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The effect of the proton-proton Coulomb interaction in the He ground state is investigated. The
rms radii, first-order and second-order Coulomb energy shifts, the validity of the hyperspherical ap-
proximation, and the various trinucleon densities are examined.

I. INTRODUCTION

Most investigations of the trinucleon bound states have
assumed charge symmetry and charge independence.
That is, one assumes a common interaction between two
protons, two neutrons, and the (isospin) T= l part of the
neutron-proton interaction. Isospin is conserved and the
trinucleons form a (pure) isodoublet state. Many diverse
mechanisms break isospin symmetry. Primary among
them in the trinucleons is the Coulomb interaction be-
tween the two protons in He. '

The mass difference between the mirror pairs He and
H is a direct manifestation of charge-symmetry breaking.

A major element of this is the mass difference of a free
neutron and a free proton: 1.293 MeV. Subtracting these
leads to a H- He binding energy difference of 764 keV.
It has been known for 50 years that the bulk of this
difference is due to the pp Coulomb interaction in He, al-
though only recently has a quantitative understanding
been achieved. ' One of our goals in this work is to ex-
tend this understanding.

Two-body potential models tend to underbind the tri-
ton. " There is a strong correlation between the size and
the amount of binding: As binding decreases, the system
swells, and the Coulomb energy will decrease. In order to
treat the Coulomb energy in the absence of a detailed
understanding of the underlying strong interaction
dynamics, the hyperspherical approximation was
developed. ' In first-order perturbation theory in the fine
structure constant, a, and assuming the impulse approxi-
mation for the nuclear charge density, one finds

F. = fd r[p, (r)+pd(r)]
3 r

fd r[4p, (r) —p3H(r)]

where g(r) determines the effect of the nucleon charge
distribution on the Coulomb potential' and p, (r) and pd (r)
are the isoscalar and "difference" charge densities' of
He and H:

Zp, h(r) =Zp, (r)+pd(r),

where the upper sign corresponds to He (Z=2) and the

lower to H (Z= l). All charge densities are normalized
according to fp(r)d r= 1, except for p~, which is nor-
malized to zero. The significant feature of this approxi-
mation is that the Coulomb energy, whose evaluation in-
volves an integration over the appropriate two-body corre-
lation function, can be approximated by a quadrature in-
volving the charge density, a one-body operator. More-
over, the latter is known experimentally. Note that the
isospin structure weights the He data by a factor of 4.
That numerical result ' is Ec =-638+10 keV.

In addition to the first-order Coulomb energy, a very
small second-order contribution arises. This quantity
also depends sensitively on the binding energy. We will
elucidate its properties and demonstrate its smallness.

A much more interesting quantity is the rrns charge ra-
dius of He. If we assume that the asymptotic wave
function dominates the matrix element of r, then the rms
radius should be proportional to Ez ' . This was previ-
ously shown to be the case for the isoscalar (mass) radius.
The repulsive Coulomb interaction will decrease Ez by
roughly 10% and, concomitantly, increase the radius by
roughly S%%uo. However, the repulsive Coulomb (Gamow)
barrier will also modify (lower) the tail of the wave func-
tion, and this will tend to decrease the He radius. The
size of the latter effect is not known and will be investi-
gated. Recent tritium data from Saclay' and new data
from MIT' have rekindled interest in the radii.

In the course of investigating convergence properties of
solutions of the Faddeev equation with diverse combina-
tions of two- and three-body potentials and numbers of
channels (i.e., partial waves), many wave functions corre-
sponding to a wide range of eigenvalues were obtained. "
These wave functions can be used to calculate observables,
and form a kind of "theoretical" data base. We previous-
ly found that many of these observables, when plotted
versus the corresponding binding energy, exhibited scaling
with that energy. That is, they exhibit a simple functional
behavior, with only a small spread of values for fixed Ez.
Fits to these plots, extrapolated to the correct binding en-
ergy, probably provide the best theoretical estimates of
these trinucleon observables, providing that scaling ob-
tains. Previously this technique was applied to the triton,
and will be employed here for He with a pp Coulomb in-
teraction included. Some caution is indicated, however.
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If the data set is limited to models which do not include
the correct physics, a false result could be obtained.

The Faddeev equations are exactly equivalent to the
Schrodinger equation. There are, however, alternative
ways ' ' to include the Coulomb interaction (or three-
body forces) with the short-range two-body forces in the
former equations. Although they are all equivalent in
principle, they differ in practice when the Faddeev equa-
tions are partial-wave truncated (i.e., a limited number of
channels is employed). Because the Coulomb force is
long-ranged, partial-wave truncation can lead to a defi-
cient force. We employ a nonstandard version of the Fad-
deev equations which correctly describes the Coulomb dis-
tortion when a proton is far away from the remaining
charged particle. Thus our Faddeev eigenvalues are closer
to the non-Coulomb eigenvalues, augmented by the
Coulomb energy calculated in perturbation theory, than
those calculated with the standard partial-wave truncated
Faddeev equations which include a Coulomb force. We
will ignore the coupling to the isoquartet channel (a very
good approximation') and employ a point Coulomb in-
teraction for specificity in calculating our wave functions.
We have also implemented a technical improvement' in
calculating our matrix elements.

II. RESULTS

The Coulomb energy shift is evident in the dashed curve,
and the Coulomb barrier separates the two curves by ap-
proximately 0.04 fm for E~ =7.75 MeV. Figure 2
displays the same Coulomb distorted He result, together
with the (non-Coulomb) H results and data from a recent
Saclay analysis. ' The data are in good agreement with
the fits at the appropriate (experimental) binding energies
(1.58 fm for H and 1.77 fm for He), although the He
results would not be in agreement with the non-Coulomb
fit at the physical He binding energy, which is shifted
(upward) by approximately 0.08 fm from the triton result.
The net result of these competing Coulomb effects is an
increase of 0.04 fm in the He radius.

The Coulomb energy is given quite accurately by first-
order perturbation theory.

Ec ' ——
& 4o

I
Vc

I
4'o &,

where Vc is the Coulomb interaction incorporating (for
specificity) a dipole proton form factor' and %o is the H
wave function. These results are shown in Fig. 3. At the
physical triton binding energy the fit produces
Ec"-—652+2 keV.

One can also calculate the expectation value of V~ with
respect to Coulombic wave functions 4-=+0+6%:

The He charge radii obtained from our wave function
sets, one with the Coulomb interaction and the other
without, are displayed in Fig. 1, together with simple fits. (4)
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FIG. l. rms charge radii of 'He for diverse two-body and three-body force models, with and without a pp Coulomb interaction,
plotted versus binding energy.
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FIG. 2. Trinucleon rms charge radii plotted versus the corresponding binding energy for diverse two-body and three-body force
models.

700
Coulomb Energy

I I I
l

I I I I
l

I I I I I 1 1

650

600

550 l I l I I I I

FIG. 3. He Coulomb energy in first-order perturbation theory for the models in Fig. ), plotted versus binding energy.
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and therefore second-order (in a) corrections to %. Equa-
tions (4) and (5) can be solved' to yield

Ec '= [Ec—Ec"—') ~2 . (6)

Comparison of corresponding members of the two wave
function sets produces the results of Fig. 4 for

(~) (qo
~

Vc ~N)(N
~

VC
~

Po)
Ec

EN —Eo
(7)

N&0

The wave functions were calculated using the point
Coulomb interaction, VC while the operator Vc can be
taken to be the point Coulomb interaction or one modified
by a nucleon charge distribution. This leads to the two
separate results for Ez ——8.5 MeV: —4.4 and —3.9 keV.
The curves are separated by approximately 0.5 keV. Had
we also produced a result for both Coulomb interactions
in Eq. (7) modified by the nucleon finite size, it would lie
about 0.5 keV lower still (or —3.4 keV), as indicated by
the sparse calculations of Ref. 1. En that reference we ar-
gued that the Ec' should scale roughly as [Ec"] lEs.
The dependence on the triton binding energy, Ez, is actu-
ally somewhat stronger than this ( -E~ ).

The results for the hyperspherical approximation to the
Coulomb energy have been presented before. Because the

where we have assumed that we can neglect third-order
contributions (in a) to

Ec=Ec +Ec +(&) (2)

hyperspherical approximation to the two-body correlation
function lacks the hole present at short distances in the
true correlation function, the values of Ec are larger than
Ec" by slightly more than 1%. On the other hand, the
use of the He Coulomb modified charge form factor or
charge density in Eq. (l) ((%'

~ p ~

0') ) leads to an overesti-
mate' of the second-order Coulomb energy by roughly

', Ec—'. The numerical factor arises from —', of the He
density times 2 (there are two Coulomb modified wave
functions in the He charge density) minus the normal
amount (l) of Ec '. This leads to roughly —6 keV which
must be subtracted out, or an increase of 6 keV in the hy-
perspherical estimate of the Coulomb energy. The latter
number offsets the inherent overestimate of Ec" by the
hyperspherical method, which is also roughly 1%.

We note also that the percentages of I'- and D-wave
components are virtually unchanged by the Coulomb in-
teraction, while the S -state probability drops substantial-
ly, reflecting the strong bindtny energy dependence of that
quantity found earlier ( -Es ).

Finally, we present in Fig. 5 the results for various den-
sities calculated in impulse approximation. The results la-
beled "He" were calculated using 34 channels and the
Reid Soft Core (RSC) two-body potential including a
Tucson-Melbourne three-body force (TBF) together with a
pp Coulomb force. The " H" case is analogous, but the
Coulomb force is omitted. The large difference between
neutron densities (or proton densities) is due to the differ-
ence between np and nn or pp forces. The proton (or
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FIG. 4. Second-order He Coulomb energy for the models in Fig. 1, plotted versus binding energy. The upper and lower curves
correspond to different Coulomb force models as described in the text.
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FIG. 5. Trinucleon proton and neutron densities in impulse approximation calculated with ( He) and without ( H) a pp Coulomb
interaction. These densities are 4m. times the ones defined in Eqs. (1) and (2).

charge) densities were previously presented' without a
Coulomb interaction. In impulse approximation, neglect-
ing charge-symmetry breaking, the neutron density of H
and the proton density of He are identical; similarly, the
neutron density of He would be identical to the proton
density of H. The small difference between p„( H) and

p~( He) is virtually the same as that found several years
ago for the five-channel case without a TBF. The tails of
these densities are all rather different. A diminution of
the density inside the nucleus reflects an enhancement in
the tail, for reasons described earlier. The crossover point
is roughly I.5 fm. At 3.0 fm the Coulomb modified den-
sities are roughly 6% larger than the corresponding un-
modified ones.

Knowing the neutron and proton mass densities (and
the nucleon-nucleon correlation functions) of H and He
is of fundamental importance to the interpretation of
scattering data involving strong probes. For example, the
differences seen in vr +scattering from t—he trinucleons has
been cited as evidence for a charge symmetry violation. '

The unanswered question is whether the observed differ-
ences in the cross section ratios can be explained in terms
of known charge-symmetry violating effects such as the
Coulomb interaction.

III. CONCLUSIONS

The rms radius of He is modified by the Coulomb in-
teraction in two ways. The diminution of binding in-
creases the size (roughly) according to Ez ', while the
smaller modification from the Coulomb barrier reduces
the size. The net effect is a small increase in the radius.
The first-order perturbation theory result for the Coulomb
energy of He is rather sensitive to binding, as is the
second-order contribution. The latter, however, is very
small ( ——4 keV). The hyperspherical approximation to
the Coulomb energy works well (at the 99% level). There
is a non-negligible (but small) Coulomb effect on the vari-
ous trinucleon densities.
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