an E2 boson operator

whose matrix elements in sd are identical to the corre-

0.2—
j
=ay'2

-0.2— ctj (N) j = 41/2

—0.4-
3/2

N

FIG. 10. The coefficients a and P of the E2 boson operator
[Eq. (22)] obtained as described in the text.

In this paper we have dealt with the problem of relating
the description of a fermion system in subspaces of the
full shell model space built in terms of collective pairs to a
description in corresponding boson spaces. In particular,
I have discussed the case of the SD fermion and the sd
boson spaces.

I have explored a procedure for deriving boson images
of fermion Hamiltonians. The basic idea of this pro-
cedure has consisted of searching, in correspondence to a
given fermion Hamiltonian HF, for a new fermion Hamil-
tonian A F equivalent to HF in the SD fermion subspace,
such as not to couple this subspace to the rest of the fer-
mion space. Then, an sd boson Hamiltonian has been
constructed having the same commutation relations as
AF inSD.

I have shown applications of the procedure for a QQ
interaction. I have derived a boson Hamiltonian that is,
at most, two body and non-Hermitian. I have also veri-
fied that its degree of nonhermiticity is not relevant.
Spectra of this Hamiltonian have been found in good
agreement with the fermion ones.

A number of procedures can be found in the literature
which deal with the problem discussed in this paper. '

Here, I mention only few of them. With respect to the
OAI procedure, important differences can be found in the
way the correspondence between the fermion and boson
states is established (the OAI correspondence preserves
the orthogonality between corresponding states) and in the
way the boson Hamiltonian is derived (the OAI method



1536 M. SAMBATARO 35
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FIG. 12. See caption of Fig. 11, but for N =3.

requires that matrix elements of the fermion Hamiltonian
between some given states match the matrix elements of
the boson Hamiltonian between corresponding states).

A closer link can be found with the approach of Zirn-
bauer and Brink. These authors, in fact, after establish-
ing a correspondence between coherent fermion and boson

states' in terms of the Dyson method, end by mapping
onto the sd boson subspace a fermion Hamiltonian whose
commutators are defined exactly as in Eqs. (6). Apart
from the different formalism used, then, the major differ-
ence between their approach and the one discussed in this
paper is embodied in the renormalization of the projected
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FIG. 13. See caption of Fig. 11, but for N =4.
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FIG. 14. See caption of Fig. 11, but for N =4, j = —, .

Hamiltonian HF' which may be needed to restore its
equivalence to the original HF. The case of a QQ Hamil-
tonian studied here is indeed a case in which this renor-
malization plays a crucial role. A case in which this does
not happen is, instead, that of a pairing Hamiltonian.
Spectra generated by the projected Hamiltonian are now
in excellent agreement with the exact ones. This case has
been treated in Ref. 25.

Some similarities can also be found with the approach
of Ref. 29. Also in this work, in fact, arguments based on
the GCM are used to map fermion Hamiltonians. There
one gets an equation of the type (12), but where the right
hand side matrix element refers to the boson space. A
similar equation is introduced also for the overlaps. A
nontrivial problem which one has to face is, however, that
of relating the fermion and boson variables of the generat-
ing functions.

As a final point, I have studied E2 transitions. I have
shown that a one-body quadrupole operator can be suc-
cessfully mapped onto a one-body boson operator. Be-
sides providing us with information about the E2 opera-
tor, this analysis represents a severe test for the boson
wave functions and thus for the boson Hamiltonians
which have been derived. The good agreement found
gives further support to these Hamiltonians.

The calculations discussed in this paper have been con-
fined to systems of identical particles. An extension to
proton-neutron systems has already been undertaken and
will be discussed in a subsequent publication.
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APPENDIX

I give the general expressions of the coefficients of the
boson Hamiltonian (4) obtained in correspondence to the
fermion Hamiltonian (8):
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Eq =—

Oq

Ed =—

al ——0,

J J 2

Q. J J 2

4
a2 =—

QJ.

4
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QJ
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2 4
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Klein, F. Iachello, A. Insolia, T. Otsuka, O. Scholten, and
particularly D. M. Brink for useful discussions.
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