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Elementary deconvolution method for the wave packet theory of collisions
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The T matrix is more easily calculated when the initial and final channels are described in terms
of a basis of wave packets for the relative motion. Usual channels, however, describe relative

motion in terms of pure plane waves. We give a fast and practical connection between the latter and

the former representations.

I. INTRODUCTION +nq(4&r&R) Pn ((1». ka —1)|('n&((a+1» k&t +a —1)

Consider a projectile "a" with degrees of freedom
rl, . . . , r, for its single-particle constituents. The corre-
sponding Jacobi coordinates are the internal degrees of
freedom g&, . . . , g, t and the projectile center-of-mass
(c.m) coordinate R, . In the following, the conjugate mo-
menta to these degrees of freedom will be denoted

p&, . ~ . , p„~&, . . . , m., &, and P„respectively.
With obvious notations we will also use the degrees of

freedom ra+». . . &ra+„, g'a+t». . . ga+z t, Rz, and

pa+]~ ' '
& pa+g ~ ~a+]~ . . ~ ~a+g ), P~ for the coordi-

nates and momenta of a target "A," respectively. A stan-
dard recombination of R„Rz,P„Pz defines the relative
and total c.m. coordinates and momenta r, R, p, and P,
respectively.

A channel is then described by the wave function

XI (R) exp(iq r),

or its analog in terms of Jacobi momenta. In Eq. (1.1) the
labels n =(n„nz ) are spectroscopic labels, the wave func-
tions p are the corresponding projectile and target internal
wave functions, the c.m. state I can be anything as long
as its factorization ensures Galilean invariance of the
theory, and finally the label q appears in a pure plane
wave for relative motion, normalized to unit flux.

The difficulties raised by the use of Jacobi coordinates
in this representation, Eq. (1.1), when practical calcula-
tions are at stake (not to mention antisymmetrization), are
obvious and well documented. ' This is why we have in-
troduced a microscopic representation of channels,

X„q,(r)= exp(ik R, ) exp( is, . —P)p„(r&, . . . , r, ) exp( ik Rz—) exp( —is& Pz)y„(r, +&, . . . , r, +„), (1.2)

where static shell-model wave functions y„and cp„are
suitably boosted and shifted by means of the exponentials
of the one-body operators R„P, and Rz, Pz. Hence
single-particle orbitals are individually boosted and 7„k,
retains all the factorization properties which make y„
and y„handy wave functions. In particular, if y„andn

are Slater determinants, a straightforward antisym-

metrization of the theory makes X„q, a simple Slater
determinant also.

We have thus shown in our previous paper that the
calculation of a matrix element of the operator

T = V+ V'GV,

where V' and V are the post and prior potential operators,
respectively, and G—:(E H) ' is the full G—reen's func-
tion of the Hamiltonian H, is tractable, provided one uses
the representation provided by Eq. (1.2),

(1.4)

(The spectroscopic labels n are most often omitted in the
following. ) Clearly, the advantage of the representation,
Eq. (1.4), with respect to the traditional representation

Tq q
= ( 4'q

i

T
i

'Itq ), (1.5)

is that single particle degrees of freedom may be used
throughout Eqs. (1.2)—(1.4), while Jacobi coordinates
plague Eqs. (1.1) and (1.5).

The connection between a wave function 7k, and a wave
function %q, however, is not trivial. Nonspurious shell-
model wave functions y are products of an internal wave
function g and a c.m. wave packet y. If it were necessary
to use Jacobi coordinates in Eq. (1.2), we would obtain

inks Wn (kl» ga —I )ttn&(Ca+1» la +A —1)

X exp[ik (R, —R~)]ya(Ra —sa)yz(R& —sz) .

(1.6)

It is clear from Eq. (1.6) that the product y, y„of c.m.
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wave packets also describes a static, zero-point motion of
the total c.m. about the point S=(M, s, +M~s~ )/M,
where M„Mz, and I are the projectile, target, and total
masses, respectively. It is also clear that the relative
motion is described by a wave packet localized about the
point s=(s, —s„), with an average momentum k. As to
internal structures, they are the same in Eqs. (1.6) and
(1.1), which justifies the consideration of X~ as a channel
state.

In this paper we consider the case where the product
y, yz can be recombined as a product yI of wave packets
for the relative motion and the total c.m. , namely

stood in the following and it will be convenient to shorten
Eq. (1.8) to

X~——exp(ik r)y, (r),
with

y,(r)—=y(r —s)=~ ' P exp[ ——,'(r —s) IP ],

(2.1)

(2.2)

where P is the width of the relative motion wave packet.
We could follow the method of Peierls and Yoccoz or

that of Peierls and Thouless [which are made equivalent
here by the boost exhibited by Eq. (2.1)] and define a pure
plane wave via the integral

exp[ik (R, —R„))y,(R, —s, )y„(R„—sA)
exp(ik r)=sr ~ (2P) ~ f dsX~, (2.3)

= exp(ik. r)y(r —s)I (R—S) . (1.7)

This property is exact (and familiar) in Gaussian models
and it is a reasonable approximation in non-gaussian
models anyhow. It is clearly possible to choose the shifts
s, and sz in such a way that S=O; hence insertion of Eq.
(1.7) into Eq. (1.6) yields

N

exp(ik r)=4k =g cJ+k,
Jj=1

(2.4)

but this would induce a double integral expansion of Tk ~
in terms of Wq, ~. Much more practical for numerical
application is a discretization of Eq. (2.3),

X=QQI exp(ik r)y . (1.8) where the weights cj are real and the shifts sj must be
chosen in such a way that the form factor

A comparison of Eqs. (1.8) and (1.1) shows that P is noth-
ing but +, except for a cutoff form factor y in the space
of relative motion,

N

U(r) = exp( i kr)%'z— gcl y——, (r),
Jj=1

(2.5)

X„~(g,r, R) =%„k(g',r, R)y(r —s) . (1.9)

This result, Eq. (1.9), describes the connection between
traditional channel wave functions + and our wave packet
representation X. The subject of this paper is to reconstruct
a channel plane wave 4 as a sum of channel wave packets
P 's, in order to reconstruct an amplitude Tq q, Eq. (1.5), as
a sum of the more available amplitudes &k, k„Eq. (1.4).

In the case of a short range V, there is no need to recon-
struct completely 4 in terms of the 7's, for only the func-
tion V%' appears in the formalism. The reconstruction
must span only the range of V in order to provide a
correct calculation of Tqq as regards the prior potential.
An identical remark holds for the bra side of the calcula-
tion, (4'

~

V', where ql' is the final plane wave and V' the
post potential.

This paper is thus organized as follows. In Sec. II we
reduce the reconstruction problem in the interaction re-
gion, which is a three-dimensional volume, to three in-
dependent, one-dimensional reconstructions. We also
prove that the reconstruction method may be made in-
dependent of the momenta q', q, k', k, a clearly advanta-
geous result. In Sec. III we show an explicit example of
reconstruction, and a qualitative generalization of this ex-
ample. A numerical application is provided in Sec. IV.
Finally, Sec. V contains a discussion and conclusion.

B. Three-dimensional factorization

Assume that j in Eqs. (2.4) and (2.5) is a triple index,j—:(Xpv) and that, accordingly, cJ factorizes as c~c„c„
and sj runs its three components separately, sj
=—(x~,yz, z ). Then, the number of wave packets N fac-
torizes as N =N„N~N, and Eq. (2.5) factorizes as

U(r) = U„(x)U~(y) U, (z),
where r—:(xyz) and

(2.6)

U (x)=~ '~ P '~' g cgexp[ ——,'(x —xg)'IP'], (2.7)
A, =1

with analogous formulae for Uz and U, .
In the same way, the approximated plane wave 'k~ in

Eq. (2.4) factorizes as

be as close as possible to unity when r is inside the in-
teraction region. Then U may be small and decaying out-
side of this region.

In the following we thus concentrate on the discretiza-
tion ansatz, Eq. (2.4), which is actually an attempt to pro-
ject a plane wave with momentum k onto the subspace
spanned by the wave packets 7k, . Equivalently, the pro-

J
jection ansatz, Eq. (2.5), describes an attempt to project
the flat unit function U(r) onto the subspace spanned by
the zero-momentum wave packets y, (r).

J

II. PRELIMINARY RESULTS

A. Projection ansatz

+k(r) +k (x)+k

with

(2.8)

As seen from Eq. (1.8), the only degree of freedom
which raises concern is the relative distance r=R, —Rz,
or its conjugate p. The product /pl will thus be under-

%k (x) = exp(ik„x)U„(x), (2.9)

and obviously analogous formulae for the y and z degrees
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of freedom.
The search for optimal shift parameters sj and expan-

sion coefficients cj, see Eqs. (2.4) and (2.5), can thus be re-
duced to the search of optimal and one-dimensional coef-
ficients and shifts c2 and x2, see Eq. (2.7).

--1 2

C. Reduction to zero momentum

We first notice from Eq. (2.3) that the plane wave
momentum q and the wave-packet average momentum k
need not be different, since an expansion with respect to
the shift s already takes advantage of a complete basis. In
order to optimize the approximation 4k generated by Eq.
(2.4), we will minimize the fluctuation b,k defined by

(q k I
pk)~k ( pk

I p I
qk) —(+~

I p I

q ~) (2.10)

with respect to the choice of the c~'s and sj's. (This fluc-
tuation is a sum of three independent fluctuations,
b, k„,b kz, b,k, , obviously. )

Since by definition, Eq. (2.5), %k ——exp(ik r) U, we find
from elementary commutation rules and the finite range
of Uthat

~k2=(UIp2I U)(U
I

U)-'. (2.11)

Hence the value of AA: does not depend on k in this ap-
proximation. In the following we will concentrate on the
optimization of U as an approximation to the zero
momentum wave.

III. EXPLICIT CASES OF RECONSTRUCTION

In this section only one-dimensional models will be con-
sidered, as allowed by Sec. IIB. The subscript x will be
omitted for simplicity.

A. The two-wave-packet case

It is physically obvious that U(x), a sum of two Gauss-
ian in this special case, must be as flat as possible in order
to minize Ak . Hence the two Gaussians will be added to
each other with equal (positive) weights and the separa-
tion of their centers should be of the same order as their
widths P. In momentum representation we set

U(p)=2 ' ~ ' P' exp( ——P o )

X [ exp[ ——,
'
p (p —io) ]+ exp[ —,

'
p (p+io) ]I . —

(3.1)

-1.5P -P o~p p 1.5 P

FIG. 1. Optimal reconstruction of a flat form factor U by a
recombination of two Gaussians.

B. The three-wave-packet case

We now locate one wave packet at the center and the
other two at a distance +p o. from the center. The ansatz
for U is (with a prejudice for equal weights for the three
packets)

vides a much more uniform and broader coverage of an
interaction domain than would a lone Gaussian centered
at the origin. The bare value I/2P of b, k is reduced by
56%, a non-negligible result.

Such an improvement with just two wave packets is of
some value, for it leads to a similar improvement with just
2 =8, wave packets in the three-dimensional case. With
also eight wave packets for the final channel, the T-
matrix amplitude Tkk will thus be approximated by a
coherent sum, with equal weights, of 64 wave packet am-
plitudes &1,, k, . It will be noticed that, in units given by
2 '/ m. '/ p '/, the center value is U (x =0)=1.06
when per = l. 13. In order to renormalize it to
U„(x =0)=1, the correct physical value, it will thus be
necessary to introduce a renormalization factor equal to
the reciprocal, 0.94. With both an initial and a final
channel, and three-dimensional calculations, the renor-
malization factor will then be (1.06)

It is seen that the center of each wave packet lies at +P cT

from the center of the interaction region in the coordinate
space, and that

U(p ) 3
—I /2~ I /4pl /2 exp( p2p 2)

)& [1+exp(ip op)+ exp( ip op)] . —(3.3)

( U
I

U ) = 1+ exp( —/3 cr ),
(UIp

I

U)= (UI U) cr exp( Pcr ). ——
(3.2a)

(3.2b)

One finds, accordingly,

( U
I
U) = 1+—,

'
exp( ——,

'
p o. )+ —,

'
exp( pcr ), —

The minimum of Ak is reached for P cr = 1.28 or
po. = 1.13, which corresponds to a separation distance, be-
tween wave packet maxima, equal to 2P a=2.26P. The
corresponding shape of U is shown in Fig. 1. It is clearly
far from a perfectly flat form factor, but definitely pro-

(3.4a)

——,o exp( —po ).2 2 2 2 (3.4b)

(UIp
I

U)= (UI U) ——,c7 exp( ——,Po )
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The minimum of hk is reached for P o =4.7 or
Po =2. 17, the distance between the centers of neighboring
wave packets being now equal to 2.17P, slightly smaller
than the value 2.26P obtained for the two-wave-packet
case. The bare value I/2P of b,k is now reduced by
70%%uo, and it is clear that adding more, and suitably
placed, wave packets to the expansion basis would de-
crease Ak even further.

The value of U at x =0 is now equal to 1.19, again in
units specified by 3 ' ir '~ P '~; hence a renormaliza-
tion coefficient of (1.19) should be considered. In-
dependent coefficients for the mixture of the three-wave-
packet case should slightly diminish this value 1.19, a
more flexible U becoming flatter.

C. Generalization

Consider an odd number of wave packets,
=2N„+1, with the (N„+1)st packet centered at the ori-
gin and all packets equally spaced at distance P o. from
each other. We expect from the two previous subsections
that this distance P o is of order 2.2P. Indeed, at mid-
distance, each Gaussian in a pair of nearest neighbors is
then reduced to about 55% of its maximum, and hence
the superposition of these nearest neighbors in that point
reconstructs about 110% of the maximum of just one
Gaussian. In other words, the Gaussians intersect roughly
at midheight, which is a reasonable prescription to gen-
erate a flat U on the average. The ansatz

Whatever the strength Vo of the interaction, the dynami-
cal factors Vp(1 —Vp(v

I
G v) ) are the same in Eqs. (4.3)

and (4.2). The quality of the reconstruction of Tk k in
terms of &k, k, is thus entirely controlled by the quality
of the reconstruction of (v

I
k),

(vl k)= gcj(vlrk, )=(vl exp(ik r)
I
U) . (4.4)

In so far as
I
v), the form factor of the separable poten-

tial, has a range v smaller or equal to the range
—,
' bx =2.2NP of the form factor U, this overlap, Eq. (4.4),

is assumed to provide an excellent approximation.
For the sake of definiteness, consider the cases where

P=1.5 fm, a typical value for a nuclear shell-model har-
monic oscillator, and v=1 fm, a typical range for the nu-
clear force.

The formula

f —1 x 2 (x —s)2

dx v exp — exp(ikx) exp
4v 2 2

1/2 2P
(P2+ 2P )

1/2
s 4i v ks+—2P v k

2(P'+ 2v')

gous way,

N„, i
= &Xi„ I

( V+ VGV)
I Xi &

= —Vo&&i.,' I
v& &v

I &k, &(1—Vo& v
I

G
I

p &) .

(4.3)

N„

U(x) = g exp-
j=—N„

(x —jP o)
2P

(3.5)
gives, as a special case,

(4.5)

IV. AN ILLUSTRATIVE EXAMPLE

Consider a Hamiltonian defined by its matrix elements

&s'i~la&=J'&(p u') Voexp[ ~—(J'+J')I. (4.1)

The separable nature of the potential, V= —Vp
I
v)(v I,

in obvious notation, makes it easy to calculate the T ma-
trix,

~k'k =(k'
I
T

I

k &

= ( k'
I

( V+ VG V)
I

k )

= —Vp(k'
I
V)(v

I
k)(1 —Vp(v

I
G

I
v)) . (42)

In the wave packet representation, we get, in an analo-

thus generates a reasonably flat form factor U in a range

b,x =(2N„+ 1)P'o.=(4.4N„+ 2.2)P .

Accordingly, Ap decreases as Ax '. The number of wave
packets can be adjusted so that hx becomes larger than
the diameter of the interaction region, or Ap becomes
smaller than the momentum resolution demanded by the
problem under study. A slight improvement in the quali-
ty of U may also be obtained by reinstating nonequal mix-
ture coefficients cz. in Eq. (3.5) and letting the Gaussians
deviate slightly from equal spacing. These subtleties are
disregarded in the following.

f
2

dx v ' exp — exp(ikx) =2'' exp( —v k ),
4v

p (s~ 2ikv )—
(P2+ 2v2) i ~2 2(P +2P)

(4.7)

where p is that renormalization factor discussed at the end
of Secs. IIIA and III B. (For instance, p=0. 94 for two
one-dimensional wave packets. )

For the one-dimensional case and two wave packets, the
left-hand side of Eq. (4.7) takes on the values 0.98, 1.10,
and 1.03 for k =0, 1, and 1.5 fm ', respectively, which is
quite satisfactory. Then the approximation breaks down
when k ) 1.8 fm ', because the oscillatory terms on that
left-hand side are contradictory with the positive definite
form factor

I
v) in the momentum representation; see Eq.

(4.6). This spurious oscillation is clearly due to the finite
range nature of the form factor U(x) in coordinate space;
hence our approximation is better at low momenta.

A similar result is found for three wave packets and the
one-dimensional case. The left-hand side of Eq. (4.7) now
takes the more weakly varying values 0.96, 1.00, and 1.31
for k =0, 1, and 1.8 fm ', respectively. This extends the

(4.6)

which corresponds to (v
I
k). The quality of the approxi-

mation is thus good if
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validity range of the approximation, as expected, even
though an improvement of the normalization is clearly in
order and can be implemented with more components in
the reconstruction of U.

V. DISCUSSION AND CONCLUSION

An expansion of a wave function in a basis of coherent
wave packets is a familiar idea, which has already been
considered in time dependent theories. The semiclassical
aspects, and advantages, of the wave packet representa-
tion, have already been stressed. ' We have here used the
same idea in a time independent theory.

The significant advantage of wave packets as basis
states in a theory of collisions is the possibility of a shell-
model representation of the initial and final channels and,
hence, of a representation where microscopic (single parti-
cle) degrees of freedom are natural. This representation is
then free of all complications concerning Jacobi coordi-
nates and the unwieldy, related problem of antisymmetri-
zation.

Channel wave functions, however, are plane waves (or
distorted waves) with respect to the relative distance de-
gree of freedom. We have shown in this paper how a

plane wave, or that part of it which is pertinent to the in-
teraction region, can be reconstructed as a coherent sum
of wave packets. The optimal position of the wave pack-
ets and their respective admixture weights may be adjust-
ed to the physical nature of the problem. We have select-
ed, among other possible optimization rules, the minimi-
zation of the fluctuation Ak of the relative linear
momentum.

Our theory of collisions thus provides the collision am-
plitude as a coherent sum of amplitudes between wave
packets. This allows the introduction of all the well-
known, and powerful, shell model techniques into the
theory of collisions.
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