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The study of the isotropization of momentum is important in heavy ion collisions. To do this we
construct a generalized hydrodynamical equation system, in which the anisotropy of the momentum
distribution is added as a new variable. These equations are derived from the moment equations of
the relativistic Boltzmann equation where the closure of the set is achieved by assuming a particular
class of initial conditions, The equations are then explicitly solved for two uniform interpenetrating
hadron streams. The collision cross sections are the bare hadron cross sections; the presence of the
other hadrons can be simulated by the use of a density- and energy-density-dependent temperature
and mass, taken over from self-consistent calculations. The results are compared with other theoret-
ical results. We find that the isotropization occurs sufficiently rapidly for medium energy head-on
collisions to reach local thermal equilibrium.

I. INTRODUCTION

A. The setting of the problem

A popular description of heavy ion collisions utilizes
conventional hydrodynamical' or thermodynamical
models. This presupposes that local thermal equilibrium
reestablishes itself after a few hadron collisions, during
the short time 4—8 fm/c. Only then can we hope that a
complicated dynamical system can be characterized (as in
these models) by a few macroscopic variables, such as the
momentum density, density, energy density, and entropy
density, coupled with each other through the local ther-
modynamical relations and the equations of motion. A
particular, and experimentally testable, feature of local
thermalization is the isotropy of the momentum distribu-
tion. In fact, experiments indicate that the end result of
head-on collisions is a nearly isotropic momentum distri-
bution. In the present essay we study on a relativistic
kinetic model the evolution of the anisotropy of the
momentum distribution. (The previous studies ' were
nonrelativistic. )

Our aim is to construct a model which is (a) relativistic,
(b) accounts for pair collisions explicitly (these being the
most important for altering the anisotropy), and (c) may
include the presence of the other particles as an external
average field of force.

We shall base our considerations on the Boltzmann
equation. The emergence of a hydrodynamical descrip-
tion from the Boltzmann equation has an immense litera-
ture. " We mention here briefly only the salient facts.
Boltzmann himself has shown that the first five moment
equations of the distribution function correspond to the
five conservation laws, to wit, the conservation of mass,

momentum, and energy. However, these equations are
not yet closed because an equation describing a moment of
a given order contains moments of higher order, which
depend functionally on the distribution function. If local
thermal equilibrium has been established, this distribution
function becomes locally Maxwellian, but contains five
largely arbitrary functions which (because of this arbitrar-
iness) can be identified with the first five moments. The
celebrated Chapman-Enskog expansion scheme is based
on this observation, by assuming that the distribution
function already has this form. In turn, Hilbert has
shown, that in a dilute gas, for a large class of interaction
forces, practically all initial distribution functions relax
into a local Maxwellian one which depends on five arbi-
trary functions. Once the distribution function is of this
form, the equation system formed by the first five mo-
ments closes (since the distribution function depends only
on the five moments and has a given form). In addition,
the form of the distribution function is such that the local
thermodynamical relations hold true. This, then is the
general situation. What else can happen? There are only
three places where novelty can enter. We may study how
particular initial conditions thermalize; we may change
the expansion parameter used by Hilbert; we may change
the forces of interaction. In the present study we shall
concentrate on the first aspect, and study the evolution of
distribution functions which depend functionally on the
first ten moments of the distribution function. We lack a
corresponding Hilbertian theorem to show that many ini-
tial distribution functions relax into this form; and we do
not expect that there is, in general, such a theorem. How-
ever, we expect that for relativistic collisions, and for such
initial situations which play a role in heavy ion collisions,
this is the case.
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B. The choice of initial data and additional
macroscopic variables

We may then consider initial data which deviate from
local thermal equilibrium only through a small term ex-
pressing a small anisotropy, and we will do this. Then,
however, the following objection can be raised to our plan.
It is well known that the Chapman-Enskog procedure
leads to a series of approximate hydrodynamical equa-
tions; to first order, these are the ideal fluid equations
with no dissipation; to second order we find the usual
Navier-Stokes equations, where the presence of the aniso-
tropy is buried in the sheer viscosity, bulk viscosity, and
thermal conductivity. Consequently, it seems that the
problem of a hydrodynamics with anisotropy in the
momentum distribution has already been solved. This,
however, is not the case. First, this setting of the problem
does not answer directly the question about the decay of
anisotropy; at most, it shows that the measure of anisotro-
py should be expressible by the coefficients associated
with irreversible processes. Second, it is also known that
the next higher order approximation (the so called Burnett
equation) gives a different answer from the one obtained
by the moment method of Maxwell and Conrad. Thus, the
question still remains as to the actual equation system
which explicitly expresses the therm alization of the
momentum anisotropy and makes use of only the usual
macroscopic variables explicitly augmented by variables
describing this anisotropy. Maxwell s moment equations,
or Grad's 13 moment equations (or their relativistic exten-
sion using 14 moments) can be thought of as accomplish-
ing this task. However, there no explicit anisotropy vari-
ables are introduced, but rather the heat flow and the
viscous pressure tensor are used implicitly as the new state
variables (added to the usual hydrodynamical variables) to
form a closed equation system. This can indeed be done,
relatively simply for the Maxwell case, and with some la-
bor for the Conrad case, while for relativistic motions only
approximate expressions are known.

Thus, it seems to us that a direct derivation of these
equations is worthwhile, introducing from the beginning
the natural variables to describe the anisotropy, without
prejudicing their relations to the irreversible transport
coefficients.

This is then our plan. We accept that the equations
describing the moments of the momentum distribution
correspond to the generalized hydrodynamical equations,
if the equation system is closed. The closure of this equa-
tion system outside local thermal equilibrium is obtained
by restricting ourselves to special initial data for the dis-
tribution function, these being slightly anisotropic in the
momentum distribution.

If we now introduce an anisotropy field as a new vari-
able, and make use of the smallness assumption, we obtain
a closed extended hydrodynamical equation system.

Finally, we apply this model to study numerically the
relation of two uniform streams of nuclear matter which
interpenetrate each other. The forces between the nu-
cleons are either considered as simple pair interactions, or
as average forces, following Walecka's mean field
theory. ' The initial data chosen correspond to momen-
tum distributions in the parameter range relevant to rela-

tivistic heavy ion collisions, the bombarding energies per
nucleon ranging from 0.2 to 1 QeV.

II. THE RELATIVISTIC EQUATION SYSTEM

A. The general equations

We follow de Groot et ah. ' and introduce the relativis-
tic Boltzmann equation [using the following conventions:

g„, diagonal (+1,—1, —1, —1); p=0, 1,2, 3; c =1;
Boltzmann's constant equal to 1].

Accordingly, Boltzmann's equation is given by

dZ f(x p») =C'(f f)
Here, x',p' are the position and momentum three-vectors;
p is the momentum four-vector (p p"=m ), and the in-
variant volume element in the three-momentum space is
d p/po; f (x,p) is a scalar, po is a function of p', p,p via

p p =m. The moments of the distribution function are
defined as averages of powers of p given by

M ' . = J (d'p/po)f(x, p)p p p'. . . . (2)

C is the relativistic collision integral. Its detailed proper-
ties do not concern us at the moment, save the conditions

f (d'p/po)C'f =o

f (d p/po)C'p f=0,
which are required by the conservation of particle nurn-
ber, conservation of energy, and conservation of momen-
tum in a pair collision.

~e now multiply (1) by 1, p, p", and p" in succession
and integrate. This gives the equations

Bp%"=0,
der" =0,
a„a& = f(d'p/p, )p p c',

where

&"=f (d'p/po) fp"

d'popo p"p"

&"-=f (d'p/po)fp "p"p'

are the first few moments of f. The first equation
expresses the conservation of the particle four-current; the
second expresses the conservation of the four-momentum.
[The right hand sides are zero, by using (2).] The last
equation gives the evolution of 2" . The latter will be
related to the anisotropy of the momentum distribution.
In general, these equations do not form a closed system.
Conventional relativistic hydrodynamics arises from them
when we are able to relate T" and %" either by assuming
local thermal equilibrium, or by obtaining these relations
via a Chapman-Enskog —type expansion.

Our present aim is to establish a closed equation system
for X", T", and 3" for a special class of initial condi-
tions. To express this condition and the resulting equa-
tions in a physically more transparent way, we must intro-
duce new quantities with more obvious meanings. This is
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done for the general case in Appendix A, leading to for-
midable expressions. For a specially homogeneous system
the problem simplifies, and the general formalism can be
obviated.

B. The spatially homogeneous, cylindrical case

Introduce

U"=N /(N~N )' (10)

a unit vector along the four-current X, which defines
Eckart's hydrodynamical four-velocity (using thus, for
this purpose, the conserved baryon number). If the situa-
tion is spatially homogeneous, N", T", and 3" ' simpli-
fy since there exists a global instantaneous rest frame, in
which U is (1,0,0,0).

According to our scheme we close this set of equations
for a particular choice of initial data, by linearizing the
collision integral.

We put at t =0

f=fo(i+@»

8' = n T(a 2 /a ( ),

f (d'p/po)p"p C'= nnQ—"".
(20)

(21)

Here, a &, a2, and n are complicated functions of T; g is
also a function of the differential cross section (see Ap-
pendix B). (We notice that the equation system is closed
because the integral involving C' can be expressed in
terms of Q„„.)

pvThe initial value of C determines the initial value of
Q" and vice versa. Given 8', n, and C„,at time t =0,
we implicitly give T at t =0 as well, and thus obtain the
full set of initial data required to integrate the equations.

We find

an~" = f (d'p/p. )p "p "C'
at

where C' is the relativistic collision integral. We notice
that p"" and Q decouple from the set and can be deter-
mined afterward from (A22) and (A25).

Use (8) and (9) with (17), and equate the result to (12)
and (13). A straightforward but tedious evaluation gives

with

fo ——[1/(2vrA) ]exp[(p p "U )/T—], (12)
n=np,
8'= 8'p,

(22)

(23)

@=C„„p"p"/T —(small to first order) . (13) Q" (t) =Q(&=0)exp( —rint) [with U'=(1,0,0,0)] . (24)

N =nU (14)

with n the number density in the rest frame;

T~ =8'U UI'+P I" (15)

with 8' the energy density in the rest frame and P " the
pressure tensor (which will not be needed);

3 "'=Q "U'+Q 'U" +Q" U"+QU"U U' (16)

Q " has only spatial components in the rest frame and de-
scribes the anisotropy of the momentum distribution; Q is
defined by (A13) (but will not be needed here).

Choosing then a frame with U"=(1,0,0,0), we im-
mediately get

an
at

a@
at

(18)

projecting for the space-like, traceless part of Eq. (6), we
obtain

Here, T,p, are as yet auxiliary variables, which will turn
out to be the temperature and chemical potential. (The
latter can be ultimately eliminated, and thus it no longer
concerns us. ) p"p is the trace free part of p'pj in the lo-
cal rest frame (Appendix A). C regulates the anisotropy
of f; since p"p has only space-like components, @ is a
quadratic form in p ',p,p, with C—being the coeffi-
cients.

Considering the momentum space symmetry of the sys-
tem, we get

We recovered Maxwell's famous result: the anisotropy
relaxes exponentially with a relaxation time (n g )

III. THE EVALUATION OF THE RELAXATION
TIME AND THE ANISOTROP Y CHANGE

The results are determined if we give the collision cross
section and the initial data.

A. The scattering cross section

The nucleon-nucleon cross section in the center of mass
system is specified by o(

~ p, ~, 8, ), where p, is the
three-momentum and 0, is the angle in the center of
mass frame; o. is taken from Ref. 14.

The presence of the other particles may be taken into
account by a self-consistent calculation. ' ' ' The crud-
est approximation is obtained if we retain o. as given, and
alter the temperature and mass using the relations ob-
tained by Walecka, which gives

T=T*(n, 8'), m =m*(n, S) .

Since n and 8' are time independent, it is sufficient to
adjust T and m at the initial time according to these rela-
tions.

B. The initial data

At t =0 we observe two interpenetrating, homogeneous
streams of nuclear matter with equal and opposite mo-
menta. Thus, we have chosen the center of momentum
frame. This implies a distribution function f which is in-
dependent of the position; the momenta are distributed in
momentum space within two Fermi spheres whose centers
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TABLE I. Ellipsoidal approximation to the two-Fermi-sphere distribution. Eb /3 is the bombarding
energy per nucleon, n„the initial density, i~

„
the initial energy density, Qo' the relevant component of

the tensor Q, C the relevant component of the tensor C, and T the temperature.

Eb /3
(GeV)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

no
(1/fm )

0.3997
0.4093
0.4186
0.4277
0.4366
0.4453
0.4538
0.4622
0.4705

(GeV/fm')

0.4054
0.4252
0.4450
0.4648
0.4847
0.5045
0.5243
0.5441
0.5639

Ideal gas

Q
rr

(GeV /fm )

0.0276
0.0425
0.0579
0.0739
0.0906
0.1078
0.1255
0.1438
0.1627

T
(GeV)

0.0478
0.0625
0.0764
0.0896
0.1023
0.1145
0.1263
0.1376
0.1486

0.0292
0.0401
0.0494
0.0572
0.0634
0.0697
0.0748
0.0792
0.0831

Eb /3
(GeV)

no
(1/fm') (GeV/fm )

Self-consistent approximation

(GeV'/fm')
T

(GeV) m */m'

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.3997
0.4093
0.4186
0.4277
0.4366
0.4453
0.4538
0.4622
0.4705

0.3877
0.4064
0.4251
0.4437
0.4624
0.4811
0.4998
0.5184
0.5371

0.0276
0.0425
0.0579
0.0739
0.0906
0.1078
0.1255
0.1438
0.1627

0.011
0.031
0.045
0.057
0.069
0.080
0.090
0.099
0.107

0.722
0.730
0.737
0.744
0.750
0.757
0.763
0.768
0.773

0.0685
0.0849
0.0994
0.1113
0.1204
0.1277
0.1343
0.1406
0.1467

'This is the effective mass.

are symmetrically displaced from the origin in the flow
direction. The separation of the Fermi spheres is a func-
tion of the bombarding energy.

One can evaluate the moments of this distribution func-
tion and approximate it with the moments of an ellip-
soidal distribution implied through the choice
@=C„„pp in (17). This, then, determines the initial
data for n, 8', T, Q, and C as a function of the bom-
barding energy per nucleon (Table I). The question, how-
ever, arises as to how far the ellipsoidal distribution can
adequately represent our assumed distribution function at
t =0. After all, two displaced spheres of equal size are
hardly an ellipsoid! The error can be estimated by com-

paring the first and second moments computed for the
displaced spheres distribution, and the ellipsoidal distribu-
tion. These results are found in Table II ~ In fact, we find
that these deviations increase as the bombarding energy
increases, finally reaching 25% in the anisotropy tensor.
Since the equations are linear, we do not expect a larger
change in the results. This does not affect the con-
clusions.

C. The coefficient g

g appears as a coefficient in an expression specifying a
moment of the collision integral C'. Formally, C' con-

TABLE II. The first two moments of the Fermi-sphere and ellipsoidal distribution functions com-
pared (the moments of the latter carry the index zero) ~

Eb /2
(GeV) (GeV /fm )

Qo P
(GeV/fm )

Pp P
(GeV /fm )

PZZ
0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.4118
0.4428
0.4746
0.5071
0.5403
0.5742
0.6088
0.6440
0.6799

0.4126
0.4445
0.4775
0.5115
0.5465
0.5825
0.6195
0.6575
0.6964

0.0193
0.0259
0.0325
0.0391
0.0457
0.0523
0.0590
0.0656
0.0722

0.0191
0.0255
0.0319
0.0383
0.0446
0.0510
0.0573
0.0636
0.0699

0.0264
0.0396
0.0529
0.0661
0.0793
0.0925
0.1057
0.1189
0.1321

0.0243
0.0362
0.0471
0.0575
0.0676
0.0774
0.0869
0.0962
0.1053
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FIG. I. The relaxation coefficient for anisotropy, g in nu-
clear matter as a function of Eb/3, the bombarding energy per
nucleon. (The dashed is for pure pair collisions, the solid line
for pair collisions in an average field of force. )

tains momentum integrations over the initial momentum
of each of a pair of colliding particles (two times three in-
tegrations) and an integration over the final momenta of
one of the particles in the colliding pair (three integra-
tions); taking moments requires another three integra-
tions. Thus g will be defined by a twelvefold integral.
The resulting expression can be simplified to the form
given in Appendix B.

The results exhibit a maximum, showing the competi-
tion between the increase of the collision rate and the de-
crease of the cross section as we increase the bombarding
energy (see Fig. 1).

D. The anisotropy parameter q

The quantity

q=2&p~~ &&&pt &
—1

P.1—
0 1 2 3 4 5 6 7 8 t (fmjc)

FIG. 3. The anisotropy coefficient q =2(p~~ ) /(p& ) —I as a
function of time. The bombarding energy per nucleon is 400
MeV. (The solid line is for pure pair collisions, the dashed
shows Danielewicz's results. )

is often used to characterize the anisotropy of the momen-
tum distribution (p~~,pt are the parallel and perpendicular
components of the momentum relative to the collision
axis; & & denotes averaging). Using the relation (A25) be-
tween P" and Q", this can be expressed as

q = 3Q "l(2TP/B —Q"),
with B given by (B5). Figure 2 shows Q, the relevant
component of the traceless anisotropy tensor. Figures 3
and 4 compare our results with those of Randrup and
Danielewicz. ' Randrup solves the Uehling-Uhlenbeck
equation numerically (i.e., the Boltzmann equation with
Pauli blocking in the collision term). His results show a
more rapid loss of anisotropy. Danielewicz integrates nu-
merically the equations satisfied by the time dependent
Careen functions in the Born approximation, using a

Q20)
Qp~ 010 10—

QX2»

OK)~~
0 8

t (fm/c)

0.5-

0.2-

FIG. 2. The zz component of the anisotropy tensor, Q*', for
nuclear rnatter as a function of time. The bombarding energy
per nucleon is 800 MeV. (The dashed line is for pure pair col-
lisions, the solid line for pair collisions in an average field of
force. )

01
0 1 2 3 4 5 6 t ( fm/c)

FIG. 4. The anisotropy coefficient q as a function of time.
The bombarding energy per nucleon is 800 MeV. (The solid line
is for pure pair collisions, the dashed shows Randrup's results. )
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Gaussian potential for the nucleon-nucleon interaction.
His results indicate a less rapid loss of anisotropy.

All these calculations give the same order of magnitude;
for q= —,', the relaxation times are between 1.5 and 7

frn/c.
This suggests that thermalization (for these bombarding

energies) already occurs in the initial phases of a heavy
ion reaction. One may object by arguing that this rapid
thermalization is a consequence of assuming an unrealisti-
cally small initial anisotropy. However, this is not so.

In Table II we have computed the initial size of the an-
isotropy regulating parameter C", as a function of the
bombarding energy (without assuming that C is small)
and found that for the maximum bombarding energy used
(1 GeV per nucleon) it is only 0.12. Thus, the actual start-
ing anisotropy is de facto small, and consequently the
thermalization rate is computed for realistic initial data.

IV. CONCLUSIONS

We have constructed generalized hydrodynamical equa-
tions in which local thermal equilibrium no longer is as-
sumed. The equations are the moment equations of a rel-
ativistic Boltzmann equation; they become a closed set of
equations by restricting ourselves to that class of particu-
lar solutions for which the initial data imply that (a) the
lack of local thermal equilibrium is expressible through
the anisotropy of the local momentum distribution, and
(b) that initial anisotropy is small.

Explicit solutions are given for two uniform inter-
penetrating hadron streams. We find that for medium en-

ergy collisions isotropization occurs in times short enough
to real local thermal equilibrium during times characteris-
tic of heavy ion collisions.

Our results are compared with other calculations using
different approaches and we find that the orders of mag-
nitude are the same, while some of the details differ.
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(The four-components F are not independent since
U F =0.) Introducing the scalar f= U F, we can ex-
press the four independent functions F in terms of the
five quantities f,F (with three F independent) as

FQ fUQ+F Q (A2)

8 =D+V, D= U 0 and V'"=6 8 (A3)

Tensors are decomposed for each tensorial index in suc-
cession. A general tensor of rank r has 4' independent
components; indeed, this decomposition uses (5—1) in-
dependent functions. (Scalars cannot be decomposed this
way; nor is this needed since they are unchanged if we
change frames. )

The present problem requires the decompositions of
N, T", and 2" '. They are

N =nU +V'

T" = 8' U"U + O'" U + O' U)"+ H"

A""'=QU"U"U'+Q" U U'+Q'U" U"

+QPvU t+ QP'7Uv+ Q
vTU'P +QPvT

(A4)

(A5)

(A6)

If we introduce (temporarily) a local rest frame in
which U is (1,0,0,0), we can easily interpret the new
functions introduced. These are, for the particle Aow N,

n=N U

the particle density,

V =AqN"

(A7)

(A8)

(the particle current), for the energy momentum tensor
TPv

Since in relativity the physical interpretations of the sym-
bols are usually done in the local instantaneous rest frame
[where at that point U is (1,0,0,0)j, the meaning of f,F
is more immediate.

The gradient operator 8, similarly decomposes as
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8'=T" UpU

the energy density,

W =ApU T"

the momentum current,

P" =6"6 T ~a P

(A9)

(A10)

(Al 1)

APPENDIX A: AUXILIARY VARIABLES
AND GENERAL EQUATIONS

the pressure tensor (this is further decomposed into P, the
scalar pressure, and the difference P„),

The baryon four-current is given by N . This defines a
unit U at every point of space time where N N &0 as

U =N /(N N )'i (A 1)

CJiven a vector field, F, U"(U F ) is the component
of F along U; the component perpendicular to U is
given by

F U(U F )=(g "——U U")F„
—:6 "F =FP

P= ——,
' 5" P„

P„=P„+6„+,
and, for the asymmetry tensor 3"

Q=A""U"U U'

Q"= b,,U UqA
' ",

Q""=5"b UpA' ~

Q~"'=b,"b, b, 'Aa P v

(A12)

(A13)

(A14)

(A15)

(A16)
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Of these, g" is the most useful for us. In the local rest
frame it has only spatial components. The associated
quadratic form describes the anisotropy in this frame; the
eigenvectors point along the anisotropy directions, while
the differences among the eigenvalues specify the extent
of the anisotropy.

The decomposition of the equations

Dn+nA U + U&DV" +7'&V"=0,

D 8'+ ( 8'+ P )V'„U" 2W—"DU"

+Vpg'P —PP VpU. =O

(8'+P)DU +b,„DW+W A„U"

(A17)

(A18)

a~ =o, a.T~ =o

yields the equivalent sets

+ W"D, U P "D—U„+K„V„P"I'+VP=o . (A19)

The anisotropy equation is now expressed as

DQ I'+ (Q "I'h, U'+ Q U"Q"'U") ,
'

b,""—Q' V,U—+Q "DUI"+Q"DU" ,
' 6"I'—Q'D—U

(g""' —, b, "I'Q—' —)DU,+V,g I' ,
'

b,.""b—g—' +(Q- U~+Ql' U")V', U

+ ,
'

6, Q, (V"—U"+V'"U" ,
'

b,""b,,U —)=—+f (d'p/po)p p"C'(f f) . (A20)

At this point we shall not analyze the equations in
greater detail, but we focus immediately on the case where
it is homogeneous and has cylindrical symmetry in the
center of mass frame.

We find that V', W', Q', Q'~", and Q'1 vanish by sym-
metry (i =1,2, 3) since f is invariant under reflection of
the spatial components of the momenta, while the quanti-
ties listed are averages of an odd power of these com-
ponents.

The surviving quantities can be written as

Q =(z a| —a3/ai)nT, (A24)

with

a„=f dy(y+z)"(y +2yz)'i exp( —y), (A26)

z=m/T . (A27)

P" =[(z ao —2z aq+a4)(z ai —2z a3+a&)]T 'Q"',
(A25)

8'=(a2/az)nT,

g =(a, /a, ),
p = ——,(z ao —a2/a

&
)nT,2

(A21)

(A22)

(A23)

The surviving equations are (14)—(16).
If the system is not homogeneous but we use the special

initial conditions (11)—(13), we get the following equation
system:

Dn+n V'&U"=0,

D 8'+ ( 8'+ P )V„U" P""V„U"=0,—

(8'+P)DU +V"P P""DU„+b.'V—Q'"=0,

DQ "+Q""V,U'+(Q 'U" +Q"'U )DU, +g"'V,U&+Q"'V, U , Q 'b, "V —T, —

+ —,Q(V"U" +V"U , b, "V,U') = ——rjn—g .

(A28)

(A29)

(A30)

(A31)

APPENDIX B: THE ANISOTROPY COEFFICIENT

The coefficient g in Eq. (21) can be written as

g=(3m/2)[exp(2z)/a&(z ai —2z a3+a5)]K,
with

z=m/T,
a„(z)= f dy(y +z)"(y +2yz)'i exp( —y), (82)
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K= —2z J(0,0,0,0,0)+z J(1,0,0,0,0)+ —,z J(0,0, 2,0,0)+ —,'z J(0,0,0,2,0)

——,
' J(2,0,0,0,0)—~ J(1,0,2, 0,0) + —, J(0,0,0,0, 2)

——, J(0,0, 1, 1, 1)+—
„

J(0,2,0, 2, 0) ——
„

J(0,2, 2, 0,0)

——„J(0,0,4, 0,0)+—„J(0,0, 2, 2,0),
where

J(,b, d, e,f)= ds dt e '(t s)'—"+'+" s ' ' '(s 4z —)' f+ "+" gtr (s)&(d, e, l),
2z s

crf'(s) =[21+I)/2] 1 dx x o(s,x)P, (x)

[cr(s,x) is the scattering cross section with x =cosO and s is the square of the center of mass energy],

(B3)

(B4)

(d!e!)/[(d —I)!!(d+1+1)!!(e—l)!!(e+I + 1)!!]
K(d, e, l)= (if l (min[d, e] and has same parity as d and e),

0 otherwise .

The coefficient B in the anisotropy parameter q is given by

B=(z ao —2z a2+a4)/(z a —2z a3+az) .
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