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To see how closely an interacting-boson-model-like model can be approached, we systematically
develop a similarity transformation that unitarizes the simple correspondence version of the Dyson
boson mapping of the Ginocchio SO(8) model. For a large region of Hamiltonian parameter space,
a one-body plus two-body Hermitian boson Hamiltonian of the interacting-boson-model form is
achieved. The similarity transformation consists of a dynamical part and a normalizing part. The
dynamical transformation results in a one-body plus two-body Hermitian Hamiltonian and simple
transition operators. The normalizing transformation commutes with the dynamically transformed
Hamiltonian. This enables the transition rates to be calculated without introducing dual bases.
However, the resulting boson model differs from the phenomenological interacting boson model in
that transition rates are not calculable from the absolute squares of matrix elements. Dynamically
transformed operators are given explicitly, and normalizing transformations for SO(6) and seniority
limits are obtained in closed form.

I. INTRODUCTION

The phenomenological interacting boson model' (IBM)
has bmn very successful in describing nuclear collective
motion. One approach to establishing a microscopic
foundation for this model involves isomorphically map-
ping the collective bifermion operators into an algebra of
boson operators. The result is a boson Hamiltonian and
observables that incorporate the physics of the fermion
systetn. The exactly solvable SO(8) fermion model due to
Ginocchio provides useful tests for methods of deriving
an IBM Hamiltonian from a fermion Hamiltonian. In the
SO(8) model a fermion collective "SD" space -constructed
from inonopole and quadrupole pairs is an exact invariant
subspace of the Hamiltonian; thus it exactly realizes the
dynamical assumption from which the Otsuka, Arima,
and Iachello (OAI) method begins. Accordingly, the
SO(8) model is exceptionally favorable to IBM develop-
ment, in that dynamical difficulties are largely precluded.
However, even within this invariant subspace, the interest-
ing problem of putting the SO(8) model in IBM form
remains. If this can be done exactly, we will have learned
that the domain of applicability of the IBM is not a null
set, and we can proceed to probe its full extent. If the
SO(8) model cannot be put into IBM form, we would like
to know where the sticking points are.

Our purpose, then, is to convert the SO(8) model into
an IBM equivalent that satisfies (as far as possible) the
rules of the phenomenological IBM:

(a) only s and d bosons are involved;
(b) the Hamiltonian is a Hermitian one- plus two-body

operator that conserves the total boson number;
(c) collective transition operators are one-body boson

operators;
(d) the boson version of each pair-transfer operator is a

boson creation operator with a cutoff factor that depends
on the numbers of s and d bosons;

(e) transition and pair-transfer rates are calculated from

absolute squares of boson matrix elements;
(f) the parameters of the boson Hamiltonian and of the

observables in (d) and (e) depend at most on the number of
fermions.

Of these rules, it is (b) that most essentially character-
izes the IBM, so we give it first priority. Our general
strategy is to defer the onset of complications as long as
possible. Therefore we choose a boson mapping of the
Dyson type, because such inappings (unlike Holstein-
Primakoff mappings) automatically give a simple one-
plus two-body Hamiltonian. Unfortunately, the Dyson
mappings, in general, lead to non-Hermitian boson Hamil-
tonians, in violation of rule (b). Thus our immediate
challenge is to hermitize the boson Hamiltonian that re-
sults from Dyson mapping, without destroying its one-
plus two-body nature.

In Sec. II we outline the SO(8) model. In Sec. III we
describe the particular version of Dyson mapping that we
use, namely the simple correspondence (SC) method due
to Talmi and Cxinocchio. In Sec. IV we try to find,
within the class of unitarily equivalent Hermitian boson
Hamiltonians, one that is one- plus two-body in nature.
We show that if the SC boson Hamiltonian H can be her-
mitized while preserving its one- plus two-body nature, a
further transformation can always be found that unitar
izes the SC mapping without destroying the hermiticity and
one- plus two body nature o-f the hermitized H. We call
the resulting method the "unitarized SC mapping. " We
then exhibit the boson images of the Hamiltonian and the
transition and pair-transfer operators, and discuss the ex-
tent to which these results fit into an IBM scheme. A
concluding discussion is given in Sec. V.

II. REVIEW OF THE SO(8) MODEL

We give a brief review of the model closely following
the notations used in Ref. 2. Throughout this work, fer-
mion operators will be designated by carets, and operators
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j=k+ —', ,k+ —,', , ~k —
z I, (2.1)

where k is a positive integer. Let a&~ be a nucleon
creation operator for a single-particle state with angular
momentum j and projection m. We introduce a
spherical-tensor annihilation operator

a~ =( —1)J+ aj

Let, e.g. , (aj a& )M denote angular momentum coupling.J

With

(2.2)

without carets will be boson operators.
The set of single-particle angular momenta j must be

such that

~

NIcrngJM ) =P~ gM(S D )
i
0) (2.9)

Here, N is the total number of pairs, while n& is the num-
ber of triplets of quadrupole pairs coupled to angular
momentum zero, and J and M are the angular momentum
quantum numbers. The additional quantum number ~, on
which the energy may depend, is needed to distinguish
different orthogonal states of the same N~n~JM. In later
discussion we frequently abbreviate the state labels by the
notation x = (n t, JM). Depending on the values of g,
H(g) may have one of three possible symmetries. The la-

bel K for the eigenstates of H(g) is chosen differently in
each of these symmetry classifications:

and

A:——,
' g (2j + 1)=2(2k + 1)

J

j j
a(jj'rk) = [(2j + 1)(2j'+ I )]'~

2 2

&& ( 1)~+I +j+3&2

the collective bifermion operators of the model are

(2.4)

(A) SU(2)SO(5): G2 b2, ~——~u/2,

(B) SO(6): Go ——G2, x~o,

(C) SO(7): Go bp,——v~w/2 .

(2.10a)

(2.10b)

(2.10c)

The SU(2) representation label u is the seniority. cr labels
the irreducible representation of SO(6), while the SO(7) la-
bel m is the number of nucleons not paired to angular
momentum 2. The SO(6) irreducible representations cr al-
lowed for N nucleon pairs are

D „=A '~ g a(jj '2k)(a~ aj )„,
JJ

P ~
——2 +a(jj 'rk)(aJ az )~ (r =0, 1,2, 3),

JJ

(2.5a)

(2.5b)

(2.5c)

o =N, N —2, . . . , 0 or 1 (N(A/2),

o=A N, A N ——2, . . —. , 0 or 1 (N ~A/2) .

III. SIMPLE CORRESPONDENCE

(2.11a)

(2.11b)

and the Hermitian conjugates 5 and D. The bifermion
operators in equations (2.5) make up the 28 generators of
the group SO(8). From the Lie algebra of these operators,
three subgroup chains can be found:

SU(2)SO(5)
SO(8) ~ SO(6) ~ SO(5)~SO(3) . (2.6)

SO(7)

The collective fermion subspace, called LzD, is the

space spanned by states made up of only the monopole

and quadrupole pairs S and D . Following Arima
et al. , we use a simplified version of the SO(8) Hamil-
tonian. It differs from Ginocchio s original Hamiltonian

by a linear combination of Casimir operators of SO(5) and
SO(3). We take

The simple correspondence proposed by Ginocchio and
Talmi can be formulated in terms of a linear transforma-
tion T that maps the collective Fermion space onto a
model boson space. SC can be viewed as a kind of Dyson
boson mapping, with the noteworthy feature that under T
the Pauli-correction terms are attached to the boson im-

ages of annihilation operators rather than to the creation
operators. A more rigorous and complete account of this
formulation will be given elsewhere.

We introduce ideal boson creation and annihilation
operators s,s with angular momentum 0, and d„,d„with
angular momentum 2. These operators have the usual bo-
son commutation relations. The space spanned by prod-
ucts of any number of boson creation operators s,d&
acting on the boson vacuum

~

0) is called L,d. The
spherical-tensor annihilation operator is

H=H(g)= GOAS S+G2AD t D+—,' b2P 2.P 2 . —(2.7) d„—= ( —1)"d (3.1)

The dots in this equation denote scalar products of spheri-

cal tensors. We denote the parameters of 0 collectively
by

Ginocchio has shown that there is one-to-one

correspondence between fermion states in L~D and boson
states in I,d for N & 0/2. The SC boson image of a fer-

mion operator X is denoted by
g—:(Go, G2, b2) . (2.8)

X =TXT (3.2)
The Hamiltonian H does not couple L&D to the rest of
fermion space. H is so constructed as to be diagonal in r,
the irreducible-representation label for SO(5). We can
therefore denote its orthonormal eigenstates by

T
and the notation X~X is often used. The SC images of
the collective fermion operators in the SO(8) model are
then given by
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(3.3a)
[P„",K]=0 (r =1,2, 3) .

Let us transform this equation by T ', and introduce

(3.9)

S ~S=s —0 '(2Ns s —I), (3.3b) K—:T T=T 'ET (3.10)

Dp ~d~,
D„~D„—:d„—0 '[2Nd„+ ( —1 )"d „I],
PO ~2%,

(3 3c) as a fermion analog of K. We easily find

(3.3cl)

(3.3e)

(3.11)[K,P„"]=0 (r =1,2, 3),
since T 'P„"T=P „". Thus K is a (fermion) SO(6) scalar
An important consequence of this is that the SC images

Pz ~P& 2W—2i" '(d d)„" (r =1,3), (3.3f) ~

N own t,J.M) = T
~

No rn t,JM ) (3.12)

P„~P„=2(s d—„+d„s),
where

(3.3g)
of the orthogonal basis states

~

Nornt, JM) are again
orthogonal in the SO(6) representation label o., and in the
labels

rnid

JM that label the rows of the SO(6) representa-
tion, because

I—:ss —d.d,

N—:ss+d -d.

(3.4)

(3.5)

(Noix
~

N'cr'r'x')= (Noix
~

T T
~

N'o'r'x')

=M(N, o )5~~ 5 5„5„„ (3.13)

Because T is not unitary, it is necessary to specify
separately the transformation properties of kets and bras:

P(S,D„)
~
0) ~TP(S,D „}~

0) =P(s,d„)
~

0),

(0
~
$(S,D„)~(0

~
P(S,D„)T '=(0

~
P(S,D„) .

(3.6)

(3.7)

(3.8)

Note that fermion states are always represented by kets
) and bras ( ~, while boson states will always be

represented by kets
~

) and bras (
~

. T does not, in gen-
eral, preserve the orthogonality or normalization of kets.
However, (3.6) and (3.7) do imply biorthogonality of the
bra and ket boson images of originally orthogonal fermion
states.

There always exists a special orthogonal basis in the
collective fermion space with the property that its ortho-
gonality is preserved under T. We call this the
"invariantly-orthogonal (i o) basis -for T"; it is, in fact,
simply the eigenbasis of the purely kinematical boson
operator

by Schur's Lemma. In fact the SO(6) basis is the i obasis-
for T.

The operator K has further interesting properties. One
can show that

KS K '=s (3.14a)

KDpK '=dp . (3.14b)

For example, taking the Hermitian conjugate of (3.2) and
applying (3.3b) gives

TtSt( Tt) —1 S t (3.15)

In the Appendix, Eqs. (3.14) are used to determine K
for the SO(8) model. The result is

K=K(N, cr}

=0 (0—N —o )!!(0—N +o+4)!!/II!!(0+4).'t

(3.17)

so that

KS K '=TTtS (Tt) 'T '=TStT '=s . (316)

Note that T does not preserve the normalizations of the
i-o basis states.

SC, being of the form (3.2), preserves all algebraic rela-
tions. Therefore the boson images (3.3) of the fermion
SO(8) generators constitute generators of a boson realiza-
tion of SO(8), and the same holds for each subgroup of
SO(8) in the chains (2.5). In the Appendix K is shown to
be a (boson) SO(6) scalar, so that

o(cr+4)=C. 6
——, (P' P'+P .P +P —P } (3.18)

is the quadratic Casimir operator of SO(6).
Under SC the fermion Hamiltonian in Eq. (2.7) is

mapped as follows:

for N & 0/2 and cr =N, N —2, . . . . This should be inter-
preted as a function of two commuting observables N and
cr, where

H(g) ~H(g) = Go[n, (Q N nd + 1)——s s d—.d ]

+Go[And 2ndn, —d d ss+—3(d d ) (d d) —2(d d ) (d d) —2(d d ) .(dd) ]

+b2(5n, +nd+2n, nd+d dss+s s d d. ) . (3.19)
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This result agrees with the Dyson mapping result given in
Ref. 6, except that d d ss and s s d-d are interchanged.
This difference arises because while SC attaches the Pauli
corrections to the annihilation operators, the Dyson map-
ping of Ref. 6 attaches them to the creation operators.

A Hermitian fermion H that is diagonal in the i-0 basis
will always have a simple-correspondence image H that is
Hermitian, simply because H is then guaranteed to have
an orthogonal eigenbasis and real eigenvalues. When

H(g) has SO(6) symmetry, it will be diagonal in the i o-
basis, which is just the basis classified by SO(6). This is
the underlying reason for the relation (noted by Ginocchio
and Talmi ) between the symmetry of H and the hermiti-
city of its SC boson image. We note that this result is
confirmed by Eq. (3.19), which shows that H(g) is Her-
mitian in the SO(6) limit, Gp =Gz.

IV. SIMILARITY TRANSFORMATIONS

A. Unitarizing the SC transformation

because, by using the definition IC =—TT [Eq. (3.8)],

gH =gH'= A, TT'A,'(A,')-'(T ')-'HT'A, '

=AgTHT Ag,

while

(4.4)

Hg=(gH ) =AsTHT Ag .

Hence,

gH =Hg .

(4.5)

(4.6)

g is positive-definite because every expectation value of g
is positive. (Of course, the restriction N 0/2 that
forces L,,d to have the same dimensionality as IqD is
needed to rule out the possibility that g might have zero
as an eigenvalue. ) One can therefore unambiguously de-
fine a positive-definite operator ri by

(4.7)

The boson Hamiltonian H(g) of (3.19) has one advan-
tage and one disadvantage. It is a one- plus two-body
operator; however, it is, in general, non-Hermitian. We
now ask if we can transform H(g) so as to remove its
disadvantage while preserving its advantage.

We can certainly find a similarity transformation Ag
such that

Now take

and consider the composite transformation

which satisfies

(4.&)

(4.9)

H —=AgHAg (4.1) UUt=rtAgTT Agrt=g '~ g '~ =1, (4.10)

is Hermitian. Indeed this requirement by itself would
leave A~ undetermined up to an arbitrary unitary
transformation. Suppose now we can, in addition, exploit
this arbitrariness to make H a Hermitian one- plus two-
body operator; what then remains to be done? The answer
is that we would like the boson image of euery Hermitian
operator to be Hermitian, and this requires that we re-
place Ag by a transformation A such that AT is a unitary
transformation from the collective fermion space to the
model boson space, and AHA ' is a one- plus two-body
Hermitian operator. We call the resulting transformation
AT a unitarized SC transformation

We now show that such an operator A can always be
constructed, provided Ag exists. Define

g
= AsEAs (4.2)

and note that (=g . g commutes with

and

UHU '=qA THT 'A g '=gA HA

=qHq '=H, (4.11)

because, by (4.6) and (4.7), rt comtnutes with H. It is now
clear that AT has both the desired properties: it is uni-

tary, and it transforms 8 into a one- plus two-body boson
operator, which is, of course, Hermitian.

B. The dynamical transformation operator

We now look for As for various values of the strength
parameters in H(g). We separate H(g) of Eq. (3.19) into
an n~ conserving part Hp(g) and the remainder,

H(g)=Hp(g)+(b2 —Gp)s s d d+(bz —G2)d d ss,

H=AgHAg ' (4.3) where
(4.12)

Hp(g)= Gpn, (Q N nd+—1)—
+G2[Qnd 2n, nd+3(d d—) .(dd) —2(d d ) (dd) —2(d d ) (dd) ]+b2(5n, +nd+2n, nd) . (4.13)

Obviously, any similarity transformation generated by a
one-body operator will convert a one- plus two-body
operator into a new one- plus two-body operator, because
its effect is simply to transform to new boson creation

operators (and annihilation operators) that are linear com-
binations of the old ones. We therefore first assume that
Ag can be generated by a one-body operator. If we re-
quire Ag to be also a rotational scalar, its generators can



35 DERIVING AN INTERACTING BOSON MODEL FROM THE. . . 1521

only be n, =s s and nd ——d .d. Since n, +nd commutes
with H, it is sufficient to consider nd .We easily verify
that

(bz —Gz)(bz —Gp) )0 .

The transformed Hamiltonian is

H=AgHAg '

(4.15)

=Hp(g)+ t/(bz —Gz )(bz —Gp )(s s d-d +d d ss)

(4.16)

These results have been given by Arima for a slightly
more restricted region. The regular region (4.15) is com-
posed of the first and third quadrants in Fig. 1. Its boun-
daries are formed by the seniority limit Gz ——b2, and the
SO(7) limit Gp bz. Th——e SO(6) limit lies in the middle of
the regular region. Accordingly, Eqs. (4.14) and (4.16) ap-
ply to the SO(6) limit if one sets Gz=Gp which gives

Ag
——1.

It is of some interest that the obvious method of con-
structing Ag fails in the problematic region

(bz —Gz)(bz Gp) (0 ~ (4.17)

A transformation generated by nd can be constructed to
convert any problematic H(g) into one standard form:

Hp =Hp(g) +Q
~
(bz Gz )(bz —Gp )

~

(s s d.d —d d ss),

(4.18)

in which the nd-changing term is anti-Hermitian. In
spite of this anti-Hermitian term, Hz must, in fact, have

Ag =A. " with A,:—[(bz —Gz)/(bz —Gp)] (4.14)

has the desired properties, provided that the parameters
lie in the "regular" region

only real eigenvalues, because of its relation to the fer-

mion Hamiltonian H and the fact that there are no spuri-
ous eigenvalues for N & 0/2. Therefore, if one can
transform the particular Hamiltonian Hz into a Hermi-
tian operator, the problem of constructing Ag in the prob-
lematic region is solved. The fact that transformations
generated by nd cannot do the job, of course, does not
prove that it cannot be done. We shall see examples of
this in the seniority limit and the SO(7) limit.

For the seniority (Gz bz) ——and SO(7) (Gp bz——) sym-
metry limits, As in (4.14) becomes singular, so that a
fresh start is needed. For these limits, the matrix of H(g}
in an

~

N ndrx) basis is either upper or lower triangular,
so the eigenvalues of H(g) are the same as those of Hp(g).
In both cases we can therefore find Ag such that

H (g) =Hp(g) . (4.19)

For the seniority limit, this transformation is achieved by

As=exp( ——,s s d d)(Q —nd nd+1—)!!.

For the SO(7) limit,

As=exp( —,'d d ss—)(A n, n,—+5)!!—.

(4.20)

(4.21)

In these two equations n d and n, act to the immediate
left of the exponential. The origin of these positional
operators is in the fact that the Ag T mapping identifies
u/2~nd (seniority) and tp/2~n, [SO(7)]. The structures
of (4.20) and (4.21) are similar because of the analogous
structure of H(g) in the two limits. The seniority limit
result is actually the same as one given in Refs. 5 and 8,
although it is written in a different form.

C Ag transformation of observables

We now examine the effect of applying the similarity
transformation Ag to the SC images of pair-transfer and
transition operators. To avoid needless repetition, we note
that the results are always particularly simple for the
SO(5) generators:

AgP„'Ag
' P„" (r =1,3) .— (4.22)

This is because for all cases in which we have succeeded
in finding it, As is an SO(5) scalar.

For the regular case (bz —Gz)(bz —Gp)&0, we find
that Ag from Eq. (4.14) gives

Ags Ag
' ——s (4.23a)

(4.23b)

AsSAg
' ———[(0—2N + n, )s —A, s d d ], (4.23c)

FIG. 1. Hamiltonian parameter space. The unitarized SC is
shown to exist in the unshaded region and on its boundaries,
which correspond to symmetry limits.

Ag D„Ag ———[(II —2N )A d„
—( —1}"d „(A. 'ss —A,d.d )],

AgP„As
' 2(estd„+A, 'd„s) .——

(4.23d)

(4.23e}
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It is interesting that these consist of simply renormalized operators.
In the SO(6) limit, Ag ——1, so, of course, all the pair-transfer and transition operators are invariant.
In the SU(2) seniority limit, As from (4.20) gives, for example,

Ags Ag =s

(dz) — [(0—2nd+1)(s s d )+s s d d.d] .

(4.24a)

(4.24b)
Q —2nd+ 3 0—2nd —1

The results of type (4.24) are different from those obtained by Arima et al. in the Dyson scheme by the OAI method.
However, the two results are related by Herrnitian conjugation followed by a similarity transformation which is diagonal
in the U(1) X U(5) basis.

In the SO(7) limit, with As given by (4.21), the results are analogous to the SU(2) results, e.g. ,

AsSAg
' ——0 '[(0—2N)(Q 2n, +5—)(s)—(fl 2n, +—7) '(s d d)+(Il n,—+5)(Q 2n, +3—) '(d .d d.ds)] . (4.25)

Complete versions of (4.24) and (4.25) are available on re-
quest.

D. g transformation of observables

Even though K and A~ are known, q is hard to con-
struct because it involves a square root. A fortiori it is not
easy to express the general result of the g transformation.
However, K is an SO(6) scalar, so that by Eq. (4.22)

r)P„"q '=P„" (r =1,3) . (4.26)

The difficulty of handling the q transformation is
greatly eased by the fact that g commutes with H, so that
one may discuss all the physics in terms of matrix ele-
ments in a simultaneous eigenbasis of H and g. Because

g commutes with H, nondegenerate eigenvectors of H
will be eigenvectors of q, and even if there are accidental
degeneracies for some g values, eigenvectors of an H
slightly perturbed to remove the degeneracy will still be
eigenvectors of g. The systematic degeneracy with respect
to the SO(5) row labels x does not affect this argument,
because g is an SO(5) scalar. Degeneracies in the con-
served quantities ~ and N would also cause no difficulty,
as long as the eigenvectors of H are chosen to have defin-
ite r and N. There is no systematic degeneracy in ~. Let
us then examine the form of the matrix elements of some

g transformed operator 9 in an orthonormal simultaneous
eigenbasis

~

Ea) such that

H [!Ea)=E
(
Ea), ri

(!
Ea)=77

(
Ea) . (4.27)

We find

(Ea
~
gOg

'
~

E'a')=g~(Ea
~

9
~

E'a')ri~ . (4.28)

However, physical results will depend on the absolute
square of the matrix element of 0 between normalized fer-
mion states

~

Ea) related to
~

Ea) by the unitary

I

transformation U =gAg T; thus,

i
Ea) = U '

i
Ea)=T 'A 'g '

i
Ea),

(4.29)
(Ea

)
=(Ea

)
(U ) '=(Ea

)
U =(Ea

[ r)As T .

We have

= (Ea
f
r)A&TOT 'Ag 'vy '

/

E'a')

X(E' a/vyAsTO T 'As vg
'

J

Ea)
=(Ea

I
(9)~ r I

E'a')

X (E'a'
~

(9 )~ T ~

Ea), (4.30)

because all the g and q factors from (4.28) cancel out.
We use a notation in which

(9)~ r =—Ag TOT 'As ' . (4.31)

Note that the matrix elements in the final equation (4.30)
are not complex conjugates, because Ag T does not
preserve Hermitian conjugation. Thus, IBM requirement
(e) is violated.

Equation (4.30) gives a general method of obtaining
physical results without explicitly introducing g, at the
price of calculating twice as many boson matrix elements
as would ordinarily be required. Because we have carried
out the Az transformation, we do not need the dual eigen-
vectors suggested by Ring and Schuck.

Some methods are available for calculating g in partic-
ular limits, and are discussed in subsection 3 of the Ap-
pendix. In the SO(6) limit, we find

=[K(N, cr)] ' (Gp —G~) . (4.32)

since IC is diagonal in the SO(6) basis. In the SU(2) limit
we obtain

0!!(0+4)!!
0 (II N nd )!($1——2nd + 1)(Q——nd +r+4)!!(6 nd —7+ 1)!—!

1/2

(4.33)

Combined with Eq. (4.24a), this gives

(S )» res g '=s [(II N——nd)IQ]' '. —(4.34)

Use has been made of the fact that s commutes with nd
and ~. The result agrees exactly with that obtained by the
OAI method when allowance is made for our fermion

i

pairs being II' times smaller. For the SO(7) limit one
can obtain a similar result.

V. DISCUSSION

We have shown that, at least in the regular region and
on its SU(2) and SO(7) boundaries, there exists a transfor-



35 DERIVING AN INTERACTING BOSON MODEL FROM THE. . . 1523

mation Ag that hermitizes the SC boson Hamiltonian and
preserves its one- plus two-body nature. This makes it un-
necessary to find both the right and left eigenvectors of
the boson Hamiltonian. Whenever Ag exists, there always
exists a further transformation g that makes the full
transformation U =qAs T unitary, so that U preserves the
relationship of all operators under Hermitian conjugation.
An interesting new result is that g can always be chosen
so that it also preserves the one- plus two-body nature of
the Hamiltonian.

We have obtained the results of the Ag transformation
over a large part of the parameter space, and of the q
transformation over a more restricted region. We can
now ask how well the boson models that result from the
hermitized SC and the unitarized SC exemplify the
phenomenological IBM rules, (a)—(f), given in the Intro-
duction.

We begin with the hermitized SC in the regular region,
where the Ag transformation is simplest. Here, A~ con-
verts the boson creation and annihilation operators into
linear combinations of the original operators. Since the
Ag transformation preserves algebraic relations, this im-
plies that the transition operators, the Hamiltonian, and
the pair-transfer operators must all remain as simple
under Ag as their SC forms were. The only complications
are A,-dependent modifications of the coefficients in the
operators. Because Ag T is not unitary, transition rates
have to be calculated with allowance for the normalizing
transformation q. However, this can be done by means of
Eq. (4.30), without construction of or explicit reference to

Thus one obtains a scheme which is tantalizingly close
to the phenomenological IBM, and which, in fact, violates
only rule (e). It is even possible to calculate with this
scheme within the machinery of a standard IBM program
such as PHINT, ' provided that it can handle such transfer
operators as d d d . The failure of our attempt to justify
rule (e) in the context of the other rules =ven for SO(8),
the best candidate for success —should perhaps serve as
motivation for a phenomenological reexamination of the
validity of rule (e). The quantitative importance of the
normalization effects also remains to be studied.

In the SU(2) and SO(7) limits the As transformation
again exists, but increases the complexity of the boson
creation and annihilation operators. It is only by special
cancellations of the extra pieces that the Hamiltonian
manages to retain its one- plus two-body form. Not
surprisingly, the transition operators become complicated
beyond the standard of the IBM because the "coeffi-
cients" depend (nonpolynomially) on the operator nd.

In the problematic region of parameter space, we do not
know how to hermitize the SC boson Hamiltonian
without introducing three- and more-body interactions. If
it is possible at all, it requires a transformation Ag radi-
cally different in structure from Eq. (4.14). Perhaps this
is an indication that the SO(8) model in the problematic
region really will not fit into the IBM mold. This ques-
tion is a challenge for future work.

Among previous authors, Bonatsos and Klein' have at-
tacked the problem of unitarizing the Dyson mapping, but
without attempting to maintain the one- plus two-body
nature of the Hamiltonian. Their similarity transforma-

tion is given in a complicated algebraic form which is
meaningful only in the SO(6) representation. Geyer and
Lee' give some qualitative discussion of similarity
transformations. Arima, Ginocchio, and Ginocchio and
Talmi all studied similarity transformations analogous to
Ag, which hermitize the boson Hamiltonian and preserve
its one- plus two-body form, but these works do not dis-
cuss unitarization.

There is also a recent treatment of the SO(8) model by
Li, Pedrocchi, and Tamura. ' These authors use the
SO(8) model for numerical tests of several approximate
boson methods. The most accurate of these is found to be
NCQP + BET; that is, the number-conserving quasiparti-
cle theory' followed by third-order boson expansion' of
the bifermion operators. The resulting transformation
preserves the hermiticity of the Hamiltonian as well as the
relations of all transition operators under Hermitian con-
jugation. The boson Hamiltonian is not strictly of one-
plus two-body form, but only because it contains coeffi-
cients that depend on nd, and this does not seem to violate
the spirit of the IBM. In principle, if the expansion is
carried out to higher order, the boson Hamiltonian will
contain nontrivial three-body, four-body, etc. , - operators.
Nevertheless, the good numerical accuracy of the third or-
der NCQP + BET method does suggest that the three-
body and more complicated parts of the boson Hamiltoni-
an may be small.

This work was supported in part by the National Sci-
ence Foundation under Grant No. PHY-82-13597.

APPENDIX

1. Proof that K is an SO(6) scalar

We must show that, for X & Q/2,

[P&,K]=0 (r =1,2, 3) .

First, we write

S =s +R, , D& ——d&+Rd

(Al)

(A2)

where

R, = ——[2s X Is], —1

Rd ——— [2d„%+1 d„]—.
(A3)

[s,K]=KR, , [d„,K) =KRd (A4)

By Hermitian conjugation of Eq. (A4) we obtain (using
K'=K)

[s,K]= —R,K, [d„,K]= —Rd K, (A5)

where R, and Rd are the Hermitian conjugates of (A3).
We give a proof of (Al) for r =1. Similar arguments
hold for r =2 and 3. Consider the commutator

The property of K expressed by Eqs. (3.14) can be written
as
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[P„',K]=2v 2IK(Rgd)q (d—Rg)„'K) . (A7)

[P„',K]= [2~2(d d )„',K]

=2&2I([dt,K]d)„'+(d [d,K])„'I .

Using the commutation relations (A4) and (A5) in (A6),
we obtain

where f(cr) is an undetermined function of o.. To deter-
mine f (cr), one can use an operator X that probes the o
dependence of K. Or one can determine A (N =cr, cr) ex-
plicitly from the SO(6) eigenstates given in Refs. 2 and 9.
A straightforward comparison between two eigenstates, as
done in the wave-function-norm method of Eq (.4.39),
gives

One can easily obtain

(Rgd)„'= ——(d d)„'(2N —2),n

(d Rg)„'= — (d d—)„'(2N —2) .n
Application of (A8) to (A7) results in

(A8)

K(N =o, o) = 0 (Il —2o.)!!
@II

(A17)

From Eqs. (A16) and (A17), Eq. (3.17) for K(N, cr) is ob-
tained. Note that K in Eq. (3.17) has the correct boun-
dary value, unity, at the vacuum state (N =cr=0), as ex-
pected.

2N+2—[Pi K)
A

(A9)

Note that hole formalism is used for N & Q/2+1. Thus
K commutes with P„' in the subspace of our concern, i.e.,
N &0/2. The singular behavior of the commutator at
N = II/2+. 1 reflects the onset of spurious boson states.

2. Construction of E

[N,I ]=2I~ .

It follows that I probes the X dependence of K:

[I ,K(N, cr)]=['K(N —2, o ) K(N,.cr—)II

(A10)

(Al 1)

After somewhat lengthy but straightforward algebraic
manipulation using the basic commutation relations (A4)
and (A5), one obtains

We use a recursive method based on the shift operator I
defined in Eq. (3.4). Its Hermitian conjugate I is an
SO(6) scalar operator and satisfies

3. Methods for normalization eigenvalues

The normalization eigenvalue g can be inferred from
the expectation of q in its eigenstate:

'=(Ea
i g

'
I

Ea)=(Ea
I Asks (

Ea) . (A18)

Though K is known from (3.17), it is diagonal only in the
SO(6) representation, so no closed-form evaluation of this
matrix element is available, except in the SO(6) limit,
where As =1 and

i
Ea) is an eigenvector of cr and 7.. The

result is then

rI =[K(N, cr)] 'r (Go —G~) . (A19)

In the seniority and SO(7) limits rl can be obtained by
methods similar to those used in this Appendix to obtain
K. In the two limits g will be a function of N, nq, and r
since q is an SO(5) scalar. An alternative method reduces
the problem to calculating the norm of a wave function.
Note that g has the same eigenvalues as

[I,K (N, o)]=.K(N, cr)AI (A12) =—T AgAg T,

where

A=II 16N —20(N —4)—. (A13)

its fermion analog, because Az T converts ihe eigenveciors
of rI into eigenvectors of g. Therefore,

In terms of a quadratic Casimir operator C6 of SO(6), 'IEa)=«EaI T &,&,T IEa) «20)

II =(N+2)(N+6) —C, . (A14)

(0—N —cr+ 2)(Q —N +o.+6)KN —2, o =K No.
0

(A 15)

The general solution K of Eq. (A15) is

K(N, cr) =Ii (0—N —o)!!(II N+o. +4)!!f(o), —(A16)

The definition of C6 is given in Eq. (3.18). From Eqs.
(A 1 1)—(A14), we obtain

Thus, from the normalized fermion eigenfunction
i
Ea),

one first calculates a boson wave function /Is T
i
Ea) and

then its norm. The need to know the ferrnion eigenfunc-
tion emphasizes that this is not a method for routine prac-
tical use.

The wave-function-norm method can be applied in the
SU(2) symmetry limit, where the wave functions analo-
gous to

i
Ea) and

i
Ea) are

i
Nvrx ) and

i
N nq ——v/2'), which are known in the form of Eq. (2.9)

from the work of Refs. 2 and 10. Since these wave func-
tions are already norma1ized, it is only necessary to com-
pute AsT

~

¹rx) and see by what factor (r) ) it differs
from

i
N n~ ——v/2 rx) We obtain E.q. (4.33) of the text.
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