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Employing an extended version of the Boltzmann-Uehling-Uhlenbeck equation, we present simu-
lations of the reaction 800 MeV/nucleon Ca + Ca. Deuteron spectra are calculated from the model
without ad hoc assumptions. Absolute values of the proton and deuteron spectra are in good agree-
ment with experiment. The dependence of the total deuteron yield on the nuclear equation of state
is investigated and found to be weak. Both entropy and freeze-out density are strongly dependent on
impact parameter. This suggests, in particular, that the freeze-out density has no physical meaning.
Methods for calculating entropy are discussed and numerically compared.

I. INTRODUCTION

Several years ago, Siemens and Kapusta' argued that
the entropy generated in high energy heavy ion collisions
could be inferred from the final state production ratio of
deuterons to protons. Since then, the mechanism of clus-
ter production and its relation to entropy production have
been subjects of a lively and still unsettled debate. In this
paper we report on a study of deuteron production, entro-
py production, and their relation, using as a dynamical
model an extended version of the recently introduced®’
Boltzmann-Uehling-Uehlenbeck (BUU) equation applied
to the 800 MeV /nucleon Ca + Ca reaction.

The salient feature of the deuteron momentum distribu-
tion, its approximate proportionality to the nucleon distri-
bution squared, unfortunately carries little physical infor-
mation. This follows directly from the fact that it is hard
to imagine any reasonable theory in which nucleons
coalesce when their relative momentum lies much outside
the range defined the deuteron wave function. Thus a
large variety of physically very different theoretical ap-
proximations (thermodynamics,? coalescence,® sudden ap-
proximation*) have all agreed on this one feature.

The simplest nontrivial feature of cluster production
which theory must explain is the constant in the
aforementioned proportionality, and its dependence on
various collision parameters. A general formalism cap-
able of doing this was introduced some time ago.’> Since
it simply consists of a reformulation of ordinary scatter-
ing theory in terms of the density operator, it is not a
dynamical theory per se, and consequently requires, in ad-
dition to itself, some model of the density operator
describing the reaction to produce theoretical cross sec-
tions. (Currently available dynamical models are general-
ly unable by themselves to describe cluster formation.)
This formalism can be adapted to any dynamical model
(fluid dynamics, intranuclear cascade, etc.) Until recently,
however, few such models could be computed in sufficient
detail to use this approach.

An application of this scattering theory approach spe-
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cialized to the intranuclear cascade model (INC) of the
time-dependent density operator was presented in Ref. 6.
Its results were of course dependent on (and a test of) the
validity of the underlying INC model. An important
shortcoming of the INC model is its lack of coherent
scattering, which can be represented approximately by the
presence of a nuclear mean field. This distorts its distri-
butions in kinematic regions where large numbers of nu-
cleons tend to move off as a group, namely, at low veloci-
ties in the nucleon-nucleon, target, and projectile center of
mass frames. Since many reaction products emerge at
these velocities, they contribute significantly to the entro-
py. Thus lack of a mean field is a deficiency of the INC
model considered as a tool to calculate entropy. This
problem has been largely eliminated in the BUU model
which contains both a self-consistent mean field and
corrections due to Pauli blocking.

Another shortcoming in the calculation in Ref. 6
stemmed from limitations on computing time. The com-
plete expression for deuteron production consists of a sum
of contributions from each neutron-proton pair in the sys-
tem. For each pair one must evaluate an alternating series
which can be heuristically interpreted as describing the
pair’s creation and destruction as deuteronlike correlations
(“primordial deuterons”) during the course of the reac-
tion. It was shown that for large enough momenta deute-
rons, the last (positive) term dominates the series since the
others tend to cancel by pairs. This approximation (the
‘“generalized coalescence model”) greatly reduces one’s
computational effort. Its use, however, limited the results
of Ref. 6 to large momentum deuterons. A complete cal-
culation of all the terms in the series is presented here.

Another approach to these questions was advanced by
Bertsch and Cugnon.” They calculated the Boltzmann en-
tropy of a heavy ion system from the phase space distri-
bution generated again by an INC model and compared it
to that obtained in Ref. 1. In addition to being subject to
the limitations of the INC model, use of the Boltzmann
entropy precluded taking into account the effect of corre-
lations on the value of the entropy. Cugnon!® has also ex-
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plored the impact parameter dependence of the deuteron
yield identifying the struck particles with the emitted ones
and applying the Sackur-Tetrode formalism to determine
the deuteron number. This method, however, relies on the
assumption of thermal equilibrium. A new method of
calculating the entropy which takes into account correla-
tions will be discussed in this paper.

In Sec. II we describe how the formalism of Refs. 5 and
6 has been adapted to the BUU model. Section III sur-
veys the general features of the 800 MeV Ca + Ca reac-
tion predicted by BUU and shows the comparison to data.
In Sec. IV we investigate the dependence of the deuteron
to proton ratio on the nuclear equation of state. There are
two important questions involved: (1) Do deuterons carry
information about the state at highest density? (2) Is the
d/p ratio sensitive to the equation of state? We will show
using a simple estimate that one should not expect much
sensitivity, and will compare this prediction with the re-
sults given by our solutions to the BUU equation. Section
V treats entropy production, and Sec. VI is a summary.

II. THEORY

For the derivation of the BUU equation and details of
its numerical solution the reader is referred to Ref. 8 and
the references therein. The theory relating phase space
distributions and inclusive fragment cross sections is dis-
cussed in Refs. 5, 6, and 13. Here we briefly describe how
the deuteron cross section was calculated in the context of
the BUU approach.

Each BUU simulation provides the following approxi-
mation to the Wigner representation of the full density
operator:

A
pw(t)=<Hh38[xa—/»a(t)]8[pa —/,a(z>]> , 2.1
1

where (x,,p,), a =1, ..., 4, are the phase space variables
of the density operator in the Wigner representation for
the A-body system, [~,(¢),/,(t)] are their time-dependent
trajectories, h =27 is Planck’s constant in the units we
are using, and ( - - - ) signifies an ensemble average over
the trajectories generated in a BUU simulation. In both a
BUU and an INC model calculation, [»~,(),,(t)] for
each particle (a) describes its trajectory in its own six-
dimensional phase space. In an INC calculation this tra-
jectory is a sequence of straight line segments; each seg-
ment describes free (ballistic) motion of the particle be-
tween its consecutive (two-body) collisions with neighbor-
ing particles. In BUU calculations there are two major
differences: (1) Each segment is curved by the mean field.
(2) Each collision is moderated by Pauli blocking.

The general theory of composite fragment production
when applied to the INC model® leads to the following ex-
pression:

Nb=%<2 S 5[ —feny(t +)1D (1 +)

np t

,S[p—/tnp(t—)]D(t—)> , (2.2)
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where the zn,p means a sum over all neutron-proton pairs
in the system, »,, means a sum over all (discrete ¢) col-
lision times of the pair with a third body (a collision of ei-
ther member counts as a collision of the pair),
fenplt +)=/en(t +)+,(t +) is the total momentum of
the pair immediately after the collision at ¢ (mutatus mu-
tandis for t — before collision), and

D(t +)=D(rylt +)— rplt + ), [l +)— st +)1/2) ,
2.3)

where D(x,p) is the Wigner function describing the
deuteron bound state. Np is the number of primordial
deuterons observed per volume element in momentum
space. Primes are used to emphasize that what are being
referred to here are “primordial” deuterons as opposed to
true or observed deuterons. Roughly speaking, primordial
deuterons consist of all np pairs which find themselves in
deuteronlike correlations in the final state. Their number
therefore includes not only observed deuterons but also
contributions from such correlations in larger nuclei.

The ¢ + term in Eq. (2.2) can be interpreted as meaning
that a primordial deuteron can only be formed from a pair
of particles when one member of the pair collides with a
third particle. This is, of course, in accord with the fact
that two free nucleons by themselves cannot coalesce into
a bound state. The probability for formation is given by
the overlap between the phase space distribution
representing the deuteron and that representing the np
pair after collision. Similarly, the ¢t — term corresponding
to the time-reversed process, primordial deuteron annihi-
lation, requires a third particle to catalyze it. In the BUU
model, each member of a pair interacts with neighboring
particles not only by collision but also via the mean field
which then ought to also catalyze primordial deuteron
production and annihilation. Unfortunately, the equation
corresponding to Eq. (2.2) for the BUU model, which
would take into account this extra mode of catalysis, has
not yet been derived. In this paper we have therefore sim-
ply used Eq. (2.2).

The adoption of the INC model’s Egs. (2.2) for BUU
has necessitated yet another approximation. For large im-
pact parameter collisions in BUU, two heavy spectator
fragments survive which are bound with low excitation by
their respective mean fields. Nucleons from them can
contribute to Np either through evaporation or by being
picked up by participant nucleons. Since Eq. (2.2) is not
adequate to treat these processes, we have only used it
with nucleons which are not bound in spectators at the
end of a simulation. The major error due to this will be in
regions of the spectra where fragments move near specta-
tor velocities.

III. RESULTS

We performed calculations for the reaction 800
MeV/nucleon Ca + Ca. This system was measured by
Nagamiya et al.,'° and deuteron spectra are available for
a wide kinematic range. One hundred simulations were
run at each of nine different impact parameters. Our cal-
culation reproduces the total number of impact parameter
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FIG. 1. Density profile of the reaction of 800 MeV/nucleon Ca + Ca at b=0 fm. On the left, the coordinates of all 8000 particles
at t=60 fm/c are projected onto the xz plane, where z is the beam axis and x is the direction of the impact parameter. On the right,

the final momentum space is projected onto the p,p, plane.

averaged evaporated charges reported in Ref. 10 (experi-
ment ~ 10, BUU calculation ~11.8). This number ap-
proximates the number of participant protons. However,
our calculation shows that only ~75% of evaporated par-
ticles come from geometrical overlap. Large impact pa-
rameter collisions led to two heavy, low excitation specta-
tor fragments whose nucleons were assumed not to contri-
bute to deuteron production.

A. The phase space distribution

Figure 1 shows the distribution of nucleons in position
and momentum recorded at the final simulation time of
140 fm/c for a central collision. In the momentum distri-
bution we see basically two domains: a strongly populated

Msww%

s

x il
N>
S 103 °
3
< a
Fe]
£
g 103
a =
3 E
5 - o
o C
o
~ 102 | %?
a 3
~ —
o S
- g% ¢ EXPERIMENT
® HF
1
o' = B¢ o LF} COALESCENCE
S a BUU
. ! . b ! 1
1 2 3
P (GeV/c)

FIG. 2. The deuteron distribution at forward angles in the
800 MeV/nucleon Ca+ Ca reaction, comparing our prediction
with experimental data and the prediction of other models.

midrapidity region and remnants of the Fermi spheres of
the projectile and the target. In particular, complete
equilibriation, which would result in an isotropic distribu-
tion, both of these nucleons and of the fragments they
form in the final state, is not observed. We want to men-
tion the striking similarity between this reaction and that
of 84 MeV/nucleon C + C (Refs. 8 and 11), and the clear
difference between these and the 25 MeV/nucleon O + C
reaction. Thus after some point near 84 MeV/nucleon,
there appears to be little qualitative change in this distri-
bution over one order of magnitude in bombarding ener-

gy-

B. The deuteron spectrum

Figure 2 shows the measured deuteron distribution!®

and the calculated distribution of deuteronlike correla-
tions (primordial deuterons). It should be borne in mind
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FIG. 3. Central density, the number of deuterons produced,
and the number of deuterons in the system as a function of time.
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FIG. 4. Deuteron to proton ratio as a function of the charge
multiplicity in the reaction Ca + Ca comparing experimental
data at 400 MeV/nucleon and 1050 MeV/nucleon with the
BUU calculation at 800 MeV /nucleon.

that the calculations contain no adjustable parameters.
(The function D representing the deuteron was kept the
same as in Ref. 6.) Theoretically, the difference between
primordial and measured deuterons is important mainly
at low momenta and typically accounts for up to a 50%
correction.® It seems probable that the very low momen-
tum discrepancy in Fig. 2 is a result of this.

At larger momenta, especially at 60 deg, predicted
values appear low. This could be due in part to off-shell
scattering mechanisms not sufficiently accounted for in
the BUU model. For example, the momentum of
quasielastically produced deuterons'* produced at 30 and
60 deg at this bombarding energy is 1.5 GeV/c and 0.8
GeV/c, respectively, and especially at 60 deg their cross
section is large enough to have an appreciable effect.
These deuterons come from three nucleons interacting
simultaneously at short range. This involves high
momentum transfer off-shell collisions not included in
mean field effects. Furthermore, this is but one example
of a large class of similar mechanisms not included in
BUU which, while not important in terms of overall
quantities of nucleons they effect, can significantly alter
large momentum transfer portions of the spectrum. It
should also be remembered that our theoretical statistics
deteriorate at low cross-section portions of the spectra.

C. The time evolution of primordial deuterons

Figure 3 displays the central density and the gross and
net numbers of primordial deuterons produced versus
time for central collisions. We see that in this (light) sys-
tem the central density does not exceed twice that of nor-
mal nuclear matter. This disagrees with INC calculations
which exhibit almost twice as much compression, and
therefore demonstrates the strong influence of the mean

field even at relatively high bombarding energies.

The figure also shows that a large fraction of primordi-
al deuterons are produced near maximum compression.
By maximum compression, the net primordial deuteron
curve has saturated, i.e., production and destruction rates
are balanced. The gross production rate falls rapidly as
the system decompresses. (Curves with similar informa-
tion based on a simplified fluid dynamical model may be
found in Ref. 13.) These results suggest that deuterons
carry information about the high compression phase, a
possibility which we will discuss in more detail in Sec. IV.

D. Impact parameter dependence

The impact parameter dependence of deuteron produc-
tion has not previously been well studied. Model calcula-
tions of various quantities (e.g., freeze-out density, entro-
py, or coalescence radius) have usually assumed that these
quantities are insensitive to impact parameter (see, howev-
er, Ref. 4). Recently published experimental data'? indi-
cate that primordial deuteron/proton ratios vary strongly
with total multiplicity and hence with impact parameter.
These measurements also support the assumption that the
deuteron yield is roughly proportional to the square of the
participant proton yield. Figure 4 shows the comparison
between our results and these experimental values ob-
tained at 400 and 1050 MeV/nucleon. Although one
must be cautious because we did not apply the filter rou-
tines for the plastic ball data, we see good agreement be-
tween theory and experiment regarding both the absolute
magnitudes and general trend of these values.

E. Implications for fireball model

As already pointed out, a globally equilibriated fireball
is not obtained in this reaction. One can define, nonethe-
less, effective longitudinal and transverse temperatures for
emitted particles. Particles coming from the geometrical
overlap region are found to have temperatures of 170
MeV and 75 MeV in these directions, respectively, while
the remainder have 66 MeV and 47 MeV. These tempera-
tures are found to be independent of impact parameter.
In the fireball model, the deuteron-proton ratio is related
to the freeze-out density, which determines when the sys-
tem switches from thermal equilibrium to free expansion.
The freeze-out density is given by

p=5Np/Ny(MT /2m)3?=const XN, /Ny . (3.1)

As one can see from Table I, p varies significantly with
impact parameter. Therefore, freeze-out densities extract-
ed from impact parameter averaged data have no physical
meaning but are only parametrizations of the data.
Furthermore, we note that

(Np/Ny)#{(Np)/{Ny) .
IV. SENSITIVITY OF d/p RATIO
TO EQUATION OF STATE

The sensitivity of Np/Np to the nuclear equation of
state was investigated by running the simulation with two
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TABLE I. Impact parameter dependence of different quantities. The first and second columns show the impact parameter and the
cross section represented by the simulation of the reaction at this impact parameter. The third through seventh columns represent the
number of protonlike clusters (total emitted charge), deuteronlike clusters, the ratio at both values, and the average phase space densi-
ty at 25 fm/c, respectively. The last three columns present the entropy per baryon using Egs. (5.1), (5.2), and (5.3), respectively.

Np Np (n) , S/N
b (fm) o (mb) (BUU) (BUU) Np/Np (BUU) S/N:3.95—ln% SBoitz /N (including compressibility)
P
1.4 122 30.2 12.7 0.42 0.044 4.8 4.5 5.0
2.4 122 23.7 8.3 0.35 0.035 5.0 4.8 5.3
3.1 122 19.3 6.3 0.32 0.030 5.1 5.1 5.5
3.7 122 15.6 33 0.21 0.025 5.5 5.2 5.6
4.2 122 12.3 3.1 0.26 0.021 53 5.6 6.0
4.6 122 8.4 1.5 0.18 0.020 5.7 5.8 6.1
5.4 366 5.2 0.8 0.15 0.015 5.8 6.2 6.6
6.4 366 2.0 0.08 0.04 0.007 7.1 7.1 7.2
7.3 366 0.5 0.02 0.035 0.004 7.3 8 8.1
02196
¢ 8.8 2.5 6.1 6.3 6.6
different potential energy functions of the form V. ENTROPY PRODUCTION

U=ap-+bp°, where p is the density in units of 0.15
nucleons/fm,* a = —356 (—124), b=303 (70.5) (in MeV),
and ¢ =+(2). These have isothermal compressibilities (at
zero temperature and p=1) of 380 (200) MeV and there-
fore give rise to rather different equations of state which
we denote as stiff (soft). Despite this, we get a primordial
deuteron ratio of only Nj(stiff)/Np(soft)=1.1. This re-
sult can be qualitatively understood using the fact that the
maximum central density attained by the system was also
found to be insensitive to compressibility; for either equa-
tion of state it came out to be about twice normal nuclear
matter. At this density, U(stiff)— U(soft)~12 MeV,
which in turn leads to the estimate T(soft)/ T(stiff) ~ fr.
Since phase space volume goes as T3/?/p, an overlap esti-
mate of primordial deuterons gives

Np(stiff) /Np(soft) = T(stiff) /[ T(soft)] ~3>=1.1

(the larger the volume the less the probability for two nu-
cleons to overlap to form a primordial deuteron).

Since compression increases with the net mass of parti-
cipants, these considerations also imply that impact pa-
rameter averaged d/p ratios will be even less sensitive to
the equation of state than central collisions. In any case,
even 10% effects are too small to be seen given present ex-
perimental and theoretical uncertainties so that our main
conclusion must be that the d/p ratio cannot at present
provide direct information concerning compressibility and
its related equation of state.

However, these same considerations also suggest ways
to enhance sensitivity to compressibility. First, one
should look at collisions between heavier systems since
these will achieve greater compression and hence a greater
difference between stiff and soft temperatures. Second,
one should look at the dependence of heavier composite
formation on compressibility, since, using the same argu-
ments as for deuterons, these should depend more strongly
on temperature, going roughly as N~ 7T~ 144 =1,

Siemens and Kapusta' attempted the first estimate of
entropy production. Their highly idealized model as-
sumes that at some time during expansion, nuclear matter
can be treated as a dilute gas of mainly nucleons and
deuterons in local chemical equilibrium. Assuming equal
numbers of neutrons and protons and a temperature much
greater than deuteron binding, the entropy per nucleon ac-
cording to the statistical mechanics of perfect gases is

S/N =3.95—In(Np/Np) . (5.1)

Subsequently, Bertsch and Cugnon’ derived a similar for-
mula in which Np/Np gets replaced by N /Np, the pri-
mordial deuteron proton ratio. It avoids, to some extent,
reliance on chemical equilibrium and diluteness but makes
a number of other assumptions whose validity is hard to
estimate. In the same paper, a calculation of the
Boltzmann form of the entropy

Sboz/N = — f dxdp(2m)3n (x,p)[Inn (x,p/4)—1]
(5.2)

was made, based on an intranuclear cascade simulation.
Here, n is the single nucleon distribution function in
phase space evaluated after the last collision in the simu-
lation. Equal numbers of protons and neutrons are as-
sumed. Note that the Boltzmann entropy equals the true
entropy only in the absence of multiparticle correlations
and this method of calculating it of course depends entire-
ly on the validity of the intranuclear cascade model itself.
Recently it was shown!” that the prescription of Bertsch
and Cugnon overestimates the entropy by more than half
a unit.

A more recent paper15 attempts to free the measure-
ment of entropy produced during a collision from extrane-
ous assumptions as much as possible. Briefly, it is based
on the following: (1) The entropy of a colliding system is
well defined and asymptotically approaches a time-
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independent “collisional’ entropy as the system separates.
(2) Collisional entropy is a function of only the final state
of the system. Out of all possible (mixed) states agreeing
with some set of measured final state observables, there is
a unique one of maximum entropy which is therefore an
upper bound to the collisional entropy. (3) The more ex-
perimental information delimiting the maximum entropy,
the lower it is. (4) One can never do better than finding
an upper bound to collisional (or in fact any) entropy
since any correct estimate should be unbiased and any un-
biased estimate must give an upper bound. This is be-
cause an unbiased statistical ensemble specified by average
values of a set of observables always has (by definition) an
entropy which is larger than that of a biased ensemble
satisfying the same specifications.

If we choose the single particle distributions n.(x,p)
for all final state reaction products 7 evaluated at any
time after interactions have ceased as the set of observ-
ables defining the maximum entropy state, then one can
show!® that this state’s entropy per nucleon is time in-
dependent and given by

S/N=—73 [ dxdp/(2m)n.(x,p)
X[In(n (x,p)/g.)—1], (5.3)

where g, is the degeneracy. Note that Eq. (5.3) does not
depend on any equilibrium or spatial diluteness assump-
tions and the particles referred to are not primordial. This
upper bound could in principle be improved by taking
more than the single particle distributions into account
(e.g., correlations among produced fragments) but even
this formula requires more information than is presently
available from simulations (experiment cannot directly
provide the spatial dependence in the n.). As a first try
we have therefore simply guessed at the spatial distribu-
tion using the prescription

n(x,p)~c[ngyu(x,p/4)]*, (5.4)

where 4 = A is the number of nucleons in 7 and ¢ =c, is
a normalization constant determined by fitting total yields
of the 7 to data. The distribution ngyy is that of the pri-
mordial nucleons at the end of the BUU calculation; as-
suming that they propagate freely after this time, Eq. (5.4)

has the correct time dependence for freely propagating 7,
and hence the entropy calculated using it is the same at
any later time. The observed nucleon distribution is then
taken to be

nN(X,p)r:nBUU(X,p)—— zAnT(X,p/A) s (5.5)

where, in this calculation, the sum is extended through
“He.

There are a number of uncertainties and ambiguities in
the use of Eqs. (5.4) and (5.5). A more accurate pro-
cedure!’ was developed subsequent to this calculation and
has not yet been implemented. Thus, despite its deficien-
cies, this is probably the best calculation currently avail-
able. Table I gives the results for all three methods dis-
cussed. Comparison of the last three columns teaches us
two things: (1) Entropy increases strongly with impact
parameter in all methods. It is therefore incorrect to at-
tempt an entropy measurement without taking this into
account. In particular, naive use of impact parameter
averaged data is certain to be in gross error. (2) Entropy
values differ between these methods, typically at the
0.3—0.5 level at all energies. This corresponds to a factor
of ~e* in total phase space volume. Since all these
methods involve very different (generally incorrect) as-
sumptions, we conclude that until the procedures in (Ref.
15) have been implemented, nothing of possible interest
can be deduced from such calculations.

V1. SUMMARY

We have calculated deuteron production using the BUU
model for the time-dependent single nucleon density and
the correct scattering theory expression for relating it to
the deuteron production rate. Our results are in good
agreement with the data in both absolute value as well as
in spectral shape. We find that the freeze-out density is a
rather artificial quantity which cannot be related to an ac-
tual density of the system. We also find that entropy can-
not be meaningfully measured using currently available
techniques.
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ence Foundation.
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