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The high-spin spectrum of Zr is studied using the Strutinsky-Bogolyubov cranking model with a
Woods-Saxon average potential. Calculations explain observed irregularities in the ' Zr yrast line in
terms of band crossings involving aligned g9/2 proton and neutron bands. A transition to the super-
deformed shape is predicted to occur around I—3&6. Experimental data are consistent with the nu-

cleus having a well deformed (Pq —0.3) and triaxial (y= —20') shape.

I. INTRODUCTION

During the last decade, high-spin studies have focused
mainly on rare earth nuclei. Using the methods of
discrete y-ray spectroscopy, states above I=4(% were ob-
served directly in some nuclei (see, e.g. , Refs. 1 and 2),
while quasicontinuum studies have given indirect infor-
mation about the highest spin range up to I=(50—60)R.
(Very recently, a superdeformed band extending up to 60fi
has also been observed in ' Dy by discrete spectroscopy,
Ref. 3.) The relatively light nuclei with Z=36 and
N =40 have also been studied, showing interesting
structural features. Although the term "high spin" tradi-
tionally already applies in these light nuclei at I=16%', it
was the shape coexistence effects observed at low spins in
light Qe, Se, and Kr isotopes with N 38 that at-
tracted particular attention here (see, e.g. , Ref. 4 and
references quoted therein). Only relatively recently have
heavy ion fusion evaporation reaction studies revealed
various phenomena of these nuclei at I & 16' (Refs.
5—9), i.e., at rotational frequencies co&700 keV/A. For
4oZr44, states with spin as high as I =(36+ ) have been re-
porttxi, and despite the fact that the experimental results
are uncertain for I)20%, they indicate the possibility of
observing very high multiplicity events in nuclei in the
A =80 mass range.

Although the microscopic effects ruling the high-spin
behavior of both groups of nuclei are principally the same
(single-particle alignment, pairing variation due to rota-
tion, shape coexistence resulting from the shell structure),
in the light nuclei they combine to form an altogether dif-
ferent mechanism, leading to very strong shape effects.
The underlying single-particle level structure is dominated
by a particularly high abundance of large energy gaps cor-
responding to oblate shapes at Z and N=34 and 36, to
spherical shape at Z and N =40, and to various prolate
deformations ranging from P2 ——0.20 up to

P2 ——0.50—0.70 for Z and N =34, 38, 40, 42, and 44 (cf.
Fig. 1 of Ref. 10). The large quadrupole moments and
moments of inertia observed recently in a number of Br,
Kr, Rb, and Sr isotopes can be explained theoretical-
ly' "in terms of large (P2-0.40) ground state equilibri-
um deformations in these nuclei.

Recent measurements of very high spin states in the
Zr nucleus make it possible to test detailed theoretical

calculations concerning its high-spin behavior and aiming
at the study of the different competing mechanisms. The
analysis presented here applies powerful phenomenologi-
cal techniques developed in the past (cranking model,
Strutinsky renormalization, the Hartree-Fock-Bogolyubov
method; for details, see Ref. 12 and references therein) in-
corporated consistently into one treatment. Such an ap-
proach allows for studying simultaneously the deforma-
tion, single-particle alignment, and the pairing effects to-
gether with their possible competition and interplay.

In the following the general features of the calculations
are described and the results are discussed in detail.

II. THE MODEL

The microscopic, quantum mechanical basis of inter-
play between deformation, single-particle alignment, and
pairing effects can often be understood from the underly-
ing single-particle structure. Calculations' employing the
deformed Nilsson potential predicted small oblate
(y =60 ) deformations for Zr in the spin range
(10—40)fi, contradicting experimental data' which show
rather regular collective bands connected via enhanced
p(E2) transitions in this nucleus. In the present study we
apply the Woods-Saxon Strutinsky-Bogolyubov cranking
model applied previously' in the study of low and high
spin properties of selected 3 -80 nuclei. In particular, it
has been shown there that the model gives a correct
description of both single-particle level order and overall
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rotational behavior in the mass region discussed. In the
following the definition of the applied Woods-Saxon
model is given, followed by remarks on the treatment of
rotation and pairing.

A. The single-particle potential

p=O, +2, +4
a4„Y4„(9,P )

and

(2)

~=(a20 2+2 2 —2 40 a4 —2 4+2 a44 a4 —4)

denotes the set of all the shape deformation parameters.

In Eq. (2), C(P) is calculated at each deformation

separately in order to fulfill the constant volume condi-

tion. The quantity R (8,$) is the distance of any point on

the nuclear surface (direction specified by the polar angles

0 and P) from the origin of the coordinate system.

After assuming that the shape parametrization

preserves three symmetry planes and requesting the hexa-

decapole degrees of freedom to be functions of the scalars

in the quadrupole tensor az„(seeRef. 14), we reduce the10

number of independent coefficients to three: pz, y, and p4,

where

azo =Pzcosy, (3a)

1—Pzslnyv'2
(3b)

The single-particle levels are generated by the
deformation-dependent Woods-Saxon potential

~o
V(r, P) = (1)

1+ exp[ dist( r;P) /a]

where the function dist(r, P) denotes the distance of a

point r from the nuclear surface X parametrized in terms

of the quadrupole and hexadecapole degrees of freedom.

The shape parametrization used includes nonaxial defor-

mations:

X: R(0,$)=rod'"C(p) 1+ g az„Y2„(g,y)
p=O, +2

where A. denotes the strength parameter of the effective
spin-orbit force acting on the individual nucleons. , In fact,
the radius parameter of the spin-orbit potential should, in

general, be different from that of the corresponding cen-
tral part (see, e.g. , Ref. 15); this is equivalent to having in-

troduced a new surface X„differing from the one in Eq.
(2) by the numerical value of the constant ro. In the
present paper we use the uniuersal 8'oods-Saxon parame-
ters of Ref. 16, which give a good description of the
single-particle states, at least in nuclei with A )40 (see,
e.g. , discussion in Ref. 17).

Our definition of the deformed potential is a straight-
forward generalization of the spherical Woods-Saxon po-
tential:

Hws ——T+ V(r;0)+ V„(r;p)+—,
'

( 1+~3)V( 1(r;/3), (6)

where the Coulomb potential Vc,„1(r,p) is added for pro-
tons, is solved numerically' using the diagonalization
method. We used at least X =14 deformed harmonic os-
cillator shells as the single-particle basis; with such a basis
cutoff the results are sufficiently stable with respect to a
possible enlargement of the basis.

V(r)= 1+ exp[(r —Ro)/a]

ln which the distance from the nuclear surface ( r —go) is

replaced by the function dist(r, P). Therefore the generali-
zation of Eq. (5) automatically preserves the condition of
a constant surface thickness of the nuclear shape, indepen-
dent of the point on the surface. Any parametrization
which does not involve an exactly linear functional of the
distance in the exponent in Eq. (1) is called here ~oods-
Saxon-Ii ke. The Woods-Saxon-like potentials contain
differences when compared with the potential represented
in Eqs. (1,4) which, in general, grow with increasing de-

formation, causing systematic differences in the single-

particle spectra even if the same values of the potential
parameters are used in the Woods-Saxon and Woods-
Saxon-like approaches.

The Schrodinger equation with the single-particle
Woods-Saxon Hamiltonian

a4o= 6 P4(5cos y+1),
1

a42 —a4 2 = —
12 30P4sln y )

a44 =a4 4 = +~ 3/70p4s111 y .

(3c)

(3d)

(3e)

B. Rotation

In order to take into account the effect of rotation, we

apply the standard cranking approximation. This is

equivalent to solving the eigenvalue problem:

This choice of parametrization guarantees that at each

multiple of y =60' we return to axially symmetric shapes

irrespective of the value of P4. The original richness of
hexadecapole shapes [cf. Eq. (2)] is obviously diminished

in favor of decreased computational effort. At axially

symmetric shapes, P4 has exactly the same meaning as in

a11 the standard shape parametrizations.
The spin-orbit potential is defined as usual as a scalar

composed of grad, p, and s:

V„(r,13)= —A, [grad V(r, P) X p].s,
2mc

H "g„=e
where, according to the notation in Eq. (6),

0"=—Hws —~

(7)

(8)

In Eqs. (7) and (8), co is the cranking frequency about the

x axis and j„is the associated component of the angular

momentum operator.
The (pz, y, p4) parametrization has all the symmetry

properties of Bohr's (pz, y ) parametrization. ' In particu-

lar, at ol =0 the whole (pz, y ) plane splits into six

equivalent sectors defined by the axes y =km/3 (with

k =0, 1, . . . , 5). The cranking model equations (7) and
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(8) with co&0 generally break this symmetry. Then one
has to perform the calculations in a full half-plane. The
half-plane symmetry applies to any dynamical quantity,
particularly the single-particle routhians e„ofEq. (7) and
all the derived energies, including the Strutinsky-type en-
ergies.

The knowledge of the number and location of the total
energy minima is a prerequisite for the shape coexistence
analysis. In order to obtain the total energy surfaces, we
use the Strutinsky method generalized ' to the case of
rotation.

However, here we explicitly employ the symmetries of
our cranking Hamiltonian, the parity m. , and the signature
r, and apply the Strutinsky formula separately to dif-
ferent configurations characterized by the set of quantum
numbers:

Hws~~ws —g G"gC„C-„CC ~,
1 =Il, P

(10)

where the G'"' and G' ' are the average matrix elements

INr, n, I Ne cI

where ~=n, p and N,„,denotes the number of particles
of type ~ occupying orbitals of parity m and signature r.
The quantum number N,„,(N,„,= 1,2, . . .) labels the
states which differ structurally, although having identical
quantum numbers N „„.Such an approach ' enables
us to study the lowest energy bands of various configura-
tions, their crossings, shape evolution, etc.

In order to compare the theoretical predictions with the
experimental data, however, the pairing must be taken
into account since they dominate the excitation pattern,
especially at low spin. We use the simple monopole pair-
ing force, i.e., we replace

of the pairing interaction. In our paper we used values of
G" from Ref. 10. In the presence of pairing the crank-
ing equations (7) and (8) can be solved using the Hartree-
Fock-Bogolyubov cranking (HFBC) (also called indepen-
dent quasiparticle) method (for a detailed description of
this method, see, e.g., Ref. 12). The HFBC method allows
one to calculate approximately the total energy of the sys-
tem and the total angular momentum as functions of the
rotational frequency co, from which quantities such as the
kinematic and dynamical moments of inertia, the aligned
angular momenta, etc. can also be derived.

In the following sections we apply the Woods-Saxon
model described above to the case of Zr nucleus.

III. SHAPE EVOLUTION IN Zr

A. Csround-state shapes of neutron deficient
even-even Zr isotopes

The equilibrium deformation of the zirconium isotopes
result from the interplay between the spherical Z and
N=40 gaps and the prolate Z and N =38, 40, 42, and 44
gaps in the single-particle spectrum. Figure 1 shows the
calculated potential energy surfaces (PES's) at I =0 (with
the inclusion of pairing) for the sequence of neutron defi-
cient Zr isotopes. In the isotopes with N (42 the ground
state corresponds to a strongly elongated shape with
j3z—0.38, y=0'. The spherical Z and N =40 gap mani-
fests itself by the presence of local spherical minima for

Zr and Zr. In the nucleus 40Zr~, which has sometimes
been assumed to be a quasimagic system, the spherical
minimum is predicted to lie about 1.7 MeV above the de-
formed ground state. This is consistent with the very re-
cently obtained results on this nucleus, which indicate a
ground-state deformation 132-0.42, and is further sup-
ported by the new deformed shell structure systematic in

78 80 82

0.1 0.2 0.3 0.4 0.) 0.2 0.3 0.4
I

0.1 0.2 0.3 0.4

C3 8~Z

0.) 0.2 0.3 0.4 0.1 0.2 0.3 0.4

FIG. 1. Total energy surfaces in the (Pz, y) plane for the doubly even neutron deficient Zr isotopes. Results are obtained using the
Woods-Saxon potential and the BCS pairing model. At each (P2, y) deformation we used the hexadecapole deformation, which mini-
mized the liquid drop energy. The energy (in MeV) is given relative to the absolute minimum. The black dots show the location of
the energy minima.
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terms of pseudo-SU3 symmetry; see Ref. 27. Due to the
large quadrupole equilibrium deformations, collective ro-
tational spectra are predicted to dominate the excitation
pattern of Zr nuclei.

In the heavier nuclei with N) 44, the spherical struc-
tures determined by the presence of Z=40 and N =50
gaps dominate. In the ground-state PES of Zr there are
two local minima, i.e., one at /32

——0 and one at P2 ——0.28,
y=20'. The spherical one lies about 800 keV below the
triaxial minimum. The states corresponding to the two
minimum are expected to interact with each other, leading
to a mixed spherical-triaxial ground-state configuration,
as in the light Ge and Se nuclei. The deformed structure
is not present in Zr, which possesses only one spherical
minimum. The reduction of the quadrupole deformation
in Zr is reflected by the small value of the experimental
quadrupole moment

~ Q2 -1.8 eb, Ref. 5, which is al-
most one-half of the corresponding value for Sr, Ref. 28,
one of the best deformed nuclei in the 2 =80 mass region.

B. Interplay between weakly and strongly deformed
structures in Zr

In order to get some idea about the deformation
changes which may occur in the yrast lines in Zr, we
first calculated PES's for a number of low-lying configu-
rations without considering pairing correlations. It has

been argued previously' ' that the equilibrium deforma-
tion obtained from the solution of the unpaired problem
gives a reasonable estimate of deformations computed in-
cluding pairing correlations.

It has proved very useful to represent the PES's at dif-
ferent spin values in the form of maps employing a por-
tion of the (Pz, y) plane. However, if one takes into ac-
count the number of configurations which become yrast
at some spin value and tries to follow the rotational evolu-
tion of shapes associated with those configurations, the
number of maps necessary for such an illustration be-
comes impractically large. In order to illustrate the shape
evolution in Zr, we thus limited ourselves to the case of
the PES's corresponding to total parity

and total signature

r«, ——r r =+1 .

In such a case the PES's are composed of several pieces,
corresponding to various configurations specified in terms
of (N, „,N,„,=l), but with the following constraint:
vr„,= rt t 1. The notation N,„,= 1 signifies that all
these pieces correspond to yrast energies in the respective
deformation regions.

An example of such calculations is given in Fig. 2 for

i,
)'= + 60 Jj T=i60'

SHAPE EVOLUTION— 4O Zr

ij Y= I60

Z 04
0

O.2

oD

0.2 l0'(

0.4

0.2
C)

0

0.2

Y= (20

g= -60

FICs. 2. Total energy surfaces for Zr at I =0+, 10+, . . . , 50+. Pairing is included only at I"=0. The distance between the con-
tour lines is 1 MeV. The position of the absolute minimum is indicated by an asterisk, while the positions of the secondary minima
are indicated with dots.
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six spin values (I =Oui, 10i)i, . . . , 50k'). The polar (Pi, y)
coordinate system is indicated by four axes corresponding,
in clockwise order, to y=60', 0, —60', and —120'. The
y=60' axis corresponds to noncollective rotation of an
oblate shape.

For I =0, there are four local minima, i.e., at Pz ——0
and P2 ——0.28 (@=+20, —20, and —100 ). The pres-
ence of the minima at y = —20' and 100 results from the
symmetry of Bohr's shape parametrization; these are
merely reflections of the minimum at y=+20' (cf. Fig. 1

and discussion in Sec. II B). Such a landscape at I =0 im-
plies that for I&0 there are, in fact, four different possi-
bilities of accommodating the angular momentum in the
system. They are by a collective rotation with triaxial
shapes at y =+20', —20', and —100', and by a particle-
hole (noncollective) excitation mechanism at the spherical
shape, Pz-O.

The results presented in Fig. 2 show, however, that col-
lective rotation at Pi—0.28 and y= —(20'—30') quickly
becomes energetically most favorable. For I= 166 the tri-
axial minima at y=+30 and —100' lie about 700 keV
above the minimum with y= —30', and the minimum at
spherical shape lies even higher (at about 1.5 MeV).

For I =2(% the minimum at almost spherical shape
(Pi-0.08, y=60') becomes lowest in energy. It corre-
sponds to the so called doubly optimal configuration
ir(g9/i )s &(g9~2 )s. A superdeformed minimum (/3z-0. 5)
develops already at I=2(Hi. For I-30k the absolute
minimum corresponds to spherical shape, and collective
rotation at y== —30' disappears. At this spin one finds
also a superdeformed minimum which eventually becomes
yrast at I =36iri (see Fig. 3 below) Final. ly, for I =40iri
and 5(Hi, the yrast configuration corresponds to the nearly
axial, superdeformed shape with Pi ——0.58, y=7'. This is
a qualitative picture of the rotational effects which one
should expect to develop in Zr with increasing spin.

We shall now investigate in detail the high-spin
behavior of the low-lying collective configurations. Rota-
tional bands can be divided into four principal groups, i.e.,

po

0) 5

4—
O
(3

I

IJJ 3-
TION

0
I

10
I

20 50 40
ANGULAR MOMF NTUM

I

50 60

1. Triaxial collective bands below I=36k'

This group contains (cf. Fig. 3) the bands 1, 2, 5, 7, 9,
and 12. The relevant single-particle diagrams are shown
in Figs. 5 and 6. Band 12, originating from the
(Pq-0. 28, ) )20 ) triaxial minimum, develops in spin in
a very different way from the bands 1, 2, 5, 7, and 9, the
latter corresponding to y( —20 equilibrium deforma-

FIG. 3. Low-lying collective rotational bands of both signa-
tures and parities in ' Zr. The energies El are displayed relative
to an average reference (0.0173I MeV). The numbers refer to
the bands discussed in detail in the text. The spin and parity of
the individual bands are indicated in the following way:
~=+, r =+1, solid line; m =+, r = —1, short-dashed line;
n.= —,r = + 1, long-dashed line; m = —1, r = —1, dotted-dashed
line.

(1) ir„,=+, r„,=+1 (I =0+,2+,4+, . . .),
(2) ir, ,=+, r, , = —1 (I =1+,3+,5+, . . .),
(3) ir, ,= —,r, , =+1 (I =0 '2,4, . . . ),
(4) ir„,= —,r„,= —1 (I =1,3,5, . . . ) .

0.3-

pent

0.2—
pt

p+

5I

All bands within a given (m. , r) family can be further
distinguished using the occupation quantum numbers (9).

The lowest collective bands in Zr, corresponding to a11

combinations of parity and signature, are presented in Fig.
3. The energies are displayed relative to a parabola
(0.0173I MeV) in order not to expand the ordinate axis
too much. Shape evolution within the discussed bands is
shown in Fig. 4. All the bands in Figs. 3 and 4 can be
grouped into two sets: the triaxial bands originating from
the symmetric minima at (P2-0.28, @=+20') (indicated
in Fig. 4 by encircled black dots) and the superdeformed
bands with 0.4 (Pi &0.6. These two sets are discussed
separately in the next two subsections.

O. l

84
40 44

O. I

SHAPE
EVOLUT ION

FICx. 4. Shape evolution of the bands represented in Fig. 3.
The signature and parity of individual bands are indicated in the
same way as in Fig. 3 ~
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tions. Although at I=(Hi both bands 1 and 12 have the
same energy (for the symmetry reasons discussed above),
band 12 quickly reduces its collectivity and eventually ter-
minates at y=60 (I=26fi), almost 2 MeV above the
yrast band 1; cf. Fig. 3.

Band 7, which has m = —1 and X = 1, stays close in de-
formation to band 1 for I & 226. It has the same neutron
configuration as band 1; bands 1 and 7 differ in the lowest
proton excitation; cf. Fig. 5. Bands 2, 7, and 9 terminate
in a spherical shape for I)30k. This termination pattern
is quite different from the one for band 12 and the one
predicted' for Sr, where the states with a maximum
alignment within a band were calculated to have large
quadrupole deformations P2 & 0.2 (y =60 ).

The discussed triaxial bands do not contain any aligned
h»~2 nucleons. The presence of highly aligned particles
is typical of the superdeformed bands which become yrast
above I=36k.

II I I I II I 1 l ll II lll I l II I rl I, ~ I ll l

0 0.4 0.8 1.2 1.6 2.0

FRECLUENCY (MeV/h)

FIG. 5. Neutron single-particle routhians at a deformation

p2 ——0.28, y= —30', characteristic of the bands denoted by I

and 7 in Figs. 3 and 4. The numbers in rectangles refer to the
total angular momentum obtained by occupying all the routhi-
ans below the position of the rectangle. The position of the mid-

dle of a rectangle against the abscissa specifies the relevant rota-
tions frequency. The figure is illustrative of the relevant proton
orbitals as well. Orbitals occupied within the rotational bands 1

and 7 are marked by the positions of the respective reference
numbers. The spin and parity of the individual levels are indi-

cated in the following way: ~= +, r = —i, solid line;
m = +, r = +i, short-dashed line; n. = —,r = —i, long-dashed
line; n= —,r =+i, dotted-dashed line.

2. Collective superdeformed bands above I=306

At the highest spins all the yrast or near yrast bands
correspond to strongly elongated shapes with

P2 ——0.4—0.6 and y=0' —10'; see Fig. 4. Bands 3, 4, 6, 8,
10, and 11 belong to this group. As was seen in Figs. 2
and 3, these superdeformed bands develop at spins below
20k.

The microscopic reason for this can be understood from
the single particle diagram, Fig. 7, corresponding to the
deformation p2 ——0.5 y =7'. The large, l.5—2 MeV,
N =44 gap in the single-particle spectrum is clearly seen
in the frequency region 0.6&Ace(1.6 MeV. This unusu-
ally large shell opening results in a lowering of the super-
deformed bands in the %=44 isotones; cf. Ref. 10.
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FIG. 6. Similar to Fig. 5, but at a deformation
pz ——0.28, y = +30 typical of band 12 in Figs. 3 and 4.

~ I— I I

0.4 0.8 1.2 1.6
FRECLUENCY (MeV/h)

2.0

FIG. 7. Similar to Fig. 5, but at a deformation pz ——0.5,
y=7 typical of the superdeformed bands 3, 4, 6, 8, 10, and 11.
The levels are labeled with 0 quantum numbers, although 0 is
not a good quantum number for either y&0' or co&0.
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Due to a "magicity" of the N =44 neutron number, all
low-lying bands considered in our analysis correspond to a
single optimal neutron configuration defined by the occu-
pation quantum numbers

[N =+,„=;=11,N +, +;——11,
N „,=11,N „+;=11].

It contains two aligned h»&2 neutrons; see Fig. 7.
The superdeformed bands can therefore be dis-

tinguished by their proton configurations. The lowest
band is the one denoted by 11. Its proton configuration
[9, 10, 10, 11] is optimal in the discussed frequency range
and corresponds to m = —and r = —1. The next band, la-
beled by 8, (ir = —,r = + 1), is built on the proton excita-
tion from the K"= —,

' (r = +i ) level to the
K = —, (r = i)—level and therefore its configuration is
[10,9,10,11]. Band 6 with n=+ .and r = —1 corresponds
to the proton excitation from the —, (r = i) l—evel to the

(r = i ) —level ([10,10,9, 11]). The lowest
(m=+, r =+ 1) band labeled by 4, [10,10,10,10], is about
0.8 MeV higher in energy than the optimal band 11. This
is due to the large proton excitation energy from the

(r = + i) level to the —,
' (r = i ) lev—el. The

(ir= —,r = i) band—10 crosses band 11 around I=30iri.
This can be immediately correlated with the crossing be-
tween the —, (r =+i) and —, (r =+i) orbitals around& + 5+

Ace=0. 8 MeV.
All superdeformed configurations discussed so far have

one proton and two neutrons occupying h»&2 orbitals.
Figure 8 shows alignment plots for these bands. One can
notice that they carry about six units of angular momen-
tum alignment relative to the proposed experimental
band. The tentative experimental spin-parity assignments
do not allow one to analyze in detail the physical reasons
for this discrepancy. One can mention, however, that the
average dynamical moment of inertia of the discussed su-
perdeformed bands is J' '=27k /MeV, which agrees well
with the experimental value J' '=25. 5 A /MeV.

The band which is closest in alignment to the experi-
mental (m =+, r = + 1) band is the one labeled 3. Its oc-
cupation quantum numbers are identical with those of
band 4, but it can easily be separated by means of the ex-
citation quantum number N,„,[Eq. (7)]. Microscopically,
band 3 is built on the proton excitation from the

5 +
h ii~2, &2(r =+i) orbital to the —, (r = i ) orbital. —It
contains, therefore, no h»&2 protons. The alignment of
band 4 relatively to band 3 is about Ai =3.5A at E~=1.8
MeV, but increases smoothly to the value of hi=4. 5A at
Ez —2 MeV due to a gradual increase of deformation in
band 4 (see Fig. 4). Bands 3 and 4 cross each other
around l=3(Hi (or fico= 1 MeV; cf. Fig. 7), but in this
spin region they lie about 2.2 MeV above the yrast band 1

(cf. Fig. 3).

C. Cranking model analysis of the Zr spectrum

The cranking model has been employed to interpret
the bands of Zr. Figure 9 shows experimental energies
in the rotating frame of reference (routhians) versus rota-
tional frequency. The (ir = +, r = + 1) ground band

40—

30-

2p—
THEORY - K, p

I

2
E (MeV)

FIG. 8. Angular momentum vs transition energy for the su-
perdeformed bands in Zr. Experimental data are taken from
Ref. 5.

behaves regularly and shows an increase in spin alignment
at 0.45 &fico&0.6 MeV (the very-high-spin part of the
data for this band is not displayed in Fig. 9). The excited
(m.,r)=(+, +) band, indicated by the symbol T, also
gains alignment at Ace & 0.4 MeV and approaches yrast at
fico=0 5MeV [in fact,. the I =12+ states in both (+,+)
bands are almost degenerate, with energies 5134.5 and
5149.7 keV, respectively]. The negative parity band with
r = —1, which is lower in energy at low rotational fre-
quencies, crosses the r =+1 band at ibm=0. 66 MeV.

To get some idea about the structure of these bands, the
angular momentum alignment i, the kinematic moments
of inertia J'"=—I /cu, and the dynamical moments of in-
ertia J' ':—dI /de are displayed in Fig. 9.

The J' ' moment of inertia for this yrast (+,+ ) band
exhibits four maxima centered around frequencies
Ace& —0.48 MeV, fico2—0.58 MeV, Acu5 —0.95 MeV, and
Aco6—1.1 MeV. Such "peaks" in the J' ' vs Ace plot usu-
ally indicate band crossings with large interaction
strengths

~

V
~

or some other structural changes taking
place within a rotational band (e.g., changes in deforma-
tion or in pairing field). In the ( —,—) band two maxima
can be seen: at Aco3-0. 45 MeV and Rcu4 —0.63 MeV.
Only one peak can be observed in the ( —,+ ) and excited
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FIG. 9. Cranked shell model analysis of the band structures of ' Zr.

(+, +) bands. At co3 for fun&0. 9 MeV the kinematical
moment of inertia of the (+,+) yrast band stays approxi-
mately constant, equal to 25fi MeV.

In order to interpret the above experimental findings we
calculated the quasiparticle routhians for two deforma-
tions: P2 ——0.28, y= —20 [representative of the (+, +)
yrast band] and P2 ——0.24, y= —35' (representative of the
negative parity bands after the alignment of the first pair
of quasineutrons; see Fig. 4 and discussion below). The
results are shown in Fig. 10. The constant pairing gap
values, 6„=Ap = 1.4 MeV, slightly reduced compared
with the values at co=0, were used to account for the
weaker pair field at higher rotational frequencies. In or-
der to simplify discussions we employ standard terminolo-
gy of the cranking shell model (CSM), i.e., the lowest
routhians with (m =+, r = i), —(m =+, r =+i),
(m. = —,r= i), and (7—r= —,r=+i) are labeled by
A, B, E, and F, respectively, while the letter C is reserved
for the second (~=+, r = i) orbital —[see Fig. 10(a)].

At deformation p2 ——0.28, y= —20, the first g9/2 pro-
ton crossing is predicted at Ace& —0.5 MeV and the first
g9/2 neutron crossing at Acu2 —0.6 MeV—in good agree-
ment with the experimental values; see Fig. 9. Also, the
calculated gain in alignment, i„=5.7R and i„=5.2A,
agree well with i,„~,=(9—10)A' (cf. Fig. 9). We therefore
conclude that two irregularities seen in the (+,+) yrast
bands are caused by the alignment of a g9/2 proton pair
followed by alignment of a g9/2 neutron pair.

The lowest negative parity proton excitation corre-
sponds to the two-quasiparticle configuration AE, which
has signature r = —1. In the neutron system, the signa-
ture order of the lowest negative parity orbitals is inverted
and the lowest n= —excitation (AF) therefore has signa-

ture r =+ l. Experimentally, the ( —,+) band is lower in
energy up to Ace;=0. 5 MeV and therefore one can con-
clude that that band has to correspond to the AF proton
configuration [the possibility that the ( —,+) band is
A„F„cannotbe excluded, but is unlikely, as both negative
parity bands couple at low spins, which, in the latter case,
would involve the four-quasiparticle isovector transition].

Calculations without pairing, presented in Fig. 4, show
a slight decrease in y (to about —35 ) and a slight de-
crease in P2 (to about 0.24) in the lowest negative and pos-
itive parity bands with angular momentum (the deforma-
tion of the sr = —band is slightly smaller). Calculations
including pairing usually reflect the tendency given by the
Strutinsky calculations without pairing correlations, but
deformation changes are not as gradual and are connected
with a shape polarization ' driving force of aligned quasi-
particles. For the position of the Fermi level in the upper
half of the g9/2 subshell (%=44 and also, to a lesser de-
gree, Z=40), deformations with large negative y values
(y= —35') and small Pz are favored. One should there-
fore expect that:

(i) deformations of the negative parity bands AzE~ and
A pFp will generally be smaller compared with the defor-
mation of the g band;

(ii) the alignment of the g9/p neutron pair (A„B„)will
drive the system toward more negative y values.

These two observations correspond well to the results
presented in Fig. 4.

Diagrams 10(c) and 10(d), calculated at a reduced de-
formation /32=0. 24 and y= —35', are representative of
the four-quasiparticle A pEp A „B„andA pFp

A B config-
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same way as in Fig. 5.

urations. One can immediately see that at this shape the
signature order of lowest n. = —proton excitations is re-
versed compared with the one from Fig. 10(a), which ex-
plains the experimentally observed signature inversion.

The first crossing in negative parity bands, observed at
frequency arq, cannot be due to the alignment of g9/p
quasiprotons (level A~ is blocked), but rather to g9/Q
quasineutrons. Indeed, calculations reproduce a very re-
duced value of neutron crossing frequency, Ace, =0.45
MeV [see Fig. 10(d)], in the negative parity bands. The
second crossing in m= —bands, due to the alignment of
Bp Cp quasiprotons, is predicted to occur at Aco4-0. 7
MeV (slight lowering of ficta, due to the reduction of the
pairing field after the B~C~ crossing is also expected).
This is the most likely explanation for the second align-
ment in the ( —,—) band. It is not clear, however, why
such crossing is not seen in the ( —,+ ), /I „F~band.

The excited positive parity band T can be interpreted at
low spin in terms of a triaxial rotor (see Ref. 5). At
higher spins, however, it closely approaches the m=+
yrast band just before alignment of a g9&z neutron pair
(see Fig. 9), which suggests that at fico) 0.5 MeV this
band has a dominating ApBp component.

The possible explanation for two bumps at m5 and co6 in
the J' ' vs ~ curve for the ~=+ yrast band is given in
the next subsection, where results of self-consistent-
pairing calculations are presented.

D. Self-consistent-pairing calculations

In order to compare the predictions of our model with
experiment in a more quantitative way, the HFBC calcu-
lations have been performed. Figure 11 presents results of
self-consistent-pairing calculations referred to as RBCS
(rotating BCS). (Concerning this part of the calculations,
we have closely followed the procedure proposed in Ref.
33 and applied in a realistic calculation in Ref. 34.) Here
a comparison between the calculated and experimental
moments of inertia J"' (top panel) is given. The calculat-
ed pairing gaps are shown in the bottom panel of Fig. 11.
For illustration, the results correspond to a fixed deforma-
tion Pz ——0.28 and y = —20 . Comparison with the results
of Fig. 4 shows that this deformation can be considered
representatiUe for the yrast band up to relatively high
( I=20fi) spins.
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The very-low-spin limit, states with I=(0,2)R, requires
a special comment. Since the calculated absolute
minimum at I=66 corresponds to a spherical shape, the
nature of the ground state is probably somewhat different
from the nature of higher spin states. The most likely
process to occur in the low-spin range is change of shape
in the yrast states, from p2-0 at I=defi to a moderate de-
formation at I= 2A up to a stabilization at
p~ —0.28, ) =—20 at higher spins. This situation may be
further complicated by the presence of a higher lying 2+
state at 1119keV and thus by possible interaction between
the two I =0+ and I =2+ configurations. The fact
that the calculated value of the moments of inertia at
I=24' agrees with the experiment may be accidental (a
quantitative description at such low spin effects goes
beyond the scope of the present investigation). Note that
the theoretical description of the J"' moment of inertia
for I & 6A is quite precise and resembles the experimental
results in detail.

At fm = l. 1 MeV the pairing correlations disappear (the
Mottelson-Valatin pairing phase transition, Ref. 35. The
decrease of the pairing gaps 6 for fico above 0.6 MeV is
gradual and smooth, and this gives rise to a characteristic
nearly linear dependence of J"' vs cu for
I=16%,186, . . . , 26k. In our calculations the BCS pair-
ing phase transitions are predicted to occur at fico&—0.96
MeV and Aco6—1.1 MeV for protons and neutrons, respec-
tively. At very similar frequencies two bumps in the ex-
pgriyr&ental J' ' vs u curve for the m=+ yrast band are
seen in Fig. 9. It has been shown previously that the
disappearance of static pairing correlations manifests it-
self in a peak in the dynamical moment of inertia, and ex-
perimental evidence for such an effect has been found re-
cently in ' Hf and ' W (see the discussion in Ref. 29). If

one excludes possible deformation effects at Acu ( 1. 1

MeV, the proton and neutron Mottelson-Valatin effect is
the most plausible explanation of the observed weak irre-
gularities.

It is well known, however, that in the region of a pair-
ing phase transition (or just in the case of weak pairing)
the BCS method breaks down. This feature of the BCS
method arises because of unconstrained fluctuations in
particle number, and in models with good particle num-
bers pairing correlations are always present to some ex-
tent. The possible way to go beyond the BCS method is to
account for the pairing fluctuations in a harmonic ap-
proximation, i.e., by means of the random-phase-
approximation (RPA) approach (see, e.g., Refs. 37 and 38
and references quoted therein) or to perform the particle
number projection before variation (see, e.g. , Ref. 39 and
references quoted therein).

In our paper we have used the latter method in its
RFBCS variant, described in detail in Ref. 39. The
particle-number-projected energy always lies lower than
the BCS energy and does not exhibit artificial fluctuations
in the region of very weak pairing. It allows us to corn-
pare, with each other, the energies of rotational bands
with different seniority calculated at different deforma-
tion points. Results of such calculations are presented in
Fig. 12, where five theoretical bands are compared with
the experimental data from Ref. 5.

Up to spin I=264' the total energy is fairly well repro-
duced by the yrast band calculated at p2 ——0.28, y = —20'.
As in the self-consistent-pairing calculations discussed
above, this band contains two aligned g9/2 quasineutrons
and two aligned g9/2 quasiprotons at high spin. From a
structural point of view this band resembles the one
denoted by 1 in Fig. 3, where, however, the g9/2 align-
ment occurs in a more gradual way. Around I =28fi this
band is crossed by the superdeformed band
4 (P2 ——0.55, y =7 ) which, in this region of angular mo-
menta, contains four aligned h»&2 quasiparticles (two
protons and two neutrons). The lowest superdeformed
band of negative parity and signature r = —1, denoted as
11 in Fig. 3, lies about 1 MeV above band 4 at I =366 in
RFBCS calculations. This is due to stronger pairing
correlations in band 4 which lower its energy considerably
(cf. Fig. 3). [It is expected (see, e.g., Ref. 38) that pairing
correlations above the critical point for the pairing phase
transition are strongest in the ~= +, r = + 1 bands. ]
Both bands 4 and 11 have larger moments of inertia and
carry more alignment compared with (tentative) experi-
mental data, in quantitative analogy to results presented
in Fig. 8. Finally, we present also band 3 with two
aligned h» ~2 quasineutrons calculated at p2 ——0.42, y =2'.
Its alignment and moment of inertia are very close to the
experimental ones above I)24k', but it lies far above yrast
(cf. also Figs. 3 and 8).

E. Comment on the experimental B(E2) rates

In Ref. 5 lifetimes of the ~=+ yrast band states were
measured up to I =24+, and the transition quadrupole
moments
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FIG. 13. The rigid-body approximation for the transition
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to estimate the nuclear deformation.
Figure 12(a) shows the transition quadrupole moments

of the uniformly charged liquid drop versus Pz for three
values of y: y = —20, 0', and +20'. The linear approxi-
mation for Q, at y =0'[ = (3i&5m. )ZR 0p2] used in Ref. 5

were determined from these data. The transition quadru-
pole moments vary from 2 e b at I =2+ to 1.2—1.5 e b
for I =6+—16+ and eventually increase to
Q, =2.5—4 eb for the I =22+ 24+ states. Reduce—d
values of Q, at low and medium spins can be explained in
terms of spherical-triaxial shape coexistence for
I=(0—4)fi and by a strong band mixing in the region of
g9/2 proton and neutron alignments. Up to Acu =0.7
MeV, where the yrast configuration is probably not dis-
turbed much, one can use the simple, but rather rough,
cranking approximation for the Q, moments (see, e.g.,
Ref. 40),

is also shown for comparison. It is immediately seen
from Fig. 12 that the deformation Pq —0.3, y= —20'
yields a Q, value of about 3 e b which is in satisfactory
agreement with experimental data.

Finally, Fig. 13(b) shows the kinematic rigid body mo-
ment of inertia, J(", calculated for axial shapes as a func-
tion of p2 The linear ap.proximation used in Ref. 5 is also
shown for comparison. The rigid-body model employed
in Ref. 5 neglects the intrinsic (shell) structure of nucleus.
One can argue that although such an approximation for
Q, can be justified (multipole moments calculated with a
microscopic model depend only on the deformation of an
average field; Ref. 40, the calculated moments of inertia
are very strongly in fluenced by she11 effects. The term
"rigid body moment of inertia" can therefore be applied
only to the average value of moments of inertia for a
number of near-yrast rotational bands (and under the as-
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sumption that pairing correlations are not present in these
bands). Therefore the use of the rigid body approxima-
tion [see Fig. 13(b)] for only one band cannot be justified.

IV. CONCLUSIONS

The experimental data on Zr have been analyzed in
terms of the Woods-Saxon cranking model. This ap-
proach turns out to give a consistent description of most
of the effects observed. Some questions, however, remain
open. The main conclusions of this study are as follows:

(i) At very low spins [I=(0,2, 4)iii] the interplay be-
tween the spherical ground state and well deformed triaxi
al structures is claimed. This shape coexistence leads to a
reduction of the transition quadrupole moments at low
spins. The lighter zirconium isotopes are expected to be
well deformed ()332—0.4) in their ground states.

(ii) Due to the large moment of inertia in the triaxial
configuration the latter quickly becomes yrast. The two
crossings with large interaction seen in the yrast m=+
band are interpreted in terms of the g9/2 proton alignment
(at truu=0. 5 MeV) and the g9/2 neutron alignment (at
truu=0. 6 MeV). The reduction of Q, values at
0.4 & Ace & 0.6 MeV can therefore be explained in terms of
the configuration mixing in the crossing region.

(iii) Observed negative parity bands are interpreted as
two-quasiparticle AE and AF proton configurations. The
signature inversion seen in the experimental data at
Acu=0. 5 MeV is most likely caused by a change in the nu-
clear shape. A transition to a more negative y value and
smaller quadrupole deformations also explains the reduc-
tion in neutron crossing frequencies in the negative parity
bands.

(iv) The excited positive parity band, being interpreted
by means of a triaxial rotor model at low spins, probably
contains an aligned pair of g9/2 quasiprotons at higher
angular momenta.

(v) The second alignment observed in the
(ir = —,r = —1) AE band at fico=0. 64 MeV is most likely
caused by an alignment of the BC quasiproton pair. It is
not clear, however, why this crossing is not seen in the AF
band.

(vi) The "rigid" character of the rotational spectra after
alignment of the second g9/2 pair is fully reproduced by
the self-consistent-pairing calculations at the Pi
=0.3, y= —30 shape. Also, the large values of transi-
tion quadrupole moments observed for I =20+, 22+, and
24+ can be fully accounted for by the above triaxial defor-
mation. Our calculations do not therefore support con-
clusions drawn in Ref. 5 about the strongly deformed
(P2—0.43) axial shape of "Zr at high spins.

(vii) The pairing phase transitions predicted theoretical-
ly at trice, (p)=0.97 MeV and fun, (n)=1. 1 MeV correlate
well with two irregularities observed in the experimental
moment of inertia, J' ', at those frequencies.

(viii) In the spin range above I=3(Vi our calculations
show the dominance of very deformed and strongly
aligned bands containing at least two aligned h~~/2 parti-
cles. These superdeformed bands already develop at
I=2(%—due to the large X =44 gap in the single-particle
routhian spectrum. The calculated alignment in the
lowest superdeformed bands is (5—6)A' larger than that
seen in experimental data.
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