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Peculiarity of the charge-exchange quadrupole excitation in nuclei
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The experimental isovector quadrupole strength in the charge exchange channels is smaller than
predicted by random phase approximation calculations using conventional nuclear interactions. The
introduction of nonlocal components in the interaction combined with the existence of a low-lying

Okapi rotational 2+ quadrupole state in the daughter nucleus can explain this behavior. These nonlo-
cal interactions do not play a role in the properties of the isovector monopole and dipole resonance.

Recent' experimental work has shown that no compact
isovector quadrupole strength is needed to fit pion charge
exchange data. This result contrasts with the situation for
the isospin components of the isovector monopole and di-
pole resonances whose excitation energies, widths, and
strengths are well described by random phase approxima-
tion (RPA) calculations using Skyrme forces. Calcula-
tions using the same Skyrme forces predict large compact
isovector quadrupole resonances in the ET3 ——1 (tr, vr )

and b, T3 ———1 (m +,n' ) channels. Experimental upper
limits for isovector quadrupole strengths are considerably
smaller than the corresponding strengths for the mono-
pole and dipole resonances. This result poses a problem.
The Skyrme forces used in the RPA calculations are able
to reproduce the average excitation energy of the AT3 —0
isovector dipole resonance. It was a considerable success
when the same force predicted properties of the AT3 ——+ 1

isovector monopole and dipole resonances. Why do simi-
lar calculations fail to reproduce the strength of the
6T3 —+ 1 isovector quadrupole? Note, for example, that
in the AT& ——0 channel the energy weighted sum rule,
apart from a geometrical factor, is the same for the quad-
rupole and monopole operators. Also, the double commu-
tator (0

~

[F+,[H,F ]] ~

0), giving the sum of the energy
weighted strengths in the AT& ———1 and AT3 ——+ 1 chan-
nels, yields quite similar results for the two modes if one
uses standard forces, for example Skyrme forces, and it
seems impossible, as we shall see, to solve the above puz-
zle simply by adjusting the parameters of the force.

Stimulated by these problems, in this paper we propose
a possible mechanism responsible for the observed differ-
ence between the quadrupole and the other modes in
charge exchange reactions.

In contrast to the isobaric analog isovector monopole
and dipole excitation, the existence of a low-lying state in
the daughter nucleus combined with the introduction of a
nonlocal component in the interaction can both reduce the
quadrupole strength in the T+1 channel and fragment it
in the T —1 channel. In fact, the isovector quadrupole
operator g,. r; Y2 r,. , applied to the ground state of the
parent nucleus can excite both a low-lying Ofico (rotational)
state and a high-lying 2 (vibrational) state. Nothing simi-
lar occurs for the isovector dipole operator which excites a
giant 1Ace state only whereas the monopole operator
(g,. r; r, )can excit.e the OA'co isobaric analog state (IAS)

+ V&T(r, )r; /(3 (r ) )]+/(F) F,

where coo ——412 ' MeV, F is the quadrupole operator
&y;z;v;, and $=15V&/(4A(r )) with

& r,'& = (0 g r '0zr(X —Z),

( rz) = —
(0 g r, 0),

and V] —120 MeV.
If one solves the RPA equations of motion

[H,o+]
~

o) =~0+
~

o), (2)

with Hamiltonian (1), one can explicitly determine three
solutions at the energies co&& (low lying) and co2 and co~

(giant states), where the superscripts + or —refer to
6T3 ——+ 1 modes, respectively.

We straightforwardly obtain the following commuta-
tion relations:

[H,F+ ]=iG +-, -

[H, iG+-] =2'&)M-

+ 2zrz+(g/m)(0 g(y, '~z, ') 0) Fz,

[H, Ilf ]=iG —, —

in addition to the giant 2%co vibrational one. In the mono-
pole case, the excitation of the IAS can be decoupled from
the giant state, projecting off it through a local projector.
In fact, if one defines F'= g,. (r; —(r, ) )r, , where

r„=(0
~ g,. r; r;

~

0)/(N —Z), one immediately verifies
that (IAS

~

F'
~
0) =0. In the quadrupole case, the situa-

tion is different. One cannot remove the rotational excita-
tion simply by introducing a local projector and one must
take explicitly into account nonlocal terms. The problem
can be investigated simply in the schematic plus harmonic
oscillator potentials model: '

A

H =g[p; /2m+ , mtoo—r;
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TABLE I. Energies (in MeV) and strength distributions (fm ) for the isovector quadrupole mode.

V~ ——0 MeV
V~ ——120 MeV
Ref. 2

COp

0
—9

Op

490
68

18.3
23
24.3

1462
1319
1200

18.3
36.4
31.9

972
407
697

where the operators F,G,M are defined by

+F =g yg z;'r(.
A

G —= ——g (y;p,'+z;pf)r,
m, .

A

M +—=, , g pfp r,+(r+—
l p ) =~2

l
n ) ) .

m copf

(3)

The normal modes are determined by solving Eq. (2) with
the ansatz

0—=aF +PM—+—+yiG +— . (4)

S0 ——(0
l

[F+,F ] l
0) =—„(N —Z)(r„) .

To calculate the quadrupole charge exchange strengths
o.p, o.z, o.

z associated with the solutions cop, co&, and co&,
one can invert the equations

op +op —op =Sp

a20 o0 +c02 o2 +c02 o2 & l[F+,[H, F lllo& —=S&

(7)

(020 )'o0 +(022 )'o2 —(~2+)'o2+

=(Ol [[F+,H], [H,F ]] l
0) =S2 . (8)

The sum rules S& and Sz are model dependent and for the
Hamiltonian (1) take the values S~ ——2A (r )/(3m) and

S2 =2c00S0 respectively.
In the case of the pure harmonic oscillator potential

[ V& ——0 in Eq. (1)], Eqs. (5) and (7) yield the solutions

+
cop =0, cop =cop = 2@op

and

o0 ———,S0, o2 =(S,+c00S0)/4c00 .

One gets the following equation for the eigenvalues co:

co =2$S0co —02(coq —S0$ ) —S0$(02q —2c00) =0, (5)

where co~ =4c00+ —,
'

A (r )g/m is the energy of the giant
quadrupole mode in the b T3 ——0 channel, ( r )
= ( I / A ) (0

l g,. r;
l

0 ), and S0 is the model independent
sum rule

One remarks that the zero energy state takes half of the
non-energy-weighted sum rule and that crz+ is quenched
with respect to c»2 . The effect of the interaction ( V»0)
pushes down the energy of the low-lying state to negative
values and strongly quenches its strength. Furthermore,
the energies of the giant states are split. In Table I we re-
port the predictions of Eqs. (5) and (7) for Zr, taking
V& ——0 and 120 MeV. The predictions of the RPA calcu-
lation of Ref. 2 are also given in the last line of the table
for comparison. From the table one can appreciate the
good agreement between the predictions of the schematic
model (1) and the calculations of Ref. 2 using a Skyrme
force. In particular, one remarks that both calculations
strongly quench the strength of the low-lying state so that
it practically disappears. However, this result depends on
the form assumed for the schematic quadrupole force or
equivalently on the structure of Skyrme-type forces.

Now we will try to generalize the force to find a possi-
ble mechanism that depresses and/or spreads the quadru-
pole strength carried by the giant states co&, as suggested
by experiments.

The solutions of the equations of motion (2) with Ham-
iltonian (1) indicate that the relevant quadrupole operators
[Eq. (4)] have an important local (yz) as well as a nonlocal
(p~p, ) component. It is then natural to generalize the
Hamiltonian (1) to include the local as well as the nonlo-
cal interaction terms. One can write H in the most gen-
eral form as

2

H=r +-,' 0 +-,' V1T& .'&.,'/(~& "&)
I

+a(F) F+b(F) M+c(M).F+d(M). M, (9)

where a, b, c,d are strength parameters.
Notice that the most general schematic force that one

can construct using the operators of Eq. (3) would also in-
clude a term of the form const X (G ) .G. Such a
current-dependent interaction term which is the analog of
the nonlocality terms in Skyrme forces, leads to an
enhancement factor in the energy weighted sum rules and
does not play a crucial role in the mechanism we are look-
ing for.

Starting from Eq. (9) one again solves the equation of
motion (2). One gets the following equation for the ener-

gy of the normal modes:

a2 +(3k —a —d)Soc0 —a2 '402o+ ~ &» )(a+b+c+d) —S0[3( —2((a +d)+ad bc] . —
3m

2—S0 g(4c00+ A (r )(a -+b +.c+d)+2c00(b +c —a —d) ——3 (ad bc) +S0$[g ——g(a +d)+ad —bc]=0 .
3m 3 m

(10)



35 PECULIARITY OF THE CHARGE-EXCHANGE QUADRUPOLE. . . 1441

So is given by Eq. (6) together with the following expres-
sions for the sum rules S& and S2.

TABLE II. Quadrupole strength distribution (fm ) as a func-
tion of a/g.

S, = A(r )+(a —g)So,
3m

(1 1)

S2 ——2cooS + 3 (r )So(a +b —g')+So[(a —g) +b ] .
3m

One obtains a relation between the parameters a, b, c,d re-
quiring that the energy of the giant isovector quadrupole
resonance in the AT3 ——0 channel be the same as the ener-

gy calculated with the traditional schematic model (1).
This relation is

0
—0.3
—0.5
—0.8
—1

—1.18
1

1232
762
620
397
230

64
68

598
759
788
835
875
919

1319

849
541
427
252
125

2
407

Total
strength

2679
2062
1835
1484
1230
985

1794

a +b +c +d =$= 15 V& /(4A (r ) ) .

Let us note that when the parent nucleus is itself intrinsi-
cally deformed then, beyond the giant (vibrational) quad-
rupole state, the parent nucleus itself possesses a low-lying
rotational state (the so-called M 1 rotational state). In
this last case a low-lying state is excited not only in the
AT3 ———1 quadrupole excitation but in the ET3 ——0 too.
A further relation between a, b, c,d can be obtained by im-
posing that in deformed (parent) nuclei the low-lying
AT3 ——0 solution remains unchanged at the energy

AM ) =~p&(1+X)'/'(1+X/2)

where X =5 V& (r )(4mcoo(r ) )

(5 is the usual nuclear deformation) predicted by Hamil-
tonian (1), which reproduces experimental data quite well.
Since Hamiltonian (9) yields, for this state, the result

A@M&
——coo5{[1+(a +d)XR']

+(ad bc)X /g I
' (1+—X/2)

one immediately gets, comparing the two equations,

a +d =g', ad bc =0 . — (14)

Conditions (12) and (14), when used in Eq. (10), yield the
very nice result that Eq. (10) reduces to Eq. (5). In other
words, the generalized Hamiltonian (9) fixes the energies
cop c02 and co& to the values given by traditional local
forces. However, it changes the sum rules S& and S2 and
hence, the quadrupole strength distribution via Eq. (7). In
Table II we report the results for cro, cr2, and o2+ for Zr

as a function of the free parameter a. This strength pa-
rameter is constrained by either of the conditions a 0
and a & g. The case a & g practically reduces to a =g and
hence b =c =d =0; that is, it reduces to the traditional
solution which is reported in Table II for comparison. In
fact, larger values of a immediately yield negative values
for the quadrupole strengths. Hence, we have explored
the case a &0.

From Table II we find situations where the total quad-
rupole strength in the ET3 ———1 channel can be spread to
the low energy region, the strength in the ET3 ——+ 1 chan-
nel remaining practically unchanged (for example, in the
case a/g= —0.5). We also see that the total quadrupole
strength can be strongly quenched and present only in the
b, T3 ———1 channels in the high energy state (this is the
limiting situation reached at a /g= —1.2).

In conclusion, we have investigated a possible mecha-
nism which can both decrease and spread the quadrupole
strength in the charge exchange channels, differently from
the prediction of usual forces. This mechanism is con-
nected with the presence of nonlocal components in the
nuclear interaction that are absent in forces, for example,
of Skyrme type, generally used to perform RPA calcula-
tions. More precise data on both the AT& ——+1 corn-
ponents of the isovector quadrupole in spherical and de-
formed nuclei could determine the strength of the nonlo-
cal force components and test the consistency of the
model.
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