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We investigate 6(1232) production via charge-changing weak currents e +p~A +v, and
e++p~h+++ v, at electron/positron beam energies in the range of a few GeV. A general formal-
ism is introduced for the N~A transition form factors, including the weak magnetism, weak quad-

rupole, and weak scalar form factors for the polar-vector current and the axial, pseudoscalar, recoil,
and weak electric form factors for the axial current. The form factors related to the polar-vector
current are related to 6(1232) electroproduction on a nucleon target. For nucleons and deltas, we

adopt in this calculation the flavor SU(6) wave functions, with quarks described as confined Dirac
particles. The quark wave function adopted is of the form given by the MIT bag model, with or
without the sharp boundary smoothened out. In the few GeV range, it is found that cross sections
can be as large as 10 ' cm and are sensitive to induced form factors such as the weak magnetism
form factor. It is also found that, for a beam energy of around 4.0 GeV, the predicted cross sections
depend sensitively on whether or not the sharp boundary in the quark wave function is smoothened
out.

I. INTRODUCTION

The forthcoming construction of high energy ( & 1

GeV) and high intensity electron accelerators will make it
feasible to study weak processes in a region where quark
degrees of freedom are expected to be dominant, but
where confinement effects cannot be neglected. The cross
section for an exclusive semileptonic weak process neces-
sarily falls off rapidly with q due to hadronic form fac-
tors. Thus, exclusive semileptonic weak processes are best
studied in the energy range of a few hundred MeV to a
few CreV. In this paper, we consider 6(1232) production
via charge-changing weak currents, e +p~A +v, and
e++p~h+++v„which complement isospin analog re-
actions such as e +p~n+v, and offers an opportunity
of probing the behavior of weak transition form factors.

Study of a weak exclusive reaction will remain a rather
difficult experiment. Although detection of the two
charged particles from the strong decay of a b (1232) helps
reconstruction of the missing (neutrino) four-momentum,
it remains to be seen whether the experiment is indeed
feasible. Although the N~A polar-vector transition form
factors can be probed by electroexcitation of b, (1232)'s,
axial-current and parity-violating form factors cannot be
studied in this way and require experiments such as that
being studied here. The transition form factors intro-
duced here will be useful for other experiments such as
those induced by neutral weak current. Furthermore, the
reaction studied here provides further tests of quark
models of nucleons and deltas.

The rest of this paper is organized as follows: In Sec.
II, a general formalism is introduced for N~A transition
form factors, for both the polar-vector and axial-vector
currents. In Sec. III we describe a quark-model calcula-

tion of these form factors. Sample numerical predictions
are presented in Sec. IV, while questions related to experi-
mental feasibility are discussed in Sec. V.

II. FORMULATION

0

0

Xa(J, = —, ) = 0
0

0
0

Xa(J, = ——, )
0
0

In this section we outline a procedure which allows for
a description of the reaction e +p~5 +v, or
e++p~A+++v, in the CxeV range. To describe a spin-

object such as 5(1232), we introduce four-component
Pauli spinors:
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We recall that, for the ( —,
' ~ —,

'
) transition, we may use

[ l, o„,oy, cr, I as a complete set of operators in construct-
ing the polar-vector or axial-vector matrix element. In the
present case we may introduce three spin-vector S and
five quadrupole Q 4 X 2 matrices (and their Hermitian
conjugate matrices) which link the nucleon-spin space
to the delta-spin space. Specifically, we take components
of the transition spin matrices [ S+,S,So I, with

S+ = —2 '/ (S„+iSy), S:—2 ' (S„iS&—), and So
=—S„as follows:

(
2 )1/2
5

(
2 )1/2
5

(3e)

=Qo

The eight 4X2 matrices IS,QI just introduced form a
complete basis for a spin —,~—,

' transition. In a Cartesian
basis, we find

1 0

0 3
—1/2

S+ ——

0 0
0 0

3
—1/2 0
0

(
2 )1/2
3

(
2 )1/2
3

(2a)

(2b)

(2c)

Q =(
8 )'"(Q+2+Q 2) —Qo/2

Qyy = —( 8 )'"(Q+2+Q —2) —Qo/2

Qy. =Q~=i( g )'"(Q+1+Q

Q =Q, = —(-', )'"(Q+1 —Q, ),
Q~y=Qyx ( 8 ) (Q+2 Q —2) .

(4)

We may now consider a three-vector defined by
&b, (p')

I
V, (0)

I
p(p) & with i =1, 2, or 3. In the laborato-

ry frame (where the target proton is at rest), the only oth-
er three-vector is the three-momentum transfer q. Thus,
we may introduce, in the laboratory frame, the most gen-
eral form for V;:

& ~'(p')
I

I'(0)
I
p(p) & =x~[i(s xq/

I q I
) GM

+ [(Q;,q, )/
I q I ]Gg

+q [(Qjkqjqk)/ I q I

']Gs Ix, .

0 (4)l/2

+2= 0
0

(3a)

0

Here we have fixed the normalization by equating
Xa(m') S(m")XN(m) to & —,, m;l, m"

I

—, , m'&. The
remaining five 4X 2 matrices will be referred to as "quad-
rupole matrices" since they allow the introduction of the
A~N quadrupole-moment form factor. Specifically, we
take

(sa)

Here we have used q2 =(p' —p)2. We identify Xa and X~
as Pauli spinors defined in the hadron's own rest frame.
Thus, effects due to the Wigner rotation caused by the
nonzero velocity of 6 are absorbed into the definition of
the form factors. It is clear that Eq. (Sa) is the most gen-
eral form for a spatial transition operator which is linear
in Sor Q.

Analogously, we may introduce the most general forms
for Vo, 2;, and Ao in the same frame:

& ~'(p')
I

I'o(0)
I
p(p) & =Xa[(Qjkqjqk )/

I q I
']X,G v

(Sb)

0 0
0

(
4 )1/2 ()
5

5
—1/2

0

0

(
3 )1/2
5

0

(
3 )1/2
5

5
—1/2

(3b)

(3c)

(3d)

& &'(p')
I
&;(0)

I
p(p) &

=X~I —S;G~ —q;(S.q/
I q I

')GE

+[(iEijkQjmq qk)/ I q I
]Gj1 IX1,

& ~ (p')
I
~o(0)

I
p(p) & =X~[(S q)/ I q I

]X GE

We shall refer to the form factors GM, Gg, Gg, Gg Gp,
Gz, and Gz, respectively, as the weak magnetism, weak
quadrupole, weak scalar, axial, pseudoscalar, recoil, and
weak electric form factors, following the convention of
Ref. l. Equations (Sa)—(Sd) can readily be written in a
relativistic form. There are the same number of form fac-
tors in this case, but they are linear combinations of those
which we have introduced. In this paper, we use the ex-
pressions of Eqs. (Sa)—(5d) that are valid only in the labo-
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ratory frame and obtain expressions in any other frame of
reference by Lorentz transformation. The polar vector
current is conserved so that

Bx Vg(x) =0

so that

v, (o) lp&= —(6
I
Jg(0) ln)+2(A

I
Jg(0) lp) .

(7c)

or

q. (~'(p')
I
&(0)

I p(p) ) —qo(& (p')
I

vo(0)
I
p(p) ) =0 .

(6a)

Analogously, we have

&~++
I

v~ (0)
I p& =+ &

~++
I
[r~(o»r+]

I
p&

=3'~ (b.+
I
Jg(0)

I
p) . (7d)

This implies, in the laboratory frame,

q I (G&+ Gs) —qoGv =0 (6b)

and that there are three independent polar-vector form
factors, which we choose as the magnetic (M), quadrupole
(Q), and scalar (S) ones. Since qo is always different from
zero, we may solve Gz in terms of G~ and Gz.

It is also of importance to emphasize that, owing to the
conserved-vector current (CVC) hypothesis, ' the charge-
changing weak polar-vector current is related to the ha-
dronic electromagnetic current via an isospin rotation. To
see this, we write

(6
I

v~(0)
I p) = —(5

I

[I'(o) r ] I p&

= —(b,
I
rq(0)I

I
p)+(b,

I
I Ig(0)

I p)
= —(b,

I
rg(0)

I
n)+2(b, +

I
rg(0)

I p) .

(7a)
Here we have used

+ I Jm & =[(J—m)(J +m +1)]'"
I J,m +1

a well-known formula in angular momentum algebra.
The hadronic electromagnetic currents can be decomposed
in the standard manner,

J~(x)=Iq(x)+ —,
' Fq(x),

The formalism which describes the weak processes
e +p~b, +v, and e++p —+6+++v, clearly includes
the electromagnetic process e +p~e +6+ as a special
case. Specifically, we may introduce the N~b, elec-
tromagnetic transition form factors defined in the labora-
tory frame,

& ~+(p')
I

J (0)
I
p(p) & =X& ( i(s x q/ I q I

) FM

+ [(Q;,e, ) l
I q I ]Fg

+a[(Q, q, e )/lqI']Fs)&, .

Owing to current conservation [Eq. (6b)], there is no need
to write down explicitly the expression for the time com-
ponent. The weak polar-vector form factors for the
p~A++ transition are completely determined if the CVC
hypothesis holds and the electromagnetic form factors
specified by Eq. (8) are known. On the other hand, Eqs.
(7c) and (7d) indicate that a measurement of the p~b,
weak polar-vector transition form factors provides infor-
mation on (b,

I
J~(0)

I
n).

Having introduced the appropriate weak form factors,
we may write the transition amplitude for the reaction
e +p 6 +v, :

?'(e +p b, +v, )=i u(p, )y~(1+y5)u(p, )(2 ' GFcos8c)(h (p )
I
[Vx(0)+Aq(0)]

I p(p)) (9)

with the matrix element (b, (p')
I
[V~(0)+Aq(0)]

I p(p)) defined by Eqs. (7a)—(7d). Here, GF and 8c are, respectively,
the Fermi coupling constant and the Cabibbo angle. Integrating over the unobserved neutrino three-momentum, we de-
fine the differential cross section do/dna (in the laboratory frame), for the case of an unpolarized beam of electrons on
an unpolarized hydrogen target with the final hadron polarization undetected,

=(2') Eapg I Eg/[Ep+(E, /pa)(p~ Egcos8a)] l X„—
I

T
I

Thus, we have

=[GFE cos8cl(2~)] (pa/E~) I Ea/[Ep+(E, /pq)(p~ Egcos8g)] I—
dAg

XX„[[j'j(1—e v)+(e j' v j+e j v j') i(e v) j"X j—]- .

+2Re[ —jo(e+v) j+j OieXv j]+ I jo I
(1+e v)I, (10)

with

J'~=—&~'(I ')
I [v~(0)+~~(0)]

I p(I ) &

[as defined by Eqs. (7a)—(7d)], e —=p, / I p, I, and

v—=p /
I p I

. Once the input form factors GM, G&, Gs,
Gz, Gz, Gz, and GE are given, we can evaluate the ma-
trix element j~. Substituting the results into Eq. (10), we
then obtain numerical predictions for the differential
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cross section. Although we can simplify Eq. (10) some-
what further by using Eqs. (Sa)—(Sd), we adopt a numeri-
cal method. Finally, we note that the charged weak reac-
tion e++p~A+++v, can be obtained by simply switch-
ing the sign of the term specified by i(e v—).j Xj [since
antileptons appear in Eq. (9)]. Since the formulas suitable
for b, ++ production can be obtained by substitutions, we
use 6 production as our basic example and simply men-
tion the results for 6++ as necessary.

III. A QUARK-MODEL CALCULATION
OF THE N~h WEAK TRANSITION FORM FACTORS

= (&'(p')
l

& (0)
l
p(p) ) (1 la)

and

(1 lb)

To carry out a quark-model calculation of these matrix
elements, we need to know (1) the initial and final baryon
wave functions expressed in terms of quarks and other
constituents (including the confining field), and (2) the
operators which characterize the reaction mechanism at
the quark level. For the purpose of this paper, we shall
assume that the quark wave functions of the initial or fi-
nal baryons at rest are determined by the flavor SU(6)
symmetry. For instance, the proton wave function at rest
is given by

In this section we wish to describe a quark-model calcu-
lation of the N~A weak transition form factors, assum-
ing that nucleons and deltas are described by flavor SU(6)
wave functions with quarks treated as Dirac particles.
We consider in the next section two different possibilities
for quark wave functions. The first possibility is the one
given by the MIT bag model, which is also used in chiral
bag models with a sharp boundary. The second possibility
on which we wish to concentrate a little more later in this
paper is a quark wave function based on Dirac particles
moving in a harmonic-oscillator confining potential (con-
sisting of a Lorentz scalar and the time component of a
Lorentz four-vector). As we shall see in the next section,
the hadronic form factors are damped very rapidly as q
becomes large compared to (I/R), where R is the con-
finement scale, so that cross sections arising from one-
body currents become negligibly small for q greater than,
e.g. , 50 fm . As is well known in electronuclear physics
(where Cxaussian-type wave functions are used for nu-
cleons), contributions from two-body currents (often re-
ferred to as meson-exchange currents in nuclear physics)
and others become dominant at large q . On the other
hand, the sharp boundary in the original MIT quark wave
function gives rise to a slowly damped oscillating behavior
of the form factors at large q and the predicted cross sec-
tion due to one-body currents remains fairly sizable at
large q .

We recall that the matrix elements which we need to
determine for the reaction e +p~b, ~v, are

l
p(t))g —lg [2u (~)u (~)d ( —)

u (1)(~ )u (2)( )d (3)( ~ )

u())( )u(2)( ~ )d(3)( / )

+(1~3)+(2~3)] . (12a)

(12b)

Here and in what follows, we suppress color indices wher-
ever possible and use a shorthand notation, such as

u '( ~ ) =P(r";s, = —,', I3 = —,
'

)

and

More specifically, the quark wave function which we
adopt in this paper is of the relativistic form

u(r)
Q(r;s) = X, ,lo' rv

(13)

with r—:
l

r
l

and r is the quark coordinate expressed rela-
tive to the center of the bag. 7, is the Pauli spinor with s
the z component of spin.

It is of importance to emphasize that the baryon wave
functions in Eq. (12) do not give any information beyond
the quark part, such as the gluonic components or the
confining field. It is also of importance to note that only
baryon wave functions at rest are given. Since the hadron
energy momentum is not carried entirely by the quark
constituents (as suggested, for instance, by high-energy
deep inelastic lepton-proton scattering experiments), we
wish in this paper to set aside the relativistic center-of-
mass problem and to obtain the quark part of the hadron
wave function in motion as though quarks were free (as
suggested by the asymptotic-free nature of QCD, as well
as by general successes of bag models such as the simple
MIT bag at low energies). Although the specific way
which we choose to handle recoil effects requires detailed
justifications, we do not do so here and refer the interested
reader to Ref. 4 on the treatment of recoil effects in bag
models.

The reaction e +p~A +v, involves the one-body
charge-lowering quark currents:

and

3

Vq(x)= g [ir y4yq[ '5' '(x —r ')
a=1

(14a)

Analogously, the quark part of the b, wave function at
rest is specified by

l

&'(&, = —,
' )) =3 ' '[u'"(+)d"'(+)d"'(+)

+d"'(+) "(+)d ' (+)
+d"'(+ )d"'(+ )u"'(+ )] .
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3

A, (x)= y [ . y,y,y, I
"~"'(x—r"),

a=1
(14b)

&~ (P )
I
Vi(0)

I P(P) &

3
=

& ~'(p')
I g exp(+iq. r") I i~-y4y~. l"'

I
p(p»

which takes this simple form since quarks are pointlike
Dirac particles. It is often assumed that the impulse ap-
proximation in terms of Eqs. (14a) and (14b) holds only in
the Breit frame, in which the initial and final hadron
three-momenta are equal in magnitude but opposite in
sign. This assumption is justified in, e.g. , the determina-
tion of the proton charge and anomalous magnetic form
factors e~(q ) and p~(q ) where adoption of the Breit
frame ensures both that ez(q ) and pz(q ) are functions of
q alone and that there is not any additional spurious
form factor. Thus, we take the same assumption for the
sake of consistency whenever Eqs. (14a) and (14b) are
used. Using Eqs. (14a) and (14b), we obtain (noting that
the sign of our qi is different from that in Ref. 5)

a=1
(15a)

&b (p')
I

A (0)
I
p(p) &

3

=&5, (p')
I +exp(+iq r' .)Iir y4yiy5I"

I
p(p)& .

a =1
(15b)

Equations (15a) and (15b) indicate that, in the impulse ap-
proximation, it is adequate to know only the quark part of
the baryon wave function, such as Eq. (12a) or (12b).
Specifically, we find, with g the overlap integral for a
spectator quark,

&& (p'; J,= —, )
I
v~(0)

I p(p; J, = —, )&= —( —, )' il f d r pd(r;+)exp(+iq r)sf'Ii. y4yi„)s;g„(r; —),
&& (p'; J,= —,

'
)

I
Vx(0)

I p(p; J, = —,
'

) & =(2' /3)q fd r[Pd(r;+)exp(+iq r)Sf'Iiy4yi]SQ„(r;+)

gd(r; —)exp—(+i q r)Sf I i y4yi„I S;P„(r;—)],
&b, (p', J,= —

2 )
I
Vi(0)

I
p(p; J,= z ) & =(2' /3)g fd r Pd(r; —)exp(+iq. r)Sf'Iiy4yi IS/„(r;+) .

(16a)

(16b)

(16c)

The corresponding formulas for the charge-lowering axial current Ai (x) are identical with Eqs. (16a)—(16c), except that
the operator iy4yi, should be replaced by iy4yiy5. Here the boost operators Sf and S; are introduced such that Sf/(r)
and S;t/r(r), with g(r) the quark wave function in the rest frame of the hadron, are, respectively, the final and initial
quark wave functions as seen in the Breit frame.

To describe the charged weak reaction e+ +p~b + ~v„we need to replace Eqs. (16a)—(16c) by following formulas:

&b++(p', J,= —, )
I v~ (0)

I p(p; J,= —, ) &
=2'~ il fd r g„'(r;+)exp(+iq r)sf Iiy4y. i Ised(r; —), (17a)

&~++(p' J.=—')
I

V~+. (0)
I p(p J.= z )&

= —( —, )' 'ri' fd'r[P„'(r;+ )exp(+iq r)Sf'[iy4yi, }S;gd(r;+) —g„'(r; —)exp(+iq r)Sf jiy4yi 'IS;@d(r; —)],
&&++(p', J,= ——,

'
)

I
Vi (0)

I p(p; J,= —,
'

)& = —( —', )'~ ri f d r i'„'(r; —)exp(+iq r)S) Iiy4yi IS&d(r;+) .

(17b)

(17c)

S; =a;+b;a (q/I q I ),
Sf =af+bfa. (q/I q I

) .

(18a)

(18b)

And, as before, similar expressions hold for the charge-
raising axial current Ai (x). Noting that the matrix ele-
ments given by Eqs. (17a)—(17c) are related to those given
by Eqs. (16a)—(16c) by an overall multiplying factor, we
conclude that, in the quark-only impulse approximation,
the form factors in the b, ++ case are exactly —3' times
those in the 6 case. This does not mean that cross sec-
tions in the former case are 3 times those for the latter,
since the sign of an interference term in Eq. (10) should be
switched in going from one case to the other.

To proceed further, we assume that the boost operators
can be parametrized as follows:

b; = —[(E; Mi)/(2M')]'—

af ——[(Ef +Mf )/(2Mf )]'~

bf =[(Ef Mf)/(2MI)]'—

(19b)

(19c)

(19d)

with

v =v+P(P. v)(y —1)/
I P I

—Pyuo,

uo =y(uo —P v),
(20a)

(20b)

Here and in what follows, we use the superscript B to in-
dicate explicitly those quantities which are defined in the
Breit frame. It is useful to recall that a Lorentz four-
vector (v, iuo) in the Breit frame is related to (v, iuo) (in
the laboratory frame),

For example, if the free boost operators are used, we find P=q/(E~+m, ), y=(1 —P') (20c)

a; = [(E; +M; ) /(2M; )]'~ (19a) This transformation can be applied to the matrix elements
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defined in Eqs. (5a)—(5d), so that a comparison with the
microscopic model can be made. (Note that the Breit-
frame matrix elements obtained in this way are expressed
in terms of quantities defined in the laboratory frame. )

The results are summarized immediately below. We de-
fine, with q fixed in the z direction,

Io =—( 4(q /2, J,'= —, )
I

Vo(0)
I
p( —q /2, J, = —,

' ),

Ko—= (b,(q /2, J,'= —,
'

)
I
Ao(0)

I p( —q /2, J, = —,)),
K3 =—( b.( q /2, J,' = —, )

I

A 3 (0)
I
p( —q /2, J, = —, ) ),

K+ =(h(q /2, J,'= —, )
I
A+(0)

I p( —q /2, J, = —,)), (23)

K =—(b,(q /2, J,'= ——, )
I

A (0)
I p( —q /2, J, = —,

' )) .

We have

I+ = ( b, (q /2, J,' = —, )
I

V+ (0)
I
p( —q /2, J,= —, ) ), (21)

I —= (a(q'/2, J;= —
2 I

V- (o)
I p( —q'/2 J.= 2 ) & .

Then we have

(22a)

Gg ————,(K++3 '~ K ),
G~ ——(15' /6)(K+ —3'~~K ),
Gp ———( —, )' y(K3+ pKO) —Gg,

GE ——( —, )'~ y(KO+ f3K3) .

(24a)

(24b)

(24c)

(24d)

Gg ——(15'i /6)(I++3' I ),
Gs=[(Ea —mp)/(y2mp I q I

)](Y~)' Io —Gp .

(22b)

(22c)

Analogously, we define, again with q in the z direction,

Gg ——0,
Gs =0

(25a)

(25b)

Using Eqs. (13) and (16a)—(16c), we obtain, with
p=—

I

q'
I
r

GM q' f dr 4nr ((afa; bfb)j~(—p)[u f(r)v;(r) +uf(r)u;(r)]v'3

+(bfa; afb; ) Ij 0(—p)[uf(r)u; (r) ——,vf(r)v;(r)]+j2(p)uf(r)u;(r) } ) . (25c)

Analogously, we have, for the axial current,

G (afa; —bfb;) —3 ' (afb; bfa; ) p—f dr 4vrr jI0(p)[uf(r)u;(r) ——,
' uf(r)u;(r)]+J2(p)uf(r)u;(r) I, (26a)

Gz ——,
' 5' (afb; —bfa;)g f —dr 4mr Ijo(p)[uf(r)u;(r) ——,

' vf(r)u;(r)]+j2(p)vf(r)v;(r) },0

K0 3
2' g dr 4~r afa; +bfb; j] p uf r U' r Uf r u; r

—(afb; +bf a; ) t jo(p) [uf (r)u;(r) ——, uf (r)v;(r)] —2jz(p)uf (r)u;(r) }),
K3 ———,2' q dr 4~r afb; +bfa; j] p uf r U; r —Uf r u' r

0

—( aaf; +b bf; )[j (po)[u (fr)u;(r) ——, uf(r)u;(r)] —2j2(p)uf(r)v;(r)]) .

(26b)

(26c)

(26(1)

We note that spherical symmetry of the adopted 5-wave
quark wave function [Eq. (13)] makes the transition quad-
rupole form factor G~ vanish identically. We also note
that, without recoil corrections, the form factor G& van-
ishes identically. This is why we choose to call it the
"recoil form factor. " We also note that, without intro-
duction of a D-state component in the nucleon or delta
wave function, it seems very difficult to make the weak
quadrupole form factor G~ different from zero.

In concluding this section, we wish to note that the
polar-vector form factors GM, G&, and Gs are to be
evaluated via Eqs. (25a)—(25c), while the axial-vector
form factors Gg Gg Gp, and G~ are determined
through Eqs. (26a)—(26d) and (24c)—(24d). With the re-
sults as input, we then use the formulas in Sec. II to make
predictions on cross sections.

IV. NUMERICAL PREDICTIONS

X[((u+m )/(4m(u)]' jo(xr/R) for r (R,u(r)= (27a)0 for r)R,
N[((0 —m )/(4m(o)]'~j &(xr/R) for r &R,

u(r) =.
0 for r~R,

(X R ) '= jo(x)I2(u[(u —(1/R)]+(m/R) }[(u((u —m )]

(27b)

(27c)

with x and co determined by

I

using the formalism developed in Secs. II and III. As in-
dicated earlier, we wish to consider two choices for the
quark wave functions, both of which are in the form of
Eq. (13). The first choice is from the MIT bag model.
The upper and lower components u (r) and v (r) are given
by

In this section we present selected numerical predictions
for the reactions e +p~A +v, and e++p~A+++v„

tanx =x [1—mR —[x +(mR) ]'~ }

(u=(1/R)[x +(mR) ]'
(27d)

(27e)
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This quark wave function has also been used in most
chiral bag models where a sharp boundary is used. It
gives rise to a slowly damped oscillating behavior in the
form factors and the resultant cross section does not fall
very rapidly as q increases. As an alternative, we have
also considered the case in which the quark (as a Dirac
particle) is confined by a potential (1+y4)(kr /4)
+(a +by4). The solution is then given by

u(r)=c exp( r /R —),
U(r)=pre exp( r /R —),

with

(28a)

(28b)

g=kR /4,
c R (vr/2) =(1+—g R )

(28c)

(28d)

TABLE I. Predictions on the various form factors. Here we
have used

~ q ~

=4.0)&10 fm ', a;=af =1, and b; =b& 0——
The three entries for Dirac harmonic oscillator are (from top to
bottom) for g= l. 1, 1.6, and 2. 1 fm ', respectively.

Dirac
harmonic oscillator

0.482
0.517
0.553

0.662x10 '
0.787 x 10-'
0.829 x 10-'

1.106
0.818
0.562

MIT
bag model

0.517

0.570x 10

0.807

Here we may adjust the constants a and 6 so that both the
mass and the eigenenergy can be fixed to desired values.
In addition, the strength of the lower component relative
to the upper one can be adjusted by choosing a value for
kR' [cf. Eq. (28c)].

In Table I we attempt to relate the two models by ad-
justing the parameters 1 g, R } in the Dirac harmonic oscil-
lator model (DHOM) to reproduce the same (r )N and
Gz as in the MIT bag model. We use Eqs. (27) and (28)
to evaluate the various form factors by choosing

~ q ~

=4.0&10 fm ' and neglecting the boost opera-
tors (i.e., af ——a; = 1 and bf b; =0). W——e also use, for the
bag model calculation, RN ——0.987 fm, R~ ——1.081 fm,
and m=10 MeV. Correspondingly, we use RN ——0.763
fm and Ra ——0.836 fm in the Dirac harmonic oscillator
model. It is clear that the DHOM with /=1.6 fm

yields results very close to the MIT bag.
Once the various form factors have been determined,

we use the formulas given in Sec. II to make predictions
on cross sections. In what follows, we present sample nu-
merical results. For the sake of clarity, we divide our re-
sults into two subsections according to the specific reac-
tion of interest.

A. e-+p~a'+v,

TABLE II. The predictions for the electron capture reaction
e +p 5 +v, at E,=0.5 GeV.

e~ (deg)

do/dQ (10 cm )

Dirac MIT
harmonic bag
oscillator model

q
(fm )

10

17.13
15.05
12.47

17.18
15.04
12.42

17.31
15.06
12.37

17.61
15.16
12.35

18.32
15.54
12.50

10.48

10.51

10.58

10.74

11.14

3.95

3.85

3.69

3.44

3 ~ 11

In Table II we present numerical predictions as func-
tions of the recoiling b, angle (in the laboratory frame)
for an electron beam energy of 0.5 CseV. In this figure
and what follows, the MIT bag radius of 0.987 fm is
adopted for I R N ) s and the quark mass is taken arbitrari-
ly to be 10 MeV. The three entries under the Dirac har-
monic oscillator model (from top to bottom) are obtained
by choosing g' to be 1.1, 1.6, and 2. 1 fm ', respectively.
For the sake of simplicity, we have adopted the boost
operators as specified by Eqs. (18) and (19), so that the in-
teraction effects have been neglected from this calcula-
tion. Note that the predictions from the Dirac harmonic
oscillator model depend sensitively on the value chosen
for g. The sensitivity to the value of g is far more
dramatic than what may be caused by a choice of the de-
tailed boost operators. Thus, we wish to set aside the
question of the boost operators and choose g = l.6 fm
in the rest of this paper.

GE

0.036
0.027
0.019

—0.286
—0.212
—0.146

0.027

—0.209

12

14

16*

20.49
16.96
13.35

51.84
40.23
29.97

12.40

31.07

kinematically forbidden

2.63

1.75
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TABLE III. The predictions for the electron capture reaction
e +p~A +v, at E,=4.0 GeV.

0~ (deg)

4
8

12
16
20
24
28
32
36
40
44
46*

do. /dQ (10 cm )

Dirac MIT
harmonic bag
oscillator model

3.9 x 10—'
1.0x 10-'
4.6x 10-'
2.9 x 10-4
2.2x 10—'
1.6x 10—'
0.112
0.643
3.045

12.25
108.7

0.041
0.160
0.411
0.567
0.294
0.009
0.534
1.040
0.208
2.017

59.94
kinematically forbidden

(fm )

155.3
147.8
136.3
122.0
106.1

89.74
73.61
58.23
43.79
30.06
13.96

In Table III we present numerical predictions as func-
tions of the recoiling 6 angle (in the laboratory frame)
for an electron beam energy of 4.0 GeV. It is clear that,
for 0.5 GeV electron beam, the available phase space is
rather limited. Thus, the major message reflected by
Table II is the possible dependence on the value chosen
for g. On the other hand, the range for the allowed q is
considerably enlarged at E,=4.0 GeV, so that both the
rapid Gaussian falloff of the predicted cross section for

the harmonic-oscillator model and its oscillatory behavior
(and the slow falloff behavior) for the bag model are clear-
ly displayed in Table III. In fact, predictions for the two
models differ considerably from each other, although they
agree qualitatively at E,=0.5 GeV. We believe that an
experiment at 4.0 GeV can distinguish between the two
models and indicate whether the sharp surface is indeed
present in the baryon structure.

It should be pointed out that, just like electron-nucleus
scattering, the cross section is dominated by two-body
currents or even by three-body contributions rather than
by one-body currents, as q becomes sufficiently large.
Therefore, it is expected that the present DHOM predic-
tions should be modified beyond a certain q, but this is
not an indication of the failure of the model. Rather, the
smallness of the large-q one-body predictions in the
DHOM makes room for two-body contributions and
eventually for the perturbative QCD behavior at suffi-
ciently large q . (It is not clear whether we can do the
same thing with a bag model. )

The sensitivity of our predictions to each of the weak
form factors are displayed in Table IV, where ale the form
factors except the one indicated explicitly are set to zero
by hand. The first entry is the DHOM prediction with
/=1. 6 fm ', while the second entry is the MIT bag
model prediction. It is clear from this table that contribu-
tions from each of the form factors are of numerical im-
portance and should not be neglected in the calculation.
At a fixed q, one may perform experiments at several

TABLE IV. The predictions for the electron capture reaction e +p~A +v, at F.,=4.0 GeV.

Hg (deg)

12

16

20

24

32

36

40

9.4
0.015

2.6
0.076
1.2
0.219

8.0
0.328

6.4
0.186

5.3
0.000 04

0.039
0.302

0.245
0.642

1.25
0.127

5.41
1.06

9.6
0.006

3.0
0.018
1.6
0.047

11.7
0.068

10.0
0.034

8 ' 3
0.003

0.061
0.137

0.362
0.262

1.75
0.033

7.19
0.880

da/dQ~ (10 cm )

6p&0

1.3
0.021

1.3
0.085
1.2
0, 134

11.4
0.058

10.8
0.019

9.2
0.345

0.064
0.576

0.342
0.151

1.39
0.226

4.38
2.35

2. 1

0.001

0.55
0.003
0.25
0.007

1.5
0.009

1.1

0.004

0.84
0.0003

0.006
0.012

0.030
0.022

0.128
0.002

0.440
0.054

Gg&0

0.16x10—'
0.014

0.16x 10
0.048
0.14x 10
0.057

1.21 x 10
0.008

1.03 x 10
0.004

0.74 X 10-'
0.220

0.004
0.201

0.015
0.006

0.029
0.176

0.010
0.452

50.44
30.60

72.23
35.22

23.75
12.27

2.77
1.35

0.720
0.019
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TABLE V. The predictions for the positron capture reaction
e++p~b+++v, at E,=0.5 GeV.

0~ (deg)

der/dQq (10 cm )

Dirac MIT
harmonic bag
oscillator model

q
(fm )

2
4
6
8

10
12
14
16

0.584
0.764
1.086
1.600
2.437
4.102

19.08

0.617
0.781
1.079
1.566
2.388
4.097

20.27
kinematically forbidden

3.95
3.85
3.69
3.44
3.11
2.63
1.75

different electron beam energies, so that the measurements
may be inverted to yield different form factors.

TABLE VI ~ The predictions for the positron capture reaction
e++p~b, +++v, at E,=4.0 GeV.

B. e+~p~h++~v,

Although the form factors in the p~b, ++ case can be
obtained from those in the p —+b, case by a simple rescal-
ing [Eqs. (16a)—(16c) and (17a)—(17c)], the interference
term between the axial current and polar-vector current,
as appears in Eq. (10), changes its sign, so that the cross
section in the p —+6++ case, when combined with that in
the p~b, case, allows one to probe the size of this in-
terference term. In Table V we show the predicted cross
section for the positron capture reaction
e++p —+b, +++v, at the positron beam energy of 0.5
CxeV. As before, the DHOM prediction is made with
/=1. 6 fm '. As in the case of Table II for the p~b.
transition, the predictions from the two models are rather
similar at these energies.

In Table VI we show the predicted cross section at a
positron beam energy of 4.0 GeV. The information re-
vealed by this table is very similar to that in Table III.
However, it is important to keep in mind that a measure-
ment on the p~A++ reaction provides information in-
dependent of that given by the p~b, reaction.

Although we have made calculations of partial cross
sections with the initial proton target polarized and/or the
final b, polarization detected, we shall not present the re-
sults here since general characteristics of these numerical
results are very similar.

V. DISCUSSION

The sample numerical predictions presented in the
preceding section indicate the following.

(a) The predicted differential cross section der/d Qa can
be of the order of 10 —10 cm, which is fairly siz-
able.

(b) The predicted cross section is sensitive to the q
dependence of the weak form factors and can thus be used
as a source of information for them.

(c) Except for near the maximum hadron recoiling an-

gles (which correspond to very small q ), the differential
cross section is dominated by contributions due to the in-
duced form factors such as the weak magnetic form fac-
tor GM. (Note that G„ is the only form factor that is not
"induced. ")

To see why cross sections of this size are worthy of seri-
ous consideration for experimentation, we may consider a
conceptual design which allows for detection of deltas of
kinetic energy of around 200 MeV with an energy resolu-
tion of about 1 MeV. It should not be difficult to acquire
such energy resolution by reconstructing from the ob-
served four-momenta of the two detected charge particles
a proton and a charged pion. As we shall see shortly, it is
also essential to acquire an angular resolution in the vicin-
ity of 0.1. For the moment, we assume the solid angle
subtended by the detector to be

50=2vr[68a(in deg)](m/180)sin8a

=0.1097[6,g&(in deg)]sin6a .

Here we have assumed that the detector essentially covers
2m. in azimuthal angle. For the sake of illustration, we
take a luminosity of 10 cm s ', less than a tenth of a
typical value expected at the forthcoming CEBAF, for in-
stance. With a cross section of 10 cm, we estimate
the counting rate as follows:

counts/h=0. 1097[b8q(in deg)]sinO&

0~ (deg)

4
8

12
16
20
24
28
32
36
40
44
46*

7.0X 10—'
2.5 ~ 10-'
1.6x 10-'
1.5 ~ 10—4

1.5 X 10-'
1.5 X 10—'
0.130
0.914
5.104

23.72
247.7

0.012
0.091
0.329
0.578
0.387
0.025
0.745
1.721
0.447
4.039

137.1
kinematically forbidden

do/dA (10 cm )

Dirac MIT
harmonic bag
oscillator model

q
(fm )

155.3
147.8
136.3
122.0
106.1

89.74
73.61
58.23
43.79
30.06
13.96

X 10 cm s 'X(10 cm ) X3600 s/h

X (detector efficiency)

= (4.0 counts/h) X [b,ga(in deg)]sinOa

X (detector efficiency) .

It is clear that the number of counts per hour is high
enough to warrant further serious consideration for exper-
imentation. One problem is connected to sources for pro-
ducing a huge background which we may have to veto.

To observe the charge-changing weak reaction
e +p~A +v, experimentally, we may use the immedi-
ate decay products p+m as a unique signature. It is dif-
ferent from the e +p~A~v, channel since A travels
over a distance greater than the size of the beam before it
decays. On the other hand, reconstruction of the vertex
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should indicate that, in the weak production of 5(1232)'s,
the vertex is generally located within the beam since a 6
decays into p+~ through strong interactions. It is impor-
tant to use the missing mass plot to make certain that the
detected (pm. ) pair does not come from the double-pion
production process e +p~e +p+m +m+. In the A
case, the mass is also well defined, so that the invariant
mass of the p+~ provides a simple vetoing mechanism.
We cannot have this vetoing procedure in the 6 case since
6 has a broad width.

For any potential experimental design, it is useful to al-
low for using the missing mass plot as a vetoing mecha-
nism, as already suggested in Ref. 8. Note that the miss-
ing mass squared for the double pion production process
e +p~e +p+m. +~+ is given by

mx =— (p, +p, —p~)'—
= —(p +p,')'

=m +m, +2(E E,' —p p', )

2~m„.
It may be possible that the four-momentum of 6 can be
reconstructed well enough by a high-resolution measure-
ment of the decaying products p+~ . Specifically, we
may rewrite the missing mass squared as follows:

mz ——m, +m p+m ~+2E,m~ —2E~mz

+2(E~qcos8~ E,Er, ), —

so that

5m& ——(2m ~
—2Eq+ 2pzcos8q)5E,

—[2m&+ 2E, 2E, (E~/p~—)cos8~]5E~

—2E~gsinOg60g .

To allow for a clear separation of genuine events from the
pion associated produced events, we may assume

~
[2mz+2E, —2E,(E~/p~)cos8~]5E~

~

&m /2,

~
2E~~sin8&58q

~
& m /2,

which allows us to determine the requirement on the ener-

gy and angular resolutions. Sample results for an electron
beam of 4 GeV are presented in Table VII, where we have
put an equal sign in the above equations in computing
5E~ and 60~. It is clear that there is a fairly wide range
in 8& in which the predicted cross section (in Table III) is
greater than 10 cm and yet it might be possible to
achieve the resolution requirement recorded in Table VII.
Since pions are lightest mesons that can be associatively
produced, the same resolution requirement a1so allows for
separation of genuine events from other associated pro-
duced background events, including more-than-three-pion
events. Thus, the missing-mass plot can be used as an im-
portant vetoing mechanism in the proposed experiment.

To conclude this paper, we wish to mention the follow-
ing.

TABLE VII. The resolution requirement for the electron
capture reaction e +p~A +v, at E,=4 GeV.

Og

(deg)

4
8

12
16
20
24
28
32
36
40
44
46*

T4
(MeV)

3268
3113
2875
2578
2248
1908
1573
1254
955
670
336

5E
(MeV)

6.168
6.030
5.820
5.566
5.297
5.044
4.836
4.715
4.768
5.317

17.10
kineznatically forbidden

50g
(deg)

0.2310
0.1203
0.0857
0.0702
0.0627
0.0594
0.0590
0.0610
0.0657
0.0749
0.1036

(1) We have developed a simple formalism for investi-
gating the spin ( —,~ —,) transitions, such as b, (1232) pro-
duction via charge-changing weak currents, e +p
~b, +v, and e++p~b, +++v, . The formalism can
easily be generalized to describe transitions involving dif-
ferent initial and final spins, such as production of high
spin baryon resonances in the few GeV range.

(2) In the absence of experimental information, we have
adopted two different quark models, the MIT bag model
and the Dirac harmonic oscillator model, in the impulse
approximation [Eqs. (14a) and (14b)], to calculate the
various weak form factors and to make predictions on the
differential cross sections. Although our present predic-
tions are subject to corrections such as pion cloud effects,
we are able to demonstrate that the predicted cross sec-
tions at the beam energy of about 4 GeV vary significant-
ly with the model. Further, the predicted cross sections
can be as large as 10 cm, which warrants serious con-
sideration for actual experimentation.

(3) Although at present we know nothing about the
weak transition form factors introduced in this paper, an
experimental investigation of the reactions studied here
will allow determination of some of the form factors, de-
pending on the kinematic region that one chooses to work
with. Since cross sections are often dominated by contri-
butions due to the induced form factors, it is not more
difficult to measure the induced form factors —such as
the weak magnetism one—than the axial form factor.
Comparing the extracted GM with what we learn from
e+ p~e+ 6+ constitutes a test of the CVC hypothesis
in the few GeV range. It is clear that information on the
other form factors will allow tests of other important as-
pects related to the standard SU(3), X SU(2) X U(1)
model of strong, electromagnetic, and weak interactions.

Voted added. We have been informed by Dr. Paul
Singer (Technion, Haifa, Israel) of the fact that Eeg has
also adopted the 4)&2 matrices for the Q ~:" y studies.
Although our S;[Q;z] agrees with Eeg's A,;[K,J] up to an
overall normalization factor, Eeg did not discuss how the
most general forms for V;, Vo, A;, and Ao can be intro-
duced, nor did he describe how these form factors at large
q can be determined from a quark model.
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