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Crossing symmetric self-consistent n N t matrix

R. Sinha* and J. W. Van Orden
Department ofPhysics and Astronomy, University of Maryland, College Park, Maryland 20742

(Received 15 October 1986)

Previous calculations of the self-consistent effective ~N t matrix are extended to include a com-

plete, consistent treatment of the pion crossing symmetry. The self-consistent ~N t matrix equation
is rewritten as a set of four coupled integral equations in order to facilitate the inclusion of crossing

symmetry. The mN amplitudes are obtained by means of a Low expansion as in previous papers.
The insertion of the crossed AN scattering amplitudes into the nuclear medium is studied in the con-

text of time ordered perturbation theory in order to determine the correct energy at which the
crossed amplitudes should be evaluated in the medium. The self-consistent equations are evaluated

in nuclear matter. The resonant contribution to the optical potential is found to be broadened by an

additional 15—25% when compared to similar calculations which do not include the crossed ampli-

tudes.

I. INTRODUCTION

The strong absorption of the pion by the nucleus com-
plicates attempts t'o describe ~-nucleus scattering theoreti-
cally. One approach to an organization of the m.-nucleus
scattering problem is to introduce medium modifications
of the mN interaction in the nucleus. This is the primary
characteristic of the isobar-hole model' which has
achieved considerable success in predicting m-nucleus elas-
tic scattering by introducing a phenomenological 5 isobar
optical potential to account for the coupling of the elastic
channel to absorption and knock out channels. Attempts
at a more microscopic description of the medium modi-
fied effective mN interaction have centered on the self-
consistent AN t matrix which has been calculated or
estimated' by a number of authors using a variety of
models and approximations. The self-consistent AN t ma-
trix is found as a solution to an integral equation which
can be represented schematically as

T~N ——T~N + T~N ( G~N —G ~N ) T~N,

where T„N and T„N are the free and self-consistent mN t
matrices, and 6 N is the free ~N propagator. G N is a
dressed mN propagator represented by the equation

G~N ——QG~NQ +QG~NQXG~N .

Here the projector Q modifies the propagator by Pauli
blocking the nucleon propagation and the pion self-energy
X includes pion distortion due to the nuclear medium.
The self-consistency arises from the requirement that the
pion self-energy be calculated by folding the self-
consistent t matrix over the nuclear ground state.

In order to determine the physical content of the self-
consistent t matrix, it is useful to first consider some
properties of the free mN t matrix. Since the pion is a
self-charge-conjugate particle, the m.N t matrix must be
crossing symmetric. This means that the t matrix can be
represented as the sum of two terms which are related by
the interchange k~ —k', where k and k' are the initial
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FICx. 1. Diagrams representing the decomposition of the
crossing symmetric, free mN t matrix into right-hand and left-
hand contributions.

and final pion four-momenta, and by the interchange of
initial and final isospin quantum numbers a~P (see Fig.
1). These two contributions will be referred to as the
direct or right hand contribution and the crossed or left
hand contribution. Clearly, the values of the right- and
left-hand contributions as functions of the external vari-
ables will differ considerably.

Each of these terms can be further divided according to
the intermediate states which contribute to the amplitude.
The most important of these are the pion pole term, where
the pion is absorbed and then reemitted by a nucleon [see
Fig. 2(b)], and the rescattering or cut term, which has in-
termediate states which contain at least one pion. By in-
cluding these contributions in the self-consistent t matrix
equation and iterating, it can be seen that the inclusion of
the right hand pole contribution to the free srN t matrix
leads to intermediate states of the self-consistent t matrix
where the pion has been absorbed on one or more nu-
cleons. The need to include the crossed terms is implied
by the physical importance of the absorption channels
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pair of coupled equations, one which describes the self-
consistent modification of the nucleon pole term and one
which describes the self-consistent modification of the cut
term. The third part is a calculation of a nonstatic self-
consistent ~N t matrix in nuclear matter. In the presenta-
tion of these last two parts, only the right-hand contribu-
tions to the t matrices were retained. The objective of this
paper is to extend the discussion and calculations of Ref.
9 to include crossing symmetry. In the next section of
this paper, the formalism of Ref. 9 is extended to include
crossing symmetry. In the following section, the resulting
expressions will be evaluated in nuclear matter and the re-
sults of this calculation are presented. Conclusions are
then drawn from this calculation.

FIG. 2. Diagrams representing the decomposition of the
direct amplitude into pole and cut contributions.

which are introduced by including the right-hand nucleon
pole. This can be seen by noting that in the free ampli-
tude the right-hand pole contribution is largely canceled
by the crossed or left-hand pole contribution. Indeed, in
the static limit the cancellation is exact. Therefore, if ab-
sorption channels are to be introduced through the right-
hand pole contribution, the crossed or left-hand pole con-
tribution must be included in order to provide a reason-
ably accurate description of the ~N t matrix. No previ-
ous calculation of the self-consistent ~N t matrix has con-
tained a consistent treatment of the crossing symmetry of
the ~N t matrix.

An organization of the pion-nucleus many-body prob-
lem has been described in a series of papers. ' " This or-
ganization is based on a phenomenological description of
the free AN t matrix derived using the Low expansion'
and a Goldstone diagrammatic expansion of the many-
body problem. From the standpoint of this paper, this ap-
proach has the advantage that the Low expansion of the
~N I, matrix naturally results in a separation of the t ma-
trix into pole and cut contributions for both the direct and
crossed parts of the t matrix. The Goldstone diagram-
matic approach provides a natural means for embedding
the free ~N t matrix into the many-body system by means
of a set of rules for evaluating the Goldstone diagrams.
This approach guarantees that the various contributions
to the free ~N t matrix are evaluated at the correct ener-
gies and momenta in the many-body environment. This
avoids the possibility of introducing spurious singularities
into complex many-body processes by means of a naive
application of the crossing relations of the free mN t ma-
trix in the medium.

Reference 9 contains three parts. The first of these is
the derivation of a nonstatic off shell representation of the
free mN t matrix using the Low expansion approach.
Only the right-hand contributions are derived, but the
left-hand contributions can be found by simply applying
the crossing relations to the right-hand pieces. The
second part contains a discussion of the self-consistent t
matrix equation in which the equation is separated into a

II. THEORY

En Ref. 9 it was demonstrated that it is convenient to
separate the self-consistent t matrix equation into a pair
of coupled equations. One of these modifies the cut con-
tribution while the other modifies the pole contribution.
This is done by dividing the self-consistent equation into
parts which have cuts containing only a single nucleon
and parts which contain cuts with either multiple nu-
cleons or nucleons and pions. If crossing symmetry is to
be included, the self-consistent equation can be divided
into a set of four coupled integral equations. These are
represented schematically by the equations

T~N = T„N + T„N (G~N —G N)~(T„N —Tg)
+ (T„N —T„N )(G~N —G~N)

X T~N + T~N ( G~N —G~N ) Tg )

(3)

for the pole contributions, and

T~N ——T~N +(T~N —T~N )(G~N —G~N)(T~N —T„N)

(4)

for the cut contributions, where

Z
0 pORP + pORC + pOLP + Z

OLC (5a)

and

T„N ——T~N + T~N + T~N + T~N (5b)

Here the superscripts L and R refer to the left- and
right-hand contributions, and the superscripts P and C
refer to pole and cut contributions. The left-hand pole
and cut contributions can be found by crossing the exter-
nal variables in (3) and (4). For convenience we will refer
to these crossed equations for T N and T N as (3 cross)
and (4 cross), respectively.

The integral equations represented by (3) and (4) and
the corresponding crossed equations can be evaluated pro-
vided some care is taken in determining the energy argu-
ments of the ~N amplitudes which appear internally in
these expressions. This can be done correctly by using the
mN amplitudes derived in Ref. 9. The right-hand contri-
butions to these t matrices have the form (see Ref. 9)
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T N (k'p, ka;p', p) = 4—vr g h21 2J(e L—/2mII )A»(p, a)Q2J(k,', k, )p(k,' )p(k, )(4mk, ark)
1IJ

where e=cu+p is the starting energy of the ~N pair, L is the momentum of the ~N pair, m~ is the recoil mass, and the
pion center of mass momenta are given by

k,' =k' —6L and k, =k —6L,

where 5=(mz —m)/mz. A and 0 are isospin and spin projection operators.
Applying the free crossing relations to this expression gives

T~N(k'p, kap', p) = —4m + h 2I 2J(e L—/2mII )A»(a, p)fl2J( —k, , —k„'. )p(k,
'

)p(k, )(4cok, cok )

IIJ

where

L=p —k', k,' =k' —5L, k, =k —6L .

Note that the order of the arguments in the projection
operators have been reversed and that the momenta ap-
pearing in the spin projection operator are no longer the
correct c.m. momenta. These projection operators can be
reexpressed as a linear combination of the projection
operators appearing in (5) with the correct c.m. momenta.
As a result, the left-hand amplitudes for a given spin-
isospin channel is a linear combination of right-hand am-
plitudes from many channels evaluated at the crossed en-
ergy. This mixing of channels in crossing can be ex-
pressed in terms of a crossing matrix.

If the crossed t matrix is to be used as an element in a
many-body diagram, the crossing of variables in the pro-
jection operators and form factors will be as in the free t
matrix but the energy at which the amplitudes are to be
evaluated will be determined by the position of the crossed
t matrix in the many-body diagram. This determination
can be made easily by using the Low expansion ampli-
tudes (5) and simple Goldstone rules for time ordered dia-
grams. This follows from the form of the right-hand am-
plitudes. The right-hand pole amplitude is given by

2
OIRP 2h»2J(E —L /2m)=-

16mm e —L /2m —m +ig

be used to determine the appropriate energy to be used in
evaluating the amplitudes by drawing time ordered dia-
grams with the amplitudes represented by a propagator
for a particle with recoil mass m~ and mass M. M will
then be the nucleon mass m for pole amplitudes and the
integration variable W for cut amplitudes. The important
rules for this application are those needed to determine
the denominators of the global propagators which appear
in time ordered perturbation theory. For propagators cor-
responding to each time cut across the diagram, the
denominator is given by the rules

(i) Add the total initial asymptotic energy of the sys-
tem.

(ii) Subtract the "on-shell" energy of each upward going
line which is cut.

(iii) Add the "on-shell" energy of each downward going
line which cut.

(iv) Add i7)
In the self-consistent t matrix equation, the crossed t

matrix can appear in three places: as the first scattering,
as the last scattering, or as part of a self-energy insertion
on the intermediate pion propagator. The first of these
can be represented as the diagram in Fig. 3. In this figure
the open box represents either a pole or cut contribution
to the ~N amplitude. The Csoldstone rules can be applied
to evaluate the global propagator for the time cut
represented by the dotted line giving

+~I, 1/2~J, 1/2~1, 1

and the right hand cut amplitude is given by

h»'»(e —L'/2m, )

(k,"~ )Imh2I 2J(W)
dW

' ' ' . (l l)+ e —L /2m~ —W+ig
The right-hand pole amplitude clearly has the form of a
factor times a nucleon propagator. The right-hand cut
contribution has the form of a weighted integral over a
propagator with a varying mass W. In the pole ampli-
tude, the recoil mass is the nucleon mass, as expected,
while in the cut contribution the recoil mass is the mass of
the dominant resonance in each channel. Since the 6 iso-
bar is by far the most important cut contribution in the
region of interest in this paper, the 6 mass has been used
in all channels for simplicity. The Cxoldstone rules" can

0
P~P g k~QJ

FIG. 3. Diagram representing time ordered diagrams where
the initial amplitude is crossed.
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FIG. 4. Diagram representing time ordered diagrams where
the final amplitude is crossed. -M+ I

-M

—coq+p —(p —q) /2mR . (13)

The second type of contribution can be represented by
the diagram in Fig. 4. As in the first case, the denomina-
tor can be determined easily to be

[co'+p' —(p' q) /2—mR —M —co' —co +i ri]

=[—coq+p' —(p' —q)'-/2mR —M+ig] ', (14)

where conservation of energy has been used in writing

E=P +co =P +co

The evaluation of the third type of contribution is
somewhat more complicated. Treatment of the third type
of contribution, where the t matrix appears as part of a
self-energy insertion, can be illustrated by consideration of
the diagram in Fig. 5. The hatched area represents some
general diagram to which the crossed insertion is at-
tached. The points labeled —M to X correspond to times
T M to T& which are determined by various interaction
vertices in the body of the diagram. The points labeled U

[co+p —(p —q) /2mR —M —co —co@+ig]
= [—~~+p —(p —q)'/2mR —M +i g] ' . (12)

The right-hand amplitudes which are combined to give
the left-hand amplitude will therefore be evaluated at

FIG. S. Diagram representative of diagrams where the
crossed contribution to the pion self-energy is included in dress-
ing internal pion propagators.

b, =p —(p —q) /2mR —M, (16)

and the contribution of the main body of the diagram to
the energy of the propagator denominator for a cut be-
tween points i + 1 and i is denoted by D; where
—M &i &X—1, then the result of this generalized time
ordered sum is given by

and L correspond to the final and initial times TU and
TL of the self-energy interaction. The problem is that
there are a large number of possible orderings of the times
associated with the self-energy relative to the times de-
fined by the main body of the diagram. All of the possi-
ble diagrams are subject to the limitation that TU) Tl.
Since the Goldstone rules require that all pions lines must
be drawn with the arrow pointing upward, those time or-
derings where TU & To or TI ) T& will correspond to the
creation or absorption of two pions which should lead to
contributions which are suppressed relative to the other
time orderings. All the remaining contributions where
TU ) To and TI & T

&
can be summed to obtain a single

simple result. If 6 is defined as

M

Do —co 6—co Do
—cc)q q q

(17)

The first term follows the pattern of the two previous
cases in that it suggests that the amplitudes be evaluated
at the energy

—~~ + (p"—q)'/2mR . (18)

The second term is a renormalization of the global propa-
gator for the emission and reabsorption of a pion by the
main body of the diagram. This procedure is virtually
identical to that used in placing hole-line insertions on the

energy shell in Brueckner theory. ' ' Extension of this
example to allow for a general crossed self-energy inser-
tion is straightforward but tedious.

Neglecting the renormalization term, which has been
found to give a modification to the propagators of at most
5% in the model presented below, the above results can be
summarized by requiring that when the crossed AN t ma-
trix is used as an internal part of a time ordered diagram
it is of the form
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FIG. 6. X" calculated with the free nonstatic amplitude
(curve a }, the self-consistent amplitudes without crossing (curve
b) and self-consistent amplitudes with crossing (curve c} as a
function of pion energy ~ at fixed pion momentum k =0.5m c. FIG. 7. As in Fig. 6, but with k = 1.0m c.

T~N'(k'P, ka;p', p)= —4~ g h2/»( —co„+p L'/2—mR )A»(a, P)Q~J( —k, , —k,' )P(k,
'

)P(k, m )(4cok cok)
1IJ

(19)

III. CROSSING SYMMETRIC t MATRIX
IN NUCLEAR MATTER

The relative importance of the crossing corrections to
the self-consistent equations can be estimated by calculat-
ing the effective ~N t matrix in nuclear matter where the
solution of these equations is relatively simple. The solu-
tion of the four coupled crossing symmetric self-
consistent equations (3), (4), (3 cross), and (4 cross) can be
further simplified by making the following observations:

1. In the calculation of Ref. 9, the pole contributions
are little modified by the imposition of self-consistency.

For this reason, we will ignore (3) and (3 cross) and use
the free pole terms with Pauli blocking, T N 8(

~

L
~

—kF )

and T~N 8(
~

L —kF ) for T N and T~N in (4) and (4
cross).

2. When T N appears in (4) it is always evaluated on
energy shell as shown in (19) in the preceding section.
This on shell T N is related to T N evaluated at negative
energy where the amplitude is relatively small and slowly
varying. Since the self-consistent modifications are
greatest in the vicinity of the resonance and become negli-
gible at zero energy, the T N amplitude may be replaced
by T N where it appears in (4).

3. An additional simplification can be made by noting
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FIG. 8. As in Fig. 6, but with k =2.0m„e.
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FIG. 9. As in Fig. 6, but with k =3.0m„c.
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that since T N is slowly varying when evaluated on shell,
Fermi motion effects will not be very important for this
amplitude so the nucleon momentum can be safely
neglected in this amplitude in (4).

Using the approximations detailed in Ref. 9, and keep-
ing only p-wave contributions to the various amplitudes,
the self-consistent right-hand cut amplitude with crossing
corrections is given by

Her ~(e L /—2mr, )[1 F2r—(e,L)] F2r—(e,L)
H2r (e L —/2m') = o„c 21+H2r (e—L /2m')F2r (e,L)+F2r (e,L)

where

H2r =477 g (J + 2 )h 2r zr
J

H2r =4ng( J.+ —,
'

)h 2r 2J,
J

(20)

(21)

(22)

r

1 f d q c.m. 'qc. m. qc. m. kc. m.

(2n ) 2coq k k

X [ H2r (coq +q /2m r, ) +Hzr (~z +q'/2m )()(
l q I

—kF ) ]"«m'N G N ) (23)

The dressed and free m.N propagators are given by

q I
kF)

R RE E(L—q)——coq —X [q, e E(L—q)—]—2 (q, —co& )+ig
(24)

and

0 1
GnN

e E(L—q) —co—~+i g

where gR =gR~+
Figures 6, 7, 8, and 9 show the right-hand cut contribu-

tion to the pion self-energy as a function of pion energy
for constant pion three-momenta of 0.5m c, 1.0m c,
2.0m c, and 3.0m c, respectively. In each case the curves
labeled a, and shown as dashed lines, represent the self-
energy calculated with the nonstatic free ~N t matrix.
The dotted lines, which are labeled b, represent the self-
consistent self-energy calculated using only the right-hand
amplitudes, as calculated in Ref. 9. The solid lines labeled
c are the result of the self-consistent t matrix with both
direct and crossed amplitudes included, as presented
above. In all of these figures the inclusion of the crossed
amplitudes results in an additional spreading of the reso-

nance peak of between 15 and 25%, and a downward
shift of the peak position of 20—30 MeV. Therefore, the
proper treatment of crossing symmetry in the self-
consistent t matrix equations has an appreciable effect on
the resonance in the effective t matrix. Furthermore, the
results remain essentially the same if the functions F2'I',
i =1,2, 3, are set equal to zero in Eq. (20). This implies
that the effect of the crossed contributions comes in the
self-energy dressing of the internal pion propagators.
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