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A practical number-conserving method of treating pairing correlations is proposed. The theory is
formulated in a form having clear correspondence with quasiparticle theory and, moreover, it works
well even in the weak pairing limit. Various matrix elements are approximately expressed in terms
of the occupation probabilities containing the blocking effects within the number-conserving frame-
work. The exact occupation probabilities can be used in the case of a constant pairing force. The
present method is able to take the place of previous fixed-number BCS methods and is suitable for
treating residual correlations further. Application to the cranking model is discussed.

I. INTRODUCTION

The treatment of pairing correlations has been a matter
of concern in the microscopic study of nuclear collective
motions. We refer to only a few recent papers, ' al-
though numerous papers have discussed the pairing prob-
lem. The aim beyond the pairing problem is to deal with
other residual correlations. The treatment of the pairing
degree of freedom should be suitable for this further step.
The simplest method to use is the Bardeen-Cooper-
Schrieffer (BCS) quasiparticle or the Hartree-Fock-
Bogoliubov (HFB) approach. However, its disadvantage
is nonconservation of nucleon number and it is not good
in weak pairing situations. For instance, recent calcula-
tions with the fixed-number BCS (FBCS) (Refs. 5 and 6)
have revealed that the simple HFB does not necessarily
succeed in high-spin states of deformed nuclei. Many ef-
forts' have been made to restore the number conserva-
tion but only a few methods are simple enough to apply to
general cases. The usual fixed-number methods are not
useful enough for calculation of matrix elements when we
deal with residual correlations.

The purpose of this paper is to develop a practical
number-conserving treatment of the pairing degree of
freedom and to give an approximate method of evaluating
various matrix elements even for excited states in this
number-conserving treatment.

Our basic approximation is to describe the pairing
correlated states in a number-conserving form by using
the occupation probabilities V . This allows us to express
the contributions of the pairing doree

of freedom to vari-
ous matrix elements in terms of V . The idea is similar to
the approaches of Li' and Lorazo and Quesne, who start
with the FBCS wave functions. We discuss the connec-
tion in Sec. IV. The present approach is completed when
the coefficients V are determined by a number-
conserving treatment of the pairing correlations appropri-
ate for each problem. We can use the exact V in the case
of constant pairing force (and also in spherical nuclei) and
otherwise the approximate V obtained by the FBCS.

The problem of treating the blocking effects ' is diffi-
cult for the quasiparticle theory, because the effects intro-
duce different quasiparticle bases. On the other hand,
our theory is able to take account of the blocking effects
in a proper way. The unpaired degrees of freedom
separated from the pairing one are expressed in terms of
operators like quasiparticles. The treatment, therefore,
preserves clear correspondence with the quasiparticle
treatment and is suitable for dealing with residual correla-
tions.

The present method is superior to the BCS quasiparticle
approach. In the superconducting case, the approxima-
tion gives results better than the BCS even if we use V
obtained by the BCS equations. It is still more applicable
to weak pairing situations where the BCS equations do
not work. Moreover, the evaluation of various matrix ele-
ments is very easy. The method is expected to be applic-
able to many problems in which the BCS approximation
is not good.

In Sec. II we present a new formalism describing the
pairing correlations and give our basic approximation for
the pairing eigenstates. In Sec. III we explain how to
evaluate various matrix elements and energies. An easy
way to determine V in the superconducting case is also
shown. In Sec. IV the present method is discussed and
compared with other approaches. We examine our basic
approximation in a model where we can use the exact V .
Application to the cranking model is discussed in Sec. V.

II. APPROXIMATION FOR THE PAIRING
EIGENS TATES

A. Separation of the pairing degree of freedom
from the others

We start with a consideration of the nucleon operators
(c„,c„) in a certain self-consistent field. Let us regard
appropriate couples of single-particle states as "conjugate"
states and distinguish each pair of conjugate states by the
subscript o (+ or —). (For instance, o means the signa-
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ture in a time-reversal symmetric basis. ) Using the Pauli
exclusion principle c c~ =0, we obtain the equality

=c, (1—c„m„)+c„~„-(1—c„c )c„- .

We rewrite this relation as follows:

H, =Q 2m~„Q—G~„S„S„,
v PV

Hg =g (Ey+a„+a~+ +6~ a~ a„},
where

e„=(e„++@„)/2.

(2.6b)

(2.6c)

(2.7)

c„=a„~+aS~ (o = —o),
tSv =Cv+Cv—

(2.1a)

(2.1b)

(2.1c)

The new operator S„creates a nucleon pair and the other
a„creates an unpaired nucleon in a single-particle level
V.

The first part, H„stands for the pairing degree of free-
dom and the second part, H„stands for the unpaired
ones.

As H, and H, commute, the eigenstates of the pairing
Hamiltonian are products of an eigenstate of H, with one
of H, :

a t,c,a vz~z
' '

I 2Ny[vivz . ]), (2.8a)

From the definitions (2.1b) and (2.1c), we can obtain the
commutation relations

I 2Nyfv, vz . ])
f(pipz ' px[vivz ' ' ]}

[Sp,S„]=5 (1—2N„—U„),

a~ a„+a,~~ ~
——5 5 (1 —a„m„)(1—N„),

and the conditions

S„S„=a„~„~=a~„=S„a„=a„S=0,
where

NV=S„S„,
v„:—a „+av+ +a v a v

(2.2a)

(2.2b)

(2.3)

(2.4a)

(2.4b)

Pl@2 ' ' I N+[vlv2 ' ]

XS„,S„", . S„ I
0) . (2.8b)

Here, N is the number of pairs S y is the other quantum
numbers, and

I
0 ) is the nucleon vacuum, i.e.,

c„ IO) =S IO)=a IO) =0. The symbol []means that
the single-particle levels in it are blocked by unpaired nu-
cleons a

B. Basic approximation for the pairing eigenstates

It is easy to show that Nv and vv satisfy the relations

fN„,S„]=S„, [N„,a ]=0,
[U„,a„]=a„, [U„,S,]=0 .

(2.5)

The states
I
2Ny[vivz ]) include the pairing vibra-

tional excited states. En this paper, however, we concen-
trate our consideration on a special group of states which
are composed of the lowest-energy state for each set of N
and [vivz ]. We denote these states

Hs+H (2.6a)

The relations (2.5) indicate that N„means the number of
nucleon pairs S„and U„means the number of unpaired
nucleons a„(i.e., the seniority number U„). The nucleon
number in a level v is given by g c„m, =2N„+U„. The
operators Nv and v have only the eigenvalue 0 or 1 be-
cause N =Nv and v =v„.2=" 2=

The above relations remind us of the "quantized"
Bogoliubov-Valatin transformation in Refs. 10 and 11.
That transformation, which is obtained in the spherical j-j
coupling scheme, reduces to (2.1) in the case j= —,. It
should be noticed that S„and a are simply expressed in
terms of the original operator c„and (2.1) is useful
for both spherical and deformed nuclei.

Any operator can be expressed in terms of S, and a„
through (2.1) and its matrix elements can be calculated
from the operator rules (2.2}—(2.5). The pairing Hamil-
tonian is divided into two independent parts as follows:

a=~ vn ~ GRAVC&+C& Cv —Cv+
vcj PV

I
y(2N [v,v, ])» . (2.9)

P„+Q„=1, P„Q„=O, P,=P„Q„=Q„,
S„P„=P„S„=S„Q„=Q„S,=O,

S„=S„P„=QQ„,
Q- I

y(2N[vivz ])» 0 for v+vivz. . .

(2.11a)

(2.11b)

(2.11c)

(2.11d)

Using P„and Q„we can divide the wave function (2.9)
into two parts, one having no nucleon in a certain level v
and the other having one pair of nucleons in that level v:

The wave function (2.9) describes the configuration of N
pairs with the largest energy gain when the single-particle
levels vivz . . are excluded from the configuration space.

Let us define the projection operators

P„=1 —S„S„, Q„—=S„S (2.10)

where P projects the states with the empty level v and
Q„projects the states with the filled level v. These opera-
tors satisfy the following relations:

I
0(2N[vivz' ' ' ])» =U (2N[vivz' ]) I

P (2N[vivz ])&+V~(2N[vivz ' . ])S
I Q (2N —2[v, vz . ])), (2.12)

where
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and

U (2N[viv2 . ])=((($(2N[v]v2 . ]) i
P„ i y(2N[v/v2 . ])»)'

V„(2N[v]v2. . ])=((($(2N[vivp ]) i g, ill(2N[viv2. . . ])»)'
(2.13)

iP„(2N[v]v2. ])&=P~
i
y(2N[vivp. ])&&IU (2N[viv2 . ]),

S„ i Q (2N —2[viv2. . . ])& =Q„i $(2N[viv2. ])» /V (2N[viv2 . . ]) .

(2.14a)

(2.14b)

The projected states (2.14a) and (2.14b) are normalized
and orthogonal to each other. From the definition (2.13),
V means the occupation probability of a nucleon pair in
a level v. Note that U„+ V =1. If there is no blocked
level, (2.12) is the wave function of the ground state with
nucleon number 2N (

i 2N;g. s. &). Its schematic illustra-
tion is shown in Fig. 1. In the BCS approximation, be-
cause the number conservation is abandoned such as

i
P„(2N) &=

i
Q„(2N —2) &, (2.12) is reduced to the usual

BCS wave function.
It is complicated to describe the exact structures

of the projected states
i
P (2N [viv2 . . ])& and

i Q (2N —2[viv2 . ])&. However, since these projected
states themselves are mixtures of a great number of con-
figurations, they can be expected to resemble the lowest-
energy states of the 2N and 2N —2 nucleon systems with
the blocked levels v and v&vz

I P.(2N [viv2 . ])& —I
4(2N[vviv2.

(2.15)

g-(2N 2[viv2 ])&=
I
4(2N —2[vviv2 ])» .

The approximation (2.15) is equivalent to writing Eq.
(2.12) as follows:

i(b(2N[viv2. . ])» U„(2N[vivq . ])
i
$(2N[vvivq 7)»+V (2N[viv2. ])S

i
cb(2N —2[vviv2. ])» .

(2.16)

The idea of this approximation is similar to that of the
BCS, but the nucleon number is conserved and the block-
ing effects are taken into account in our treatment.

The approximation (2.16) makes it possible to express
various matrix elements in terms of the coefficients
( U„, V ) as shown in Sec. III. The problem is how to get
the coefficients ( U, V ). Various methods for determin-
ing ( U, V„) can be employed. We use the exact ( U, V )

obtained by the Richardson method' ' in the case of
constant pairing force, as discussed in Sec. IV. In other
cases of deformed nuclei there is no useful method for
getting ( U, V ) better than the FBCS, because the shell
model diagonalization and the Richardson method are not
available. However, the simple way in Sec. IIIB related
to the BCS equations including the blocking effects is use-
ful in the superconducting phase. It is easy in spherical
nuclei to get the exact ( U, V, ) by the shell model diago-

nalization. Then our approach is also useful for spherical
nuclei, although we do not pay attention to this in this pa-
per.

III. EVALUATION OF VARIOUS
MATRIX ELEMENTS

A. Examples of evaluation

As mentioned above, we suppose that the ( U„, V ) have
been already determined. This means also that the wave
functions

i
P(2N [vivz. . . ])» and their energies

E(2N [viv2 . ]) are known.
In order to show the way of evaluating other matrix ele-

ments under the approximation (2.16), we first consider
the two-nucleon transfer matrix element between the
ground states of adjacent even nuclei, which is calculated
as

(2N+2;g. s.
i
c +c„ i

2N;g. s. & =(($(2N+2) iS i/(2N)»

=(($(2N[v])
i

V (2N+2)S„S„U„(2N)
i $(2N[v]) »

= V (2N+2)U„(2N) . (3.1)

This evaluation is very reasonable, while in the quasiparticle treatment there is an ambiguity as to whether the factors
( U, V„) appearing in (3.1) are derived from the 2N or 2N +2 system.

The excited states with many unpaired nucleons are written, in our notation, as

i 2N+I;vicri .
vicri &=a„,~, a,~, i

P(2N[vi vi))&& .

Because no nucleon pair can occupy the blocked levels vi . . vi in (3.2), the wave function of distributed pairs
i
P(2N [vi . . vi]) » depends on the number of unpaired nucleons. Namely, the blocking effects can be taken into ac-
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count in our treatment. The expectation value of the nucleon number in a level p is obtained as follows:

1 for pHv
&2N+l;vio& ' vI~1

I Xcpocpa I
2N+I;vio] ' ' ' vt~l &= 2(V„(2N[, ]))2 f

CT

The energy of an excited state is given by

&2N+l;v(cr). . . v(o(
~

H
~

2N+1;v)o) . v(a(&=E(2N[v) . vI])+e„,~ +e,~, ,

E(2N[vt . . vr])=«P(2N[vi . . vI]) IH l4'(2N[vi v~l)&& .

(3.3)

(3.4a)

(3.4b)

Since the pairing eigenstates
~
P(2N [v~v2. . . ])&& do not include unpaired nucleons a„, the

~
P(2N [v~vq. . . ])&& are

like vacuum states with respect to a

a„(y(2N[v, v, ])»=O. (3.5)

Therefore we can easily evaluate matrix elements between the states including unpaired nucleons by using the operation
rules (2.2)—(2.5) and (3.5) in the same manner as (3.1).

For instance, the one-nucleon transfer matrix element between the state of the 2N + 1 system,
~

2N + 1;vo &, and the
ground state of the 2N system,

~
2N;g. s. &, is calculated as

&2N+I;vcr
~
c„~2N;g. s. & =&&/(2N[v])

~

a c„~P(2N) &&

=«P(2N[v])
~
a„a U (2N)

~
$(2N[v]) &&

= U„(2N) . (3.6)

The last step follows by using the approximation (2.16) for
~

tI)(2N) &&. In our picture, the wave function of distributed
pairs

~
P(2N [v]) && in an odd-nucleon system is naturally different from

~
P(2N) && in an even-nucleon system, but the

evaluation (3.6) is reasonable. Contrary to this, if one takes account of the blocking effects in the quasiparticle formal-
ism, the calculation in (3.6) becomes confusing because the effects introduce different quasiparticle bases for the bra and
ket vectors.

B. Simple way of determining ( U„, V ) in the superconducting state

Showing a rough evaluation of the energies E(2N [v&v2. ]), we give the simplest method for determining ( U„, V„)
in this subsection.

Although we suppose that the energies E(2N [v~v2 . ]) are already known, the adoption of the approximation (2.16)
makes it possible to express E(2N [vtv2 . ]) in terms of ( U, V ) as follows:

E(2N[v)vq . . ])=
v (+v&vz - . )

(2e„—G )( V„(2N [v)vp ] ) )

p~v (~vivZ
Gp V~(2N[v)v2. ))V~(2N[v(vq . . ])

X U&(2N —2[vv~vq. ])U„(2N —2[pv~vq . . ]) . (3.7)

This evaluation, of course, differs from the original one
obtained in the process of determining ( U„,V„). It should
be noted here that the virtual contributions of pairing vi-
brational excitations to the interaction term g„„G&,S„S
are not included in (3.7). The evaluation (3.7) is also dif-
ferent from the BCS.

In a superconducting phase of many pairs distributed

over many single-particle levels, the value of
U„(2N —2[vv&vz . ]) appearing in (3.7) is expected to
be roughly equal to that of U„(2N[v&v2 . ]). If we
make this approximation, (3.7) is reduced to the BCS en-
ergy, except that the blocking effects are included in it. In
the case of constant pairing force G„=G, its variation
equation gives

2Ie„—G(V„(2N[v~v2 . . ])) —A }U„(2N[v~v2. ])V (2N[v~v2 . ])
= I(U~(2N[v(v2 . ])) —(V„(2N[v)vp. . . ])) }b,

U„(2N[v)v2 . . . ])V„(2N[v)v2 . ]),
v (+v)vz . )

(3.8a)

(3.8b)
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which are just the BCS equations including the blocking
effects. Equations (3.8) are available for determining
(U„,V„), if the BCS approximation is good. Once the
BCS values of ( U„,V„) have been obtained from (3.8), we
can calculate a better energy than the BCS energy by sub-
stituting the BCS values of V„(2N [viv2 . ] ) and
U&(2N —2[vviv2 . ]) into (3.7). We can also evaluate
other matrix elements by using the BCS values of
(U„,V„) in the manner of Sec. IIIA. This simple but
number-conserving method works better than the usual
BCS.

The method in this subsection can be used as substitute
for more precise one in the superconducting state. For
weak pairing situations, however, it cannot be used, and
then we must employ a more precise method, namely the
Richardson method adopted in Sec. IV or the FBCS, in
order to get ( U„V,).

IV. DISCUSSION

The preceding sections show that the present number-
conserving formalism preserves an intimate correspon-
dence to the quasiparticle approach. The matrix elements
obtained have expressions similar to the BCS ones. Simi-
lar approaches starting with the FBCS wave functions
were made by Lorazo and Quesne and Li. ' Lorazo and
Quesne showed that the broken-pair model (FBCS) can
take the place of the quasiparticle approach. Li's expres-
sions of matrix elements obtained by an approximate
number projection of the BCS wave function resemble our
results. Both methods have the advantage that the coeffi-
cients (U, V ) are consistently determined while in our
inethod they are not. However, we need not confine the
wave functions to the FBCS form. We can more correctly
or exactly treat the pairing correlations in some weak
pairing situations. Once the ( U„, V„) have been deter-
mined, the evaluation of other matrix elements is very
easy in our treatment.

The expression (3.1) of the two-nucleon transfer matrix
element is the same as that obtained by Li. ' According to
Li s calculations in the Sn (spherical) nuclei, the approxi-
mation (3.1) can reproduce well the exact value. In de-
formed nuclei, although the exact calculation of this ma-
trix element is difficult, the approximation (3.1) seems to
be very good also. Our evaluation of two-body operators
such as gS„S in (3.7) is different from that of Li, be-

cause virtual contributions of pairing excitations are in-
cluded in Li's result but not in ours. We can take account
of the contributions in the same order approximation as
Li, but we neglect them in this paper.

We now consider an example with a constant pairing
force parameter 6& ——G, in which we can determine the
occupation probabilities (V (2N[vivz. ])) and the en-
ergies E (2N [vi v2 . ] ) exactly by the Richardson
method. ' ' The Richardson method has not been used
in realistic calculations because the evaluations of matrix
elements are difficult and the numerical solution of its
equations has not been established. As shown in the
preceding sections, however, our basic approximation
(2.16) makes it possible to evaluate matrix elements. We
have also developed the numerical solution of the

Richardson equations (see the Appendix). The calcula-
tions of V„and E are not difficult compared with the
FBCS calculations. We can thus use the Richardson
method for finding exact energies and exact occupation
probabilities. It works for any strength of G, even when
the shell model calculation is practically impossible.
Therefore, there is no reason to use other approximations
for getting V„and E in this constant pairing case.

Let us take a model which has 16 uniformly distributed
levels with the parameters e ~=v ( v = 1,2, . . . , 16) and
G =0.5 in arbitrary units. This model was used recently
by Zeng et al. ' to study the even-odd differences in the
band-crossing frequency co, due to the blocking effects. A
similar model was used in Ref. 15 before.

Table I shows the calculated occupation probabilities
V„and gap parameter 6 [Eq. (3.8b)] in the 16- and 17-
nucleon systems. The exact result, which can be profit-
ably used in our approach, is compared with the results of
the truncated shell model made by Zeng et al. ' and the
BCS approximation including the blocking effects. The
comparison with the exact result indicates that Zeng's cal-
culation is insufficient. Contrary to their conclusion, the
BCS approximation roughly reproduces the reduction of
b, in the odd nucleon system if the blocking effects are
taken into account by using Eqs. (3.8). It should, howev-
er, be remembered that the inclusion of the blocking ef-
fects brings about confusion in calculations of matrix ele-
ments in the quasiparticle formalism.

Since exact calculations of other matrix elements, ex-
cept for the energies and occupation probabilities, are dif-
ficult, it is impossible to check directly the accuracy of
the evaluations of matrix elements shown in Sec. IIIA.
To estimate the accuracy of the basic approximation
(2.16), we calculate the energies of the ground state and
the lowest excited states with the total seniority v =2 in
the 16-nucleon system by using (3.7) derived through
(2.16). The results are shown in Fig. 2. This figure con-
firms that the approximation (3.7) is better than the BCS
one including the blocking effects [compare (A) and (B)
with (C)]. The approximation (3.7) works well even if we
use the ( U„, V„) values calculated from the BCS equations
(3.8) [compare (B) with (C)]. These results indirectly sup-
port the usefulness of the basic approximation (2.16). It is
also worth mentioning that the simplified method in Sec.
III B provides an improvement on the usual BCS.

Figure 2 still shows a discrepancy between (3.7) and the
exact results. The errors partly come from neglecting the
virtual contributions of pairing vibrational excitations as
mentioned above. The effects do not exist in the matrix
elements having only one S„or S„, except for (a,a„).
The above errors can be reduced considerably if we calcu-
late the excitation energies measured from the ground-
state energy with the aid of commutation relations. Of
course, we need not adopt the approximation (3.7) in place
of the exact energies.

For the [8,9] state in Fig. 2, the exact calculation gives
the gap parameter 6=1.037, while the BCS equations in-
cluding the blocking effects of the single-particle levels 8
and 9 provide only a trivial solution b, =0. For the [8,10]
(or [7,9]) state, the exact 5 is 1.168, but the BCS one is
merely 0.702. The BCS approximation is not good in
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TABLE I. Comparison of the exact occupation probabilities V„and gap parameter 6 with approxi-
mated ones. The state

~
P(16[9]))) is the wave function of distributed pairs for the 17-nucleon system

with a last odd nucleon in the level v=9. The exact results are obtained by the Richardson method.
The configuration space in the shell model is truncated by limiting the configuration energy E,=g„e„
to E, (52 as in Ref. 14. The self-energy correction for the single-particle energy of Eqs. (3.8) is not
neglected in the BCS calculations.

V„ in
~
$(16)))

Exact Shell BCS
V'„ in

~

P(16)[9])))
Exact BCS

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0218
0.0275
0.0358
0.0483
0.0685
0.1039
0.1724
0.3234
0.6766
0.8276
0.8961
0.9315
0.9517
0.9642
0.9725
0.9782

2.113

0.0025
0.0048
0.0085
0.0144
0.0249
0.0446
0.0901
0.2246
0.7754
0.9099
0.9554
0.9751
0.9856
0.9915
0.9952
0.9975

1.396

0.0168
0.0219
0.029S

0.0417
0.0627
0.1027
0.1868
0.3676
0.6324
0.8132
0.8973
0.9373
0.9583
0.9705
0.9781
0.9832

2.062

0.0157
0.0199
0.0262
0.0358
0.0518
0.0813
0.1437

0.8607
0.9213
0.9499
0.9655
0.9748
0.9808
0.9849
0.9878

1.499

0.0083
0.0111
0.01S5
0.0232
0.0381
0.0723
0.1732

0.8310
0.9290
0.9625
0.9771
0.9846
0.9890
0.9918
0.9936

1.333

these states because the pairing correlations are weak due
to the blocking effects. These values of b, in the lowest
U =2 states are very different from 6=2. 113 in the
ground state. Accordingly, the usual quasiparticle ap-
proach with the same 5 can be improved. The present
method is just powerful in such a case.

not appropriate for the description of band mixing, such
as the backbending phenomena, because the calculation of
matrix elements between the different states becomes dif-
ficult. This difficulty can be overcome by the configura-
tion mixing treatment of the term —coJ„on the quasipar-
ticle basis fixed for co =0, or by working with constant an-

J„=g (j„) g crc, c
(5.1)

V. APPLICATION TO THE CRANKING MODEL

We conclude our consideration by giving a guide as to
how the present method can be used.

We take up the cranked Hamiltonian

70

I:7,93
C8,10]

(8,9]

The inclusion of the term —coJ„ in the HFB mean field
brings about different quasiparticle bases for states with
different angular velocities co (or spin I). This feature is

65

gr

= Ut, exact (A) (8) (C)

I4(2N)&) lk(2N(t/))& 5 I4(2N-2(&3)&)

FIG. 1. Schematic illustration of the distribution of nucleon
pairs expressed in (2.16).

FICx. 2. Energies of the ground state and the lowest excited
states with two unpaired nucleons in [p, v], in the 16-nucleon
system. The exact results are obtained by the Richardson
method. The energies (A) and (B) are calculated through the ap-
proximation (3.7) by using the exact ( U, V ) values and the
BCS ones, respectively. The results (C) show the usual BCS en-
ergies including the blocking effects.
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gular momentum (J„). The former seems to be good as
long as co is not too large. Then we can assume that 0 in
(5.1) has the form (2.6) with e + e„——=e and G„=G.

The configuration mixing treatment is very manageable
by the present formalism. We can enjoy the advantage of
the number-conserving treatment. The basis states corre-
sponding to the many quasiparticle states are given by the
eigenstates of H, which are written as

J =J„'+J
J„'—=g(j„) ~ ger(a, a ~ —S~ ~ S ~ ),

(5.3a)

(5.3b)

—coJ„has only off-diagonal matrix elements between the
basis states. Moreover, the present approximation is
better than the BCS.

Through the transformation (2.1), J„ is written as

l
p(2N) )), a.. .a, l

p(2N —2[v,v2]) )), J„"=g(j„) ~ g (a„a,P' ~ +S~ a, ) .
VV

(5.3c)

(5.2)
a a „ a „, ,a ~, l

P(2N —4[viv2v3v4]))),

We neglect the pairing vibrational excitations for the
present. It should be noticed that the single-quasiparticle
energies or routhians do not appear in our treatment of
even nuclei. The energies of the basis states (5.2) are ob-
tained exactly by the Richardson method as shown in Sec.
IV. This is an important improvement on the usual
quasiparticle treatment, because the number projection for
the BCS formalism has the largest effect on the energies.
The approximate evaluation of matrix elements presented
in the preceding sections is applied to the term —coJ .
This approximation is not very bad because the term

I

Here, J„' does not change the number of a (i.e., seniority
number) and J„changes it. Tanaka and Suekane'
showed by the quasiparticle formalism that one can con-
struct "the basic rotational bands" with different intrinsic
properties by excluding J~ and the mixing of "the bands"
can be treated by including J„ later. Their method is cap-
able of describing the backbending phenomena without
anomalies in the band crossing region. ' More generally,
however, we can diagonalize the term —coJ in a certain
truncated space spanned by (5.2) under the constraint
(J„)=I. The matrix elements of —cuJ„are easily
evaluated by our method. Some of them are shown in the
following:

((P(2N —2[viv2]) l a,,~,a,,~, coJ„'a, ,a, ,
l
P(2N —2[v', v2]) ))

X I U, (2N —2[viv2]) U„(2N —2[v'1v2]) —V, (2N —2[viv2]) V (2N —2[viv2]) I
1 V)

(via l~v202) (via l~v2o 2) + (via l~v2o 2 d vi~l~v2a2) (5.4a)

((P(2N —2[viv2])
l
a„a coJ„"

l
P(2N) )) =co(j„)»(U~ (2N —2[v2]) V~ (2N) —U„(2N —2[vi]) V~ (2N)), (5.4b)

where (vioi~v2o2) in (5.4a) means exchanging v1oi for
v2cr2 in the first term. The matrix elements (5.4b) are
weakened by the factor ( U„V —U, V, ). This is the

well-known reason why the moment of inertia is reduced
by the pairing correlations. From this reduction of J,
we can expect that the mixings between the basis states
with different seniorities become smaller.

Accordingly, we have a number-conserving treatment
of the cranking model. The pairing correlations are quite
accurately treated in our approach. In the calculated ex-
ample of Sec. IV, 6 for the lowest basis states

a„~ a„~ l
P(2N —2[viv2]) ))

is about a half of b for
l
P(2N))). This suggests that the

blocking effects may have influence on the backbending
point. The present treatment can properly take account of
these effects, in contrast to the usual quasiparticle ap-
proach. It is also interesting to apply our method to the
problem about the even-odd differences in the band-
crossing frequency co, due to the blocking effects. ' '
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When Gz are constant ( G&„——G), the exact wave func-
tions of the pairing states (2.8b) can be written as' '
l2Nr[ 1 2 ])=g

k=1 v

where zk are roots of the coupled equations

X' =—+X
2ev —zk G k' (~k) zk —zk

(k =1,2, . . . , N) .

(A2)

Here, g' means the summation excluding the blocked
levels [viv2 ]. The exact energy and the exact expecta-
tion value of N =S S are given by
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FIG. 3. The Richardson solutions in the schematic model
adopted in Sec. IV (e„=1,2, . . . , 16): (a) the ground states and
(b) the first excited 0+ state, in the 16-nucleon system. The solid
lines are the real roots and the dashed lines are the real parts of
complex roots.

N

I V,(2Ny[viv2 . . ])I = —G
dGk l

2e —zk
(A4)

The Richardson equations (A2) have some complex
conjugate roots zk =g, +i ri, and the other real roots
zk ——z„ for a given value G. Equations (A2) are reduced to
the following equations determining real quantities z„, g„
and rI, : A real root z„satisfies the equations

X' =—+ X +X2e„—z„G,( )
z„—z„(g —z ) +g

(A5a)

Sn

FIG. 4. The Richardson solution in the spherical nucleus" Sn, which has degenerate Nilsson levels. The single-particie
parameters are the same as in Ref. 19. The levels d5q2 and g7/2
are forcibly split in the region of 6 &0.177 MeV. The spacings
between the split levels are 0.02 at 6 =0 and zero at 6 =0.177,
in MeV.

2(g, —g, )

'(+.) (k' —k. ) +(n. +n. )

(ASb)

, =1++
(2e —g', ) +ri, „(z„—g, ) +q,

2g, (q, +rI, )+
2, (~,) (g, —g, ) +(r), +g, )

(ASc)

We show the numerical method by which to solve Eqs.
(AS) in the model with uniformly distributed single-
particle levels adopted in Sec. IV. The behaviors of the
roots zk are illustrated in Fig. 3. We can solve Eqs. (AS)
by varying G from 0 to a given value step by step. In the
case having no degenerate level, since all roots are real in
a region of small G, we may solve only (ASa) by means of

and the real and imaginary parts of a pair of complex
conjugate roots, (g„q, ), satisfy the equations

2e,—g, 1 2(z, —g, )

(2E. g, )'+7),'G „(z„—g, )'+ q,
iteration in this region. As G increases, pairs of adjoining
real roots become complex conjugate roots one after
another. A pair of complex roots start when the left- and
right-hand sides of (ASa) diverge (i.e., zk ~2e„and
zk+&~2e ) and (zk+zk+&)/2 crosses the horizontal line
of 2e„. After the occurrence of complex roots, each set of
g, and r), are determined from the crossing point of the
two graphs (ASb) and (ASc). The consistent solutions of
the entire coupled equations (A5) are obtained by means
of iteration in each step when G increases.

The Richardson method is applicable to realistic cases
in which the spacings of single-particle levels are arbi-
trary. To demonstrate this, we show the solution in the
spherical nucleus " Sn, as a severe example which has
many degenerate single-particle levels, in Fig. 4. In this
figure the single-particle energies are varied with G so
that the degenerate levels split in the region of G &0.177.
This technique makes it possible to solve any problems
with degenerate levels. The results obtained in "Sn were
confirmed to be correct by comparing them with the shell
model results. It is worth noting that solving the
Richardson equations is easier in deformed nuclei than in
spherical nuclei.
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