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Nucleon-nucleon potential with quark degrees of freedom

M. Beyer'
Institut fiir Kernphysik, Universitat Mainz, D 65-00 Mainz, Federal Republic of Germany

H. J. Weber
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

(Received 31 July 1986)

Nucleon-nucleon phase shifts for all partial waves, static properties, and electromagnetic form
factors of the deuteron are calculated from an NN potential, which has a mesonic sector with only
two adjusted parameters and is supplemented by a phenomenological six-quark core potential with a
P-matrix-type parametrization. NN phase shifts constrain the six-quark core radius within
1 (b (1.2 fm. The deuteron's magnetic structure function B agrees with the data only for b =1
fm. The six-quark core probability is about 2.3%%uo.

I. INTRODUCTION

Quantum chromodynamics (QCD) is now widely be-
lieved to be the correct theory of the strong interaction. '

As QCD remains unsolved at low energy and long dis-
tances, where color is confined, quark confinement models
are usually supplemented by ingredients from perturbative
QCD. Examples are the nonrelativistic harmonic-
oscillator model (NQM) with a short-ranged color hyper-
fine interaction between massive ("constituent") quarks
and chiral bag models (CBM) with massless ("current")
quarks and pion exchange at long distances. In this spirit
many old and new problems of nuclear physics have re-
cently been investigated.

Among them the nucleon-nucleon (NN) force remains
one of the most challenging and fundamental problems.
Conventional NN potentials are based on meson ex-
change dynamics with adjustable vertex form factors
needed for convergence and to include finite size effects.
They are successful in fitting the rich data with a dozen
or more parameters. However, their ambiguities prevent
an understanding of the true nature of NN dynamics,
especially at short distances, where quarks are expected to
play a more direct role. To the extent that relativistic and
quark effects are present in the NN data at longer dis-
tances, they are simulated by the parameters of basically
nonrelativistic meson exchanges. In the context of elec-
tromagnetic interactions such NN potentials are quite
successful in predicting photo- and electrodisintegration
cross sections from the deuteron, triton, and He, when
supplemented by pionic exchange (e.g. , pair) currents. s

Nonetheless it is fair to say that only the one-pion ex-
change potential (OPEP) is quantitatively confirmed at
long distances by the deuteron's D/S ratio of asymptotic
wave functions, peripheral NN phase shifts, and pionic
exchange current effects.

While meson dynamics has not been derived from
QCD, in the limit of infinitely many colors (N, ~ oo ) it is
known to lead to a meson field theory, in which baryons
are topological solitons. This connection is the main
motivation for much recent work on Skyrme models,

whose results remain in only qualitative agreement with
the data, though. The CBM and Skyrme models contain
the spontaneous breakdown of chiral invariance expected
in the low energy phase of QCD in the form of the non-
linear a. model. The latter also follows from nonlinear
spinor models patterned on the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity starting with the basic
work of Nambu and Jona-Lasinio (NJL). In conjunction
with the electroweak interactions, such quark models'
imply also the phenomenology of the vector meson domi-
nance model, " thereby supporting the exchange of heavier
mesons in one-boson-exchange (OBE) models of NN
scattering. Similar conclusions have been independently
reached recently from the "hidden" local SU(2) symme-
try' of the nonlinear o. model, in which the p-meson field
occurs as a massive Yang-Mills gauge boson in the sense
of Ref. 11.

Our NN potential' is based on an effective quark inter-
change mechanism at medium and long distances, which
accounts for the quark-antiquark content of the ex-
changed mesons. It starts from a nonlinear four-quark
contact interaction, constrained by QCD symmetries (a
NJL model), for a pair of valence quarks at short dis-
tances, one from each of the slightly overlapping nucleons
at large distances, as is summarized in Sec. II. In Sec. III
it is completed by a nonmesonic six-quark model for over-
lapping nucleons at short distances. The resulting NN
phase shifts, low energy parameters, and deuteron proper-
ties are shown in Sec. IV and V.

II. NN POTENTIAL AT LONG DISTANCES

The mesonic NN potential is constructed to depend on
the underlying quark model directly. This is in contrast
to conventional NN potentials, where finite-size vertex
form factors and the corresponding meson-nucleon cou-
pling constants are adjusted independently.

To take color confinement into account, one can place
massive constituent quarks in a nonrelativistic harmonic
oscillator well (NQM), or massless ("current") quarks in a
spherical cavity in the MIT bag model. The color mag-
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where q =P'& —jt2, =@2—Pz is the (nucleon) momentum

transfer and 6 is determined from the pion-nucleon cou-

pling constant (cf. Table I)

g NN /4~ = &4.0, g„NN
———,

'
GNO2mN /3m~ (2)

The scalar-isoscalar cr-meson ( 0 = 1) and pion

( 0 =i y 5r) have the same quark coupling constant, as

implied by the underlying chiral invariant NJL nonlinear

quark-spinor model. ' ' As expected from the o model,

the chiral symmetry is broken by the introduction of

netic hyperfine interaction (chf) suggested by gluon ex-

change at short interquark distances then provides the ob-

served spin splittings in the N-h, X-A, and, to some ex-

tent, the ~-p systems.
Relativistic corrections to the NQM have been included

in a model abbreviated as CQM, which is used in the fol-

lowing. ' %ith pion-exchange corrections at long dis-

tances the CQM has been successfully applied to baryon

magnetic moments, ' the electromagnetic and axial form
factors of the nucleon, ' semileptonic hyperon decays'

and the pionic pair and exchange currents. '

However, the phenomenological scalar confinement po-
tentials of quark models are independent of spin and

thereby violate chiral invariance. To restore the global y&

symmetry of QCD in CBM's an elementary pion field is
introduced to chirally rotate the quark's helicity, when the

quark reflects from the nucleon's surface. The resulting

pion-quark coupling corresponds to a nonlinear o model.
Although the constituent quark size of about —, fm has

been estimated, ' we treat quarks as pointlike Dirac parti-
cles with a mass m„=md =m(2-mN/3 independent of
momentum. In essence, we assume that the qq and gluon
condensates play a role also inside nucleons; this is con-
sistent with QCD sum rule results' and removes the

sharp nucleon surface of CBM's.
Mesons are then represented as mean fields N with

their physical mass m and may propagate inside nu-

cleons. The quark-interchange model of the quark-one-
boson-exchange potential has been described in detail else-

where. ' It is given by

VQ oBE(g )=G g 0' (g —m ) 0

TABLE I. Meson-nucleon coupling constants at q =O=q
from the CQM.

Scalar:

Pseudoscalar:

g,'NN ——96 No(1 —a /4mg)
ggNN ——G No(1 —a /4m@)

g „NN
——G XO4m N /9m g

2 2 4 2 2

2 25 2 4 2 2
g„NN ——

9 6 X04mN/9m@

Vector:

Axial-vector:

g coNN

f NN = GXo /W2 (2mN/3m(2 31Vo

gpNx= 6 /22

f&NN = GXo /3/2 ( lomw/9m(2 —Xo )

gANN 6 No( 1 + /12m@ )

f~NN= —
3 GXo/~24mN/18mQ

gDNN —6 NQ /2( 1 —a / 12m' )

fDNN = —G&o/W24m N/18mg

meson masses in the free propagators in (1).
To construct the NN potential that follows from (1), it

has to be evaluated between three-quark wave functions

PN +( I 2 3)+SFC (3)

with

1 3

r2 r3) +0 i~.g/2m g g (rj )
. j=1

(4)

g (rj) =(a/~m. )exp[ —a (rj —R /3)/2],

No ——I+a /4m& (5)

and the usual relative Lovelace coordinates p, A, , viz. ,

p=(r~ —r2)/v 2,
k=(r~+r2 —2r3)/v 6,
R=(r~+ r, +r3)/M3

where S,I' stand for spin and flavor quantum numbers,
and C for the antisymmetric color wave function. To in-

clude relativistic corrections to lowest order for the in-

teracting quark, the quark wave function is defined as

TABLE II. Comparison of numerical values of meson-nucleon coupling constants from various models.

Meson
( J,T)

Mass
(GeV) MIT bag

Linear
confinement

CQM
mg ——0.33 GeV

b=1 fm b=1.2 frn m~ ——0.22 GeV Bonn

@(0+ 0)
5(O+, 1)
g{0 ,0)
m(0 , 1)
co( 1,0)
p(1-, 1)
D (1+,0)

(1+
cr'(0+, 0)

1.2
0.96
0.5485
0.1385
0.7823
0.763
1.285
1 ~ 1

0.6

3.89
0.44
4.87

13.4
6.0 ( —0.4)
0.67 (2.2)
0.6 ( —1.5)
1.1

4.53
0.5
5.32

14.8
3.78 ( —0.5)
0.42 (3~ 2)
0.22
0.6

6.79
0.75
4.83

13.4
9.44 ( —0.49)
1.05 (1.53)
0.56
1.57

7.09
0.79
5.04

14.0
9.85 ( —0.49)
1.10 (1.53)
0.59
1.64

1.10
0.12
5.18

14.4
7.04 ( —0.39)
0.78 (2.03)
0.21
0.59

1.69

14.08
10.6 ( —)

0.41 (6.1)

5.33
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with a = 3Km&, and has the form
3

Q g(rj ) =(a/v'Yr) exp[ —a (p +A. )/2] .
j=l

The radial three-quark nucleon ground state wave func-
tion from (5) is the solution of the Schrodinger equation
in a harmonic oscillator confinement potential

3

V= —g (r; —ri) = (p +A, ), (7) In momentum space the OBE potential takes the form

(8)

VQ OBE('q ) [geNN(q me ) +gsNNT T(q m s )]1 1 [gqNN(q m q ) +g~NNT T(q m ) ]Y5 Ys

(ga&NNyp+ if~NNap~ /2m N )(q' m~—) '(g~NN y" if~NNa" q. /2m N )

(gp NNyp+ ifpNNrrp~ /2m N )T' T(q' mp ) —'(gpNNY" ifpNNa""q. /2m N )

(gDNN—y„'y's+fDNNY'sq„/m N )(q' mD) —'(gDNN Y y5 fDNNY5q" /mN )

—(gwNNYI y'5+fwNNysqq/mN)'T''T(q ™w) '(g&NNY"ys —fgNNysq"/mN)

with the CQM coupling constants shown in Table I. Numerical values from different quark models are shown in Table
II. The corresponding potential version in coordinate space, which we have used to solve the Schrodinger equation, is
given as

VQ-OBE(r) = —g,NN /4Tr[IOO(m, r) —Io2(m, r)/4m N
—L.SIio(m ~r)/2m N ]

—gsNN/4m[IOO(msr) I02(msr)/4—m N
—L SIip(msr)/2m N]T 7"

+g~NN /4W[I02(mar)o' o +SI20(mar)] /12m N

+g„NN /4~[m ppp(m r)o'' o +SI20(m r)]T'.T/12m N

+g~NN/4~[IOO(m r)+(1+K )I02(m„r)/2m N +(3+4K„)L SI,p(m„r)!2m N

+(1+K ) [2o oI02(m r)] —SIqp(m r)]/12m N I

+gpNN /4~[IOO(mar)+ (1+K&)I02(mar)/2m N+ (3+4K&)L.SI ip(mar)/2mN

+(1+K&) [2o'' oI02(mar) —SIzp(mar)]/12m' IT' T.
+gDNN/4~IOO(mDr)a' rr+g&NN/4rrIop(m„r)o''HATT T,

VQ Tpp(r) = —(g 0NN+g(r NNT T)IOO(m r)/4n,

with K=g/f, and

Ipp(x) =m exp(x p ) /2x [e el fc(x p
—x /2x p ) —( "x~—x") ]

x =mr, xp ——m/av'3, erfc(z)=1 erf(z),—erf(z)=2/V~ exp( —t )dt,
0

Iz~(mr) =rt'(d /r dr)t'V„IOO(mr) .

Explicitly,

Iip(x)= —m exp(xp)/2x [(1+x)e erfc(xp —x/2xo)+("x~ —x")]+m exp( —x /4xp)/xxpv vr,

Ip2(x) =m Ipp(x) —m exp( —x /4 px)/2 pVx77,

Izp(x) =m exp(xp)/2x [(3+3x+x )e erfc(xp —x/2xp) —("x~—x")]
—3m (1+x /6xo)exp( —x /4xo)/x xo~~ .

(10)

(12)

(13)

(14)

(16)

(17)

[ ( lXb( l](o) (18)

Moreover, L=r && p is the orbital angular momentum
operator with reduced matrix element (,L

~
~L

~
~L )

=&L (L +1), S=(cr'+a)/2 is the spin operator, and the
tensor operator

3[r X [ai( l X a(tl](z)](01

in a spherical basis with

III. NN POTENTIAL AT SHORT DISTANCES

As a consequence of the strong damping provided by
the bound quark wave functions, the meson exchange po-
tentials become generally negligible' inside distances of
about 1 fm, in contrast to conventional NN potentials,
which depend sensitively on adjusted short-range cutoff
parameters. This feature allows us to introduce a
phenomenological nonmesonic six-quark core potential at
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short distances. Its parametrization in coordinate space is
patterned after the P-matrix approach of the compound
bag model. Since the NN continuum is described by
meson exchange potentials, the remaining six-quark spec-
trum is discrete with energies E„and states y„. A
motivation for this approach has been given in Ref. 20.
The optical potential is defined as

Vh(r r'E)= g &r
I
Vi.

I V. &&V.
I

Vh Ir'&l« —E. ) .

v.(me v)
—P 00-

-300.

(19) -400
0

I05 1.0 f.5 2.0
The transition potential V„& from the six-quark core to

the hadronic NN channels consists of a surface term V,
with the pole structure of the P-matrix and a volume term
from

FIG. 1. Surface part of the optical potential for the 'So chan-
nel and b=1 fm at lab energies E~,b ——0, 100, 200, and 300 MeV.

(2O)
&Vh I

Vi.
I V. &=&V h I

Vt
I V. &+«.—E)&eh

I g. & .

Integrating on the right hand side with respect to the
internal motion we get

=1 fm for the 'Sp channel. The surface term becomes
more attractive with higher energies, whereas the volume
term is more repulsive at higher scattering energy.

For numerical convenience the 6 distribution and the
step function e are smeared out according to

&sT(r)y. (r)

&gh I
Vi

I yn & ~&sT(r ) Vi(r)yn(r)
(21) 5(r —b)~exp[ —(r b) le ]l—ever,

B(b r)~[1—+(rib) ]
(24)

+[(E—Ep )c 2 +c
~ ]B(b —r)

or equivalently

Vh(r, E)=cp5(r b)I(E E—p)—
+ (ypEp+ y ~

E)B(b r) . —

(22)

(22')

as
The parameters co,c2 are related to the six-quark model

cp" &irli(b»

c2 ~ ui(r)rii(r)dr,
0

(23)

where gi(r) and ui(r) are the appropriate radial wave
functions of the partial wave decomposition of y„(r) and
XsT(r), respectively. The lowest six-quark energy eigen-
value Ep in (22) is calculable if a full six-quark Hamil-
tonian is given. The parameter b is a measure of the ex-
tent of the six quark core region.

For lack of an appropriate six quark Hamiltonian both
parameters are chosen to have certain values (cf. Sec. IV).
At this stage V, is assumed to be a central potential only,
but for further numerical calculations we also allow V, to
contain tensor and spin orbit terms.

The linear energy dependence of the short range NN
potential as parametrized already by the Paris potential is,
at least qualitatively, explained by taking into account the
quark structure of the nucleon.

The two parts of the optical potential in (22) are
displayed in Figs. 1 and 2 at a six quark core radius b

where XsT(r) and y„(r) are the wave functions of relative
distance of three-quark clusters in the hadronic and six-
quark channel, respectively. Choosing V, (r) = V, 5(r b), —
we arrive at our potential parametrization

Vh(r, E)=cp5(r b)l(E E—p)—
where @=0.2 and 0.1 fm for b=1 and 1.2 fm, respective-
ly.

IV. NN PHASE SHIFTS

400
v„(uev)

800

' ZO0-

100-

0.5 1.0 1.5 Z. O

FIG. 2. Volume part of the optical potential for the same pa-
rameters as in Fig. 1.

We have used our potential, which is more consistent
with the internal quark structure of the nucleon and its
excited states than conventional NN potentials, 4o extract
various parameters of the six-quark core. In particular,
we have analyzed its dependence on the radius b of the
six-quark core region. We find that values b & 1 fm and
b& 1.2 fm disagree with the NN phase shift data, so we
present our results only for the values b= 1 and 1.2 fm.
Since the potential depends only weakly on the lowest
six-quark core level Eo, we have chosen Eo ——750 MeV,
which corresponds to that of the P-matrix analysis ' for
6=1.2 fm.

For m =495 MeV/c of Ref. 23 we show in Table III
our adjusted effective O.-meson exchange parameters
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b=1 fm b=1.2 fm

TABLE III. Pion-quark and adjusted cr-meson-nucleon cou-
pling constants for six-quark core radius b= 1 and 1.2 fm.

TABI.E IV. Adjusted six-quark core parameter yp of Eq.
(22') for P and D waves and six-quark core radius b=1 and 1.2
fm.

G /4m

g,NN /4~

gcriNN /4~

2.0973
3.3192

0.7608

2.1893
3.0273

0.6727

ip 3p 3p 3p 'D D

yp (b=1 fm) 0.4 0.6 0.45 —0.03 —0.22 —0.4
yp (b=1.2 fm) 0.15 0.17 0.13 —0.05 0.11 0 15

(g,g ), which reproduce the phase shifts of partial~p'

waves with L ~ 2 that depend only on the OPE and TPE.
Heavier meson exchanges are suppressed by the soft ver-
tex form factors from the bound quark wave functions
and the angular momentum barrier. In these peripheral
partial waves it is reasonable to neglect six-quark core
contributions.

In Figs. 3(a)—3(g) we show our phase shift for L &2
compared with recent energy dependent (short dashed
lines) and single energy analyses (dots) given by Amdt
et a/. There is no substantial deviation from the data.
The difference between the phase shifts for b=1 and 1.2
fm is mainly due to the cutoff at b of the meson poten-
tials and is not a six-quark effect. This requires the small
renormalization of G and g~ shown in Table III.

j

However, there is some contribution of the six-quark
core in some D and all P waves. Since it is not possible to
extract all parameters of the core potential from these
partial waves, we have assumed an energy independent
mean value for the core potential, viz. , y& ——co ——0 in (22)
and (22'), which is treated as a volume term. Thus, for
each partial wave in P and some D waves we have one pa-
rameter to adjust to the energy dependence of the phase
shifts. Table IV shows the relevant parameters for partial
waves with a core contribution. We want to emphasize
that our short-range potential need not be repulsive
(which is the case of some potentials with a large coNN

coupling).
Figures 4(a)—4(h) show the P and D phase shifts. Ex-

cept for the 'P, phase shift, where b, (1232) degrees of
freedom may be important, all partial-wave phase shifts
agree with the experimental values. At higher energies
the b=1.2 fm case gives too much attraction in the P&

phase shift.
Most recent discussions emphasizing the short range

part of the NN potential concentrate on L=O partial
waves, which have no angular momentum barrier. How-
ever, we have seen that for P and D waves there is still
some influence of the six-quark core. The S phase shifts
are sensitive enough to separate the potential coming from
the P-matrix pole from that originating from the overlap
integrals. Its parameters are displayed in Table V.

In the S&- Di channel we need a tensor force in the
transition potential V„

TABLE V. Adjusted six-quark core parameters yp, y i,
cp/Ep, and cT/Ep of Eqs. (22), (22'), and (25) for the S waves
and six-quark core radius b= 1 and 1.2 fm.

yp cp/Ep2 cT/Ep

In Table VI we compare the pole part of the optical po-
tential with the parameters of a P-matrix analysis of
Bakker et al. ' Our residues 'Tp=4mNcp are somewhat
higher.

In Figs. 5(a) and 5(b) we have displayed the phase shifts
5p, 5p of the 'Sp, S&- Di partial waves. The reasonable
agreement of both cases b=1 and 1.2 fm with the experi-
mental analyses is not surprising, as the phenomenological
six-quark core model forces us to admit three additional
parameters for each S wave. Two of these parameters are
largely determined by the low-energy dependence of the
phase shifts and the static deuteron properties. The
scattering lengths a„a, and effective ranges r„r, in Table
VII determine cp and yp. Only one parameter in each
partial wave is adjusted to the energy dependence of the
phase shift.

The model parametrization of (22),(22') does not pro-
vide reasonable values for the effective ranges for b& 1.2
fm, whereas for b ( 1 fm the correct energy dependence of
S-wave phase shifts cannot be obtained. These constraints
on the six-quark core size will be narrowed further by the
magnetic form factor of the deuteron in Sec. VI.

Compared to our complete potential analysis below the
pion production threshold, the ITEP group has con-
sidered only a few low partial waves, but fitted the corre-
sponding phase shifts to higher energies. The extracted
b=1.5 fm is larger than our b=1 fm. In another P-
matrix analysis of several low NN partial-wave phase
shifts the P-matrix pole predictions of quark bag models
are compared to each other and NN data. The extracted
b=1.05 fm is close to ours, but the pole positions lie far
above the energy regime, where these quark models and
the nonrelativistic analysis apply. Moreover, the NQM
and the CQM extensions we use have not been considered.

A hybrid quark model uses the wave functions from a
conventional NN potential at internucleon distances larger
than some adjustable cutoff radius rp ——b, where matching
conditions to inner multiquark configurations are im-
posed. Although the proper phase shifts are maintained

VT(r, E)=cr5(r b) l(E —Eo), — (25)

where cT is adjusted to the quadrupole moment of the
deuteron, which is about 10% too low for cT ——0. This
VT is purely attractive and gives the correct energy depen-
dence of the mixing angle e& as well.

b=1 fm

b=1.2 fm

'Sp

Si

'Sp
3S

0.4
0.4

0.32
0.2

0.533
0.733

0.57
0.55

0.5071
0.3691

0.3

0.19
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2.37
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b=1 fm

5.400
—23.715

1.722
2.72

b=1.2 fm

5.410
—23.715

1.807
2.85

Experiments

5.423(5)
—23.715(15)

1.748(14)
2.73(6)
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this way, a corresponding cutoff in the underlying NN
potential would require refitting the scattering lengths, ef-
fective ranges, and deuteron observables, which is not
done. Nonetheless, estimates of six-quark admixture
probabilities and their size can be extracted. Although
their b=1 fm from deuteron electrodisintegration data
agrees with our value, it is not as firmly pinned down as
ours by elastic electron deuteron scattering (in Sec. V), be-
cause of difficulties arising at short range from incon-
sistent form factors from the inner quark model and the
external NN potential.

b=1 fm b=1.2 fm Experiments

E~ (MeV)
QD (fm )

D/s (%%uo)

I'D (%)
P6q (%)
((r') )'~ (fm)

2.224 62
0.276
2.58
5.7
2.3
1.96

2.224 62
0.286
2.63
5.3
44
1.99

2.224 62(6)
0.2860(15)
2.56(4)
5(3)

1.9635(45)

TABLE VIII. Static deuteron observables for our NN poten-
tials with six-quark core radius b=1 and 1.2 fm.

V. DEUTERON PROPERTIES

In Table VIII we give the deuteron results in compar-
ison with the experimental data.

A six-quark core probability

&6q= I —f [u (r)+w (r)]dr (26)

is shown in Table VIII as a guideline for six-quark core
effects in our model.

The D/S ratio of asymptotic deuteron wave functions
is well known to depend predominantly on the OPEP.
The agreement shown in Table VIII with a soft ~NN
quark-model form factor compares favorably with that of

dO dO

dA dA Mo«
[A(q )+B(q )tan (0/2)], (27)

the Paris potential without explicit mNN-form factor.
In Figs. 6(a) and (b) we show our deuteron S and D

wave functions in comparison with those of the Reid and
Paris potentials. Significant differences occur only for
momentum transfer q&4 fm despite the softer vertex
form factors from the constituent quark model. The dif-
ferential cross section for elastic electron scattering on
deuteron is given by
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FIG. 3. (Continued).
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where (da/dA)M, « is the Mott cross section, A(q ) and
8(q ) are elastic form factors depending on the virtual
photon momentum q, and L9 is the electron scattering an-
gle in the laboratory frame. The structure function A (q )

shown in Fig. 7(a) agrees with the data and those from
other potentials, but is not sensitive enough to distinguish
between the fine structure in the short range part of the
different potentials. However, we found significant devia-
tions between our models with b = 1 and 6 = 1.2 fm in the
magnetic form factor 8(q ). This form factor is quite
sensitive to the short range parametrization. For example,
the position of the node in the magnetic form factor de-
pends on the size of the six-quark core and is shifted to
higher values of q for lower b. Thus, as implied by Fig.
7(b), 8 (q ) does not agree with the data unless b & l fm.
In our form factor results we have also included effects
coming from meson exchange currents (MEC's) via the
dominant pionic qq pair current as given in Ref. 29.
Since the deuteron is isoscalar, there is no strong model
dependence if one uses a ~-NN pair current with a mono-
pole form factor of mass A —500 MeV/c .

The deuteron tensor polarization

Gc(q )Gg(q )+ p gog(q')
T(q )=4q&2/3

Gc(q') + —,g'Gg(q')

rI= —q /4md (28)

is known to be sensitive to the admixture of a six-quark
core. Our prediction in Fig. 8, which includes the MEC,
is comparable to that of the Paris potential because our
NN model does not include a direct short-range six-quark
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FIG. 5. S wave phase shifts. For curves, see caption of Fig.
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FIG. 6. Deuteron S-wave function u and D-wave function te
in momentum space in fm . Solid line denotes our model with
b= I fm; dashed line, our model with b=1.2 fm; long dashed
line, RSC potential; long dashed-dotted line, Paris potential.
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potential Vq besides the transition potential V~q. We have
also included a direct six-quark contribution

Gc~Gc+&6q(1 q—/4Eo)

Xexp[q b (1—15/2b Eo)/6(1 q /—4Eo)]

(29)

that is shown in Fig. 8. The six-quark interference term
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FIG. 8. Deuteron polarization tensor T(q ) of Eq. (28).
Dashed line denotes our model with b=1 fm; solid line, our
model with b= 1 frn including F«(q ); long-dashed —two-dotted
line, our model with b=1.2 fm; long-dashed —dotted line, our
model with b=1.2 fm including F«(q ); long dashed line, RSC;
dash dotted line, RSC including F«(q ) using parameters of
Ref. 30 (in contrast to Ref. 30, we also included MEC's as ex-
plained in the text).

has been shown to be small. The dramatic six-quark
core effect of Ref. 30, which is already degraded by the
pair charge, appears only for unusually small six-quark
core radius b —

4 fm and large P6q-7%, whereas our
six-quark core parameters give only small effects. The
remaining polarization observables (including MEC
corrections where applicable) are shown in Figs. 9(a)—9(b)
and agree with the few measured data points.

Note that for the polarizations there is also no sizable
difference between various potentials in the momentum
range measured so far, in contrast to the magnetic form
factor. To conclude this section we would highly recom-
mend studying deuteron observables from quark-model
motivated potentials, since we found some sensitivity to
the core parameters in elastic electron deuteron scattering.

VI. SUMMARY AND CONCLUSION

10-"
0 10 20 30

q'(fm )
40 50

FICs. 7. Deuteron structure functions A(q ) and B(q ). (a)
Dashed line denotes our model with b=1 fm; solid line, our
model with b= 1 fm including F«(q ); long-dashed —two-dotted
line, our model with b=1.2 fm; long-dashed —dotted line, our
model with b=1.2 fm including F«(q ); long dashed line, RSC.
Experiments, Ref. 31. (b) Dashed line denotes our model with
b= 1.2 fm; solid line, our model with b= 1 fm; long-dashed line,
RSC. Experiments, Refs. 31 and 32.

We have constructed and discussed a NN potential that
is reasonably consistent with the internal quark structure
of the nucleon both in short range and medium-long range
parts, which is in sharp contrast to conventional NN po-
tentials. The short range part is phenomenological and
the medium/long range parts are of mesonic origin but
contain only two adjusted parameters in the TPE range
(three if one chooses to fit m also).

The mesons are effective particles but handled as point-
like in the sense of elementary particles. Quark-meson
coupling constants and regularizations of the meson-
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FIG. 9. Deuteron polarization observables P, P„P, , P„, and 0=70'. For curves, see caption of Fig. 8. Experiments are from
Ref. 33.

baryon vertices are provided by the quark confinement
model, taken to be a quasirelativistic constituent quark
model (CQM). This quark model has been applied with
considerable success to calculate many observables of the
nucleon. '

The NN potential is extended inside of the NN overlap
region by an optical potential description of the six-quark
core. This phenomenology gives an appropriate handling
of the six-quark system in view of the continued absence

of a complete six-quark Hamiltonian. It is this lack of
knowledge of quark dynamics which leads to 15 addition-
al parameters lover and above the two parameters in the
meson potential to fit the TPE sector properly), to be ex-
tracted from the phase shift analysis. There is some hope
to eliminate some of these parameters, if a reasonable
model of the six-quark system is found.

In this framework we have investigated the dependence
of NN phase shifts and deuteron observables on the radius
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of the six-quark core. For 1 & b & 1.2 fm our model gives
equally good descriptions of the NN scattering data below
the pion production threshold and the static properties of
the deuteron. However, the magnetic form factor 8(q )

of the deuteron for q )20 fm restricts the six-quark
core radius further below b ( 1 fm.

We conclude that, since we have extracted six-quark pa-
rameters from NN phase shifts, it is no~ possible to apply
such quark core potential to other processes, e.g., elec-
tromagnetic form factors of triton- He systems or nuclear

matter calculations, which may be useful to refine our
knowledge of the core parametrization further. The main
problem to be solved consists in finding the proper
dynamics of the six-quark core to evaluate the short range
contributions.
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