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A theory of compound-nucleus reactions is formulated which is valid for most of the physical
situations —from the domain of isolated to the domain of overlapping resonances. We allow for a
more general than Gaussian statistics of the resonance decay amplitudes. The energy spectrum is
parametrized in terms of a variable o~ that measures its stiffness. The following results are ob-
tained: We formulate a condition under which Hauser-Feshbach expressions emerge. They include
an elastic enhancement factor W. This factor essentially depends on the fourth moment of the de-

cay amplitudes and the stiffness parameter o.~. Within our model, o.
~ is given by requiring Wigner s

level repulsion. If, in addition, one specializes to the Gaussian statistics of the decay amplitudes, the
present results yield the analytical solution to the earlier Monte Carlo simulations. In the same lim-

it, we find agreement with experimental results on W that are available for the regimes of well-

isolated and of strongly overlapping resonances.

I. INTRODUCTION

In recent years, there was a discussion' in the pub-
lished literature on the question whether the decay arnpli-
tudes of compound-nucleus resonances —as they are ob-
served, e.g. , in low energy nucleon scattering —have a
Gaussian probability distribution. This discussion
prompted the investigation presented here.

In 1975 Agassi et al. formulated the theory of statisti-
cal nuclear reactions under the assumptions that the reso-
nance decay amplitudes are Gaussian variables and that
the energy spectrum of the resonances forms a "picket
fence, " i.e., the energies have a constant distance D
without fluctuations. This model takes care of the experi-
mentally observed "stiffness" of nuclear spectra, but its
simplicity allows one to handle the regime of overlapping
resonances only. Reformulating the diagrammatic expan-
sion technique of the authors of Ref. 5, we generalize the
older results in two respects:

(i) A "disordered picket fence" permits us to introduce
fluctuations of the energy levels; the importance of the
fluctuations is controlled by a parameter 0& that can be
considered as characterizing the stiffness of the spectrum.

(ii) The joint probability distribution of the resonance
decay amplitudes is not restricted to be Gaussian.

The first generalization provides a unified theory that
essentially covers the whole range from the regime of iso-
lated resonances to the regime of strongly overlapping res-
onances. The second point allows us to work out the
observables —for the case of overlapping resonances —that
contain information on the statistics of the decay ampli-
tudes.

Currently, much progress is being achieved in relating
the theory of statistical reactions to the theory of statisti-
cal spectra. This is done ' by treating that part of the
Hamiltonian that generates the compound states as a ran-

dom matrix taken from the Gaussian orthogonal ensem-
ble (GOE). Progress was also achieved in deducing a
probability distribution for statistical S matrices essential-
ly from a requirement of minimum information. Both
approaches are intimately related. ' In the present work
we try to specify as little as possible about the statistics of
the parameters that characterize the compound nuclear
levels. This helps to find the observables that are sensitive
to the Gaussian assumption of the above approaches.

The material of the present paper is organized in the
following way: In Sec. II we state our statistical assump-
tions. In Sec. III the expansion technique is explained and
the average S matrix calculated. Correlation functions
between two S-matrix elements, especially average
compound-nucleus cross sections, are obtained in Sec. IV.
The remaining sections are devoted to a thorough discus-
sion and to various specializations of the results of Secs.
III and IV. In Sec. V the case of isolated resonances im-
plying a small number N of open channels is considered.
In Sec. VI we state the condition under which Hauser-
Feshbach expressions are obtained. This is the case, if N
is sufficiently large. For compound-elastic scattering the
Hauser-Feshbach expressions include an elastic enhance-
ment factor 8. This quantity is essentially the only one
to be sensitive to the statistics of the decay amplitudes and
the spectral fluctuations. It is discussed in Sec. VII. We
then specialize, in Sec. VIII, the general results to the case
of Gaussian statistics and equivalent channels. The pa-
rameter oz of the spectral stiffness is determined in Sec.
IX by requiring level repulsion. This means that the
probability of finding any two levels at the same energy is
zero. Except for the transmission coefficients no free pa-
rameter is then left in the theory. We compare the result-
ing enhancement factor 8' with Monte Carlo calculations
by Hofmann et al. " and with experiments. The results
are summarized in Sec. X.
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II. SPECIFICATION OF THE STATISTICAL
ASSUMPTIONS

We start out from the E-matrix representation of the
scattering matrix; see, e.g. , Sec. 8.8 of Ref. 12, which is

S=e' (1+iK)(1 iK—) 'e' (2.1)

Here, exp(i5) is a diagonal and unitary matrix of poten-
tial scattering phases. It will be omitted in the formalism
that follows. The quantity K is a matrix in the open
channels, whose elements are

K.b=~&a
I
I'(~ E}—'V Ib& . (2.2}

yq, vs&A V~e&, —A. =l, . . . , A, e=l, . . . , N (2.3)

referring to an arbitrary basis of the bound state space and
the physical space of open channels. One has

K =y'(~ —E)-'y,
and one easily shows that S can be rewritten

S(E)= I+2iK(1 iK)—
(2.4}

Here, H is the Hamiltonian that generates the bound
states of the system. We designate the bound states

~

A, &,

A, = 1, . . . , A, by Greek letters. The eigenvalues of M are
E~. The E~ may very well be above the first threshold
for particle emission, i.e., the spectrum of H contains
"bound states embedded in the continuum" (BSEC). The
details are described in Ref. 12. The residual interaction
V couples the bound states to the channel wave functions

~

a &,
~
b&, . . . , which we denote by Latin letters. There

shall be N open channels at the energy E of the system.
The coupling between bound and continuum states gives
rise to resonances, i.e., to the formation of a long lived
compound system out of the channels [note that the an-
satz of Eqs. (2.1) and (2.2) implies that a reaction leading
from channel a to a different channel b can take place
only via intermediate resonance states: direct channel-
channel coupling has been neglected; see Sec. 4.2 of Ref.
12]. The K matrix depends on the energy E explicitly and
implicitly through the channel wave functions that have
to be taken at E. Except close to thresholds, this implicit
energy dependence should, however, be weak (cf. Secs. 9.3
and 9.15 of Ref. 12) and will be neglected in the sequel.

The matrix E is Hermitian, since H and V are Hermi-
tian. This entails unitarity of S. If H and V can be
chosen real, i.e., if time reversal invariance holds, K is
symmetric, which entails symmetry of S. This will be as-
sumed throughout the present work.

Let us introduce the rectangular coupling matrix y with
elements

done recently.
As pointed out in the Introduction, the route taken here

is different. We want to keep the statistical assumptions
as flexible as possible and allow for non-Gaussian statisti-
cal variables. The price that we have to pay in compar-
ison with Ref. 7 is twofold: (i) We shall be able to solve
the problem only to first order in 1/N, the inverse num-
ber of open channels, or to first order in the absorption in
all channels. This covers, however, almost all of the ex-
perimentally occurring cases. (ii) We shall have to resort
to a hybrid model in the sense described now. Let the
basis

~

A, & henceforth be the one that diagonalizes H.
Then, K reads

rkb
(2.6)

Equation (2.7) guarantees statistical stationarity with
respect to the energy E; see the discussion in Ref. 5. Since
the average y~, is then independent of A, , the notation

r~, =y,
"—= & y,"& (2.8)

is used.
It has become customary to use horizontal bars for en-

semble averages and angular brackets for energy averages.
For the convenience of printing, we henceforth use both
symbols without any distinction for the ensemble aver-
ages. This is the only type of average considered in the
present context.

A third assumption is put in for convenience; it
suppresses direct reactions, however, without any loss of
generality, cf. Sec. III: (iii) The amplitudes yq, and yqb
are statistically independent for any pair of channels
a&b, i.e.,

The quantities y~, and E~ will be treated as the statistical
parameters of the present formalism. Average S-matrix
elements and correlation functions will be calculated by
averaging over the statistical ensemble of the multidimen-
sional parameter (yq„Eq). This ensemble is subject to the
following assumptions. (i) The set of energies (Eq,
A. = 1, . . . , A) is statistically independent of the set of de-
cay amplitudes (yq„A, = 1, . . . , A, e =1, . . . , N), i.e., the
joint probability distribution factorizes. (ii) The set (yq„
e =1, . . . , N) of decay amplitudes of a given level A, is
statistically independent of the amplitudes (y„„
e = 1, . . . , N) of any other level p&A, . Moreover, the dis-
tribution Wq of the amplitudes (yq„e =1, . . . , N) does
not depend on A.,

~~(r~i . . r~x)= u(r~i — r~b), ~=I,
(2.7)

= 1 2i y (E H+i y—y ) 'y—. (2.5)

It is now tempting to consider the matrix H—given in
the arbitrary but fixed basis

~

A, &
—as the statistical vari-

able of the problem. In the absence of any information
other than that H should be real and symmetric, one
would most naturally assume it to be an element of the
GOE; cf. Ref. 8. Average S-matrix elements and correla-
tion functions would then be calculated by performing en-
semble averages over the GOE. This has indeed been

e=1
(2.9)

@2~",+'=o, n)o. (2.10)

guided by the experimentally observed stiffness of nu-

The problem will be tractable only if one requires that (iv)
the distributions w, are even functions so that all odd mo-
ments vanish,
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clear spectra, we introduce a disordered picket fence
model for the eigenvalues Eq as follows: (v) Any two
E~,E& are statistically independent. The probability dis-
tribution p~ of E~ is supposed to be given in terms of a
distribution p, which is independent of A, , as

p~(E~)=p(ez —Eq) . (2.11)

The function p shall be even and have its maximum at
zero. The average of E~ is then equal to e~, and the e~
shall form a regular lattice,

eq —e„=(A.—p)D . (2.12)

The quantity D is the mean compound nuclear level dis-
tance. The energy E shall, of course, be within the inter-
val [e,, eA] sufficiently far from the endpoints so that
edge effects are irrelevant.

A comment about the stiffness of nuclear spectra seems
appropriate. It can be characterized by the distribution of
the distance between an arbitrary level and its nth neigh-
bor. At any rate, the mean value has to be nD. How
about the variance o(n)? It will grow as the square root
of n, precisely o(n)=v n D, if p~(E~) is a constant in-
dependent of A, . The statistics introduced above will yield
this behavior, if the variance o.

&
of the distribution p is

taken to be sufficiently large compared to D. If, on the
contrary, one takes o.

z ~&D so that the ordering of the lev-
els is with a high probability identical to the sequence of
their average values e~, the present statistics yields
o'(n)=v'2oz, independent of n Hence, . the parameter
D/cd measures the spectral stiffness. Now in Fig. 1, ex-
perimental values of tr(n) are reproduced. They were
determined' from a set of —,

' resonances in the system
Fe+ p at proton energies between 3 and 4 MeV. The

cr(n) start with o(1)=0.5D and slowly grow with increas-
ing n, but fall far below v'n D, indicated by the curve in
Fig. 1. This behavior is what is meant by calling the spec-
trum "stiff." Figure 1 would roughly require oz-D. In
the spirit of the present approach, we shall specify neither
the distribution p nor the stiffness parameter o.z, but rath-
er try to find the dependence of the results on them.

The statistical properties of the E~ enter into the fol-

lowing formalism via two different functions: (a) The
probability of finding a level at energy E,

g p(eq E—) =—jp(e E—)de= 1/D,1
(2.13)

which is taken to be independent of E. Technically, this
means that the width of the distribution p should be large
enough to allow replacement of the sum by the integral in
Eq. (2.13). (b) The correlation function

1g p(eg —Et )p(Eg —E2) = — p(e E, )p—(e E2)d—e
D

g(E—I Ez) .— (2.14)

III. CALCULATION OF THE AVERAGE S MATRIX

The general idea of all the formal developments of the
present paper is to expand the S matrix into a geometrical
series which is averaged term by term and subsequently
resummed. This reminds one of the method used in Ref.
5; the details are, however, different, in order to allow for
the more general statistical assumptions introduced in Sec.
II.

Thus one writes

This expression depends on the difference of the argu-
ments E1,E2 only, since the integral is left unchanged
under a common translation of E1 and E2. One easily
shows that the distribution g is even and has its maximum
at zero. Its variance is v 2oz.

It is assumed that the number A of levels is very large
compared to the number X of channels. The results are
then independent of A. Effects that arise from a limited
number A of states are known in the experimental litera-
ture as "finite range of data errors. "' They are neglected
here.

On the basis of the model defined above, quantities of
physical interest will be calculated in the next sections.
We start with the average S-matrix element. Its evalua-
tion is easy and serves as illustration of the mathematical
technique. The more complicated calculation of the
correlation between two S-matrix elements S,b and S,d,
which includes the evaluation of average cross sections, is
performed in Sec. IV.

1.6—
o.(n)

D

1.2—

( S(E)) = ((1+iK(E+) )(1 iK(E+ ) )
' )—

(3.1)

0.8— In order to avoid the singularities of K, the complex ener-

gy

0.4— E+=E+lg (3.2)

0
0

l I l

10

FIG. 1. Measured variances o.(n) of the distance between a
given resonance level and its nth neighbor. The variance is
given in units of the mean level distance D. The data are from
Ref. 13. The curve is the function V n; see text.

has been introduced. It is implied that the limit of g~O
is taken after performing the averages and the sum in Eq.
(3.1).

The sum over the powers of K need not exist. If, e.g. ,
K was equal to a real variable x with gaussian distribu-
tion, one would have (x "+'=0) and (x )
=(2k —I)!!(x~)";hence, the sum in Eq. (3.1) would
diverge for every (x )&0, although ((1+ix)(1 ix) ')—



35 THEORY OF COMPOUND-NUCLEUS REACTIONS: GAUSSIAN. . . 1231

exists. We assume that the series of the second part of
Eq. (3.1) is equal to the desired average, wherever it con-
verges. By analytic continuation, one then has the general
result. In the case at hand, this procedure works, since we
now show that (E")= (K)".

Introducing the diagonal level matrix b with elements
—(y.' & & yb ) g (bg )'=0 . (3.11)

to the connected b's. The factorization shall be done such
that each b is taken together with the adjacent y's.

The value of the contraction (3.10) is

&v bar bx&.b=(r X.re,.b X &&'~&
e

bp(E) =b~«)4„= 4„
E~—E+

one can rewrite Eq. (3.1) by virtue of Eq. (2.6) as

S=l+2 g (ruby)" .
n=1

Let us calculate y by:

(r br).b= g r~. r~b ~~=&.br. &&~ .

(3.3)

(3.4)

(3.S)

In order to prove that g bq =0, note that

l

' dE"

whence

~ n dngbq+'= gbz ——0 for n~0,~! dE"

(3.12)

(3.13)

Using Eq. (2.13), the sum over b~ becomes

g bq ——g f p(e~ E')dE'—
E' —E+

dE'1 l

D E' E+
and, if the edges e& and e& of the energy levels are taken
to be sufficiently far from the energy E, one obtains

because the result of Eq. (3.6) is independent of E.
One easily sees that g b~ vanishes also:

Xp(eg E')p(eg —E")dE'dE—"

g bg = vrlD, —

whence

(y by) b= my /Dob .

(3.6)

(3.7)
=0,

g (x )dE'dxE' —E+ E'+x —E+

(3.14)

We introduce the diagonal matrix

x = —y by with elements x, =cry, /D .

Consider now the term with n =2 of Eq. (3.4),

&(r 'br).'b & = &r~.b~r~, y„,b„rgb &

= & r,.b~r~, & &r„,b„r„b &

+ & rkabA3Aerkebkf k.b &

(3 8)

g b~ bP =0 for n, m ) I .
A,

(3.15)

Using Eqs. (3.13) and (3.14), it is not difficult to show by
induction that

since the integral over E vanishes. This entails, with the
help of Eq. (3.12),

&r~.b~—r~, & &ri, b~r~b & (3.9)

&r~.b~r~, r~, b~rkb & &r~.b~r~,—& & r~, b~rkb &

Here, repeated indices have to be summed over. In the
second part of this equation, we have factorized the aver-
age with respect to the indices X and p. By the statistical
assumptions of Sec. II, this is justified for the terms with
k&p. For the terms with A, =p, the appropriate correc-
tion has been added. Since this procedure is repeatedly
used in the following, we introduce a special notation for
the correction term,

((y'by)" & = &y'by &",

which yields the average S matrix

S=(1—x )(1+x )

and the transmission coefficients

r, =1—/S„f '

=4x, (1+x, )

(3.16)

(3.17)

(3.18)

=(y byy by)eb (3.10)

and call it a contraction. The contraction line implies that
the connected b's are summed with their indices equal and
that there are two terms: the average of the whole expres-
sion reduced by the average that is factorized with respect

The average S matrix is found to be diagonal. This means
that the statistical assumptions set up in Sec. II preclude
direct reactions. Inclusion of direct reactions is possible
by use of the transformation introduced in Ref. 15.

We now turn to correlation functions and average cross
sections.
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IV. CORRELATION FUNCTIONS
AND AVERAGE CROSS SECTIONS

A. Exposition of the scheme of calculation:
Cross contractions

the correlation functions

C,b,d(e) = (S,b(E)S,d*(E+E) &

= (S,b(E)S,d(E+ 6) &
—(S,b & (S,d &

= (S.,(E)S,', (E+.) & &S—., & (S,', &; (4.2)

Let us define the fluctuating part of the S matrix by

S=s+S" . (4.1)

The quantities to be calculated in the present section are

for a =c, b =d, and e=O, they yield the average com-
pound nuclear cross sections o.,b .

We start from the expansion of the S matrix, which is
implied by Eq. (3.4). This gives

Cbd(e, )=, 4( g (y b(E)y)"
n=1

00

g (r b(E+E)*r)
ab m=1

—4 (4.3)

The two factors on the right-hand side (rhs), namely the
matrix elements (ab) and (dc), have been separated by a
bold colon, which we shall also call the "center line. " It
does not denote a mathematical operation but merely em-
phasizes the place where the average is factorized in the
second term.

Consider the first term on the rhs; it is a multiple sum
over channels, levels, and powers. We shall average it
term by term and subsequently resum the leading terms.
Imagine the center line in every term of the multiple sum.
Note that each term in which the parameters to the left of
the center line are statistically independent of the parame-
ters to the right is cancelled by the appropriate term

within the second expression of Eq. (4.3). This indepen-
dence is given whenever all level indices that occur to the
left of the center line are different from the ones occur-
ring to the right. If, on the contrary, at least one level in-
dex to the left coincides with one level index to the right,
the two parts of Eq. (4.3) do not cancel each other and we
are left with a contraction as defined in Sec. III, which
connects two b's on either side of the center line. We call
this a "cross contraction" and shall have to sum over all
possible ways to construct them.

As an example, consider the simplest cross contraction
that arises in Eq. (4.3). In symbolic and explicit form it is

(r'br). b (r'b*r)d,.-= & &r~.bxr~b r~db~ri. ., & g&r~—.b~r~b &:&r~db~r~, & . (4.4)

Note that, for brevity, the energy arguments are suppressed; here and in the following, b has to be taken at E and b* at
E+e (The "prop. agators" b should not be confused with the channel b, the latter one appearing only as an index. ) It is
unnecessary to evaluate Eq. (4.4); the next subsection will show that one can proceed quite far without being more expli-
cit.

We shall now construct and sum the relevant cross contractions in three steps. This will be successful within the order
1/N, where N was defined as the number of open decay channels: terms of second and higher order in 1/N are neglect-
ed. One shall find, however, that the neglected terms are of second or higher order in the parameters x, defined in Eq.
(3.8), so that our approximation is also valid for arbitrary N in the limit of weak absorption [i.e., ~, &&1; see Eq. (3.18)]
in all channels e.

B. Endfactors of contractions

Consider again the simple contraction of Eq. (4.4). It occurs together with terms that are cross-contracted in the same
way but carry factors with independent indices at the ends on either side of the center line. One obtains, e.g. , a sum over
structures

gl((r br)'&r br].b (r b r)d,..=g Dr. (—r br).b (r b r)d, .-
q

l+ Dr. (4.5)

which we have evaluated with the results of Sec. III. Defining the renormalized y matrix
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y =y(1+x)
we find the sums over all possible endfactors,

q r

g ly'&y y'~yy'by I.b ly.-'b*y y'b'yy'b'y ld, =(Y 'by) b:(y 'b*y)d, .
qrst

All contraction patterns will carry these endfactors.

(4.6)

(4.7)

C. Contractions with branchings

A cross contraction may have branchings, such as, e.g.,

this means that there may be additional b's carrying the same index as the cross contracted ones. We shall now sum all
possible branched contractions. Before doing so, note that in the same way as there are independent endfactors, there
may be factors y b y bracketed by the branch but summed independently. Hence, one has to evaluate

y (7"by(y'b1 )'y'by). b (y '..b*y )d, =(y 'by(1+x) 'y'by). b (y .-b "Y )d,

=(Y"by y'by). b=(y b*y)d,

Here, yet another renormalized y matrix,

y =y(1+x)
has been introduced. Let us rewrite Eq. (4.8) by help of the diagonal matrix 1 with elements

r, =2(y y ')„=2g r'„,

(4.8)

(4.9)

(4.10)

which gives

(y 'by y 'by). b (y ',b*-y)d. =(y "b y).b:(y b*y)d. .

In general, contractions with q branchings may be expressed and summed as

&(Y 'byy 'by b h ~ by) b (Y b y)d, = g ly '( , 1 )'b'+'r—l.b (Y b Y)d.

(4.11)

=(y 'by). b:(y 'b "y)d, (4.12)

where the convention

b =b(1 ,' rb)——
has been used. The elements of this diagonal matrix are

right of the center line sum up to

(y by )gb-. (y b *y )d, = (y,gbgy» ydgb gyp, &..

&Y .'b—.y» &:&y..b.*y., & .
bg =i (Eg E+ —iI g/2)— (4.13)

(4.14)

These quantities have no poles on the real axis in the limit
of 1~0, see Eq. (3.2), and one can therefore take this lim-
it without any problem. One should note, however, that
the decay amplitudes y~, and the new "propagators" b ~
are no longer statistically independent.

Evidently, the structures with a single cross contraction
and arbitrary numbers of branchings to the left and to the

The contraction of Eq. (4.14) obviously vanishes unless
the indices a, b, c,d coincide pairwise. For simplicity, we
specialize the following discussion to the case of a =c,
b =d. This means that we calculate the correlation func-
tion C,b,b(e) = (S,"~(E)S,~'(E +e) &. Equation (4.14)
then gives

(y by).b (y 'b *r)b (1+.. x ) (1+xb) g I (yj. bk~ jL Y Ab& o b(y k by &(y ebb 8 )

=(1+x, ) '(1+xb) 'IA~b —5~bB,b (4.15)
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The final result will be expressed in terms of the matrices
3 and B defined by the last equation. It is not difficult to
evaluate the elements of A. Remember that b and b' are
taken at different energies:

A.,(.)= y f &y',.y,', (E' —E —il, /2)-'

&& (E' E——e+i I /2) '
&p(e E')d—E' .

B., (e) =2~i f & r.'r'b'(x —e+ i(r+ r )/2)-' &g(x)dx .

(4.19)

In this equation, independent averages over y and y' are
implied.

The quantity A,b(e) has the upper bound A,b(0) which
is of the order 1/X and of the order of the absorption
coefficients defined in Eq. (3.8), i.e.,

(4.16) l
A,b(e)

l
(A,b(0)=o(1/N)o(x), (4.20)

Here, the overbar denotes the average over the y's only,
since the average over the E~ has been written explicitly.
The probability distribution of the y~, is independent of
A, ; therefore, the sum over k can be performed by help of
Eq. (2.13) and we drop the level index at y ~„ I ~. The re-
sult is

where here x stands for a "typical value" of the x, . The
B,b(e) obey the inequalities

Bab(e)
l

&B,b(0) ( [Aaa(0)+ Abb(0)]/2, (4.21)

where B,b(0) is real and non-negative. The second of the
last two relations can be proved by help of the inequality

2W —2- 2A., (e) = & r.'y 'b(r+i e)
D

The elements of B are

B,b(e)= f &y,'(E' —E—iI /2)

(4.17) ab b2
+a+b+c+d a+c c+d 4 for a, b, c,d )0.

(4.22)

X & r b(E" E e+—i I —/2)

x g(E' E")dE'd—E", (4.18)

where again the overbars denote averages over the y's only
and Eq. (2.14) has been used. One finds

D. Multiple cross contractions

The last step of the summation procedure is to add up
structures that contain more than one cross contraction.
Consider the simplest one, with two independent pairs of
b, b * (we omit the tildes that appear on all symbols),

(r'brr'br). b (r'b*r..r'b*r)b g &3 k bki Ark, &&3 A. b b rkb& ~ b g &r~.b~&&r~. b~ &

~
Ape

=(A'), b
—5,b(B„)' . (4.23)

In this contraction, there are two independent level summations and two channel summations from the products yy on
either side of the center line. After averaging, only one sum over channels remains in the first term and none in the
second term, which allows one to express the result by the squares of 3 and of the diagonal elements of B. Note that
(A ),b is of the order of 1/N but of second order in x; more generally,

( A ~) b =O(1/N )O(x ~) .

We observe that there is another possible contraction of the string of y by factors in Eq. (4.23), namely
2

(r'i rr'br). b (r'b*rr.. 'b*r)b. = & &r~.b~b~rk'b & (A b)',

(4.24)

(4.25)

if channels a and b are different. In this "interlaced contraction, " no sum over channels remains and, therefore, the re-
sult (A,b) is of the order of 1/N . We neglect it, working out only the terms of order 1/N. The quantity (A,b) is of
second order in x, so that the approximation is valid also for arbitrary N in the case of weak absorption in all channels.

The case a =b is different. One can then convert the interlaced cross contraction into a structure similar to that of
Eq. (4.23) by observing that one can reverse the order of the factors y by on one side of the center line without changing
the value of the contraction:

(r'byr 'br )..:(y'b*rr'b*y)..= & &r~.b~b~r~, & & y„',b„b„*r„'.& — g &r~.b~ & &r~.b~ & & r~.b~ &

A,pe

=(A')..—(B„)'

(4.26)
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see Eq. (4.23).
Equations (4.15), (4.23), and (4.26) give the values of

simple and twofold cross contractions. We state the rules
for q-fold cross contractions. The proof is done by induc-
tion, but is lengthy and therefore suppressed here.

(i) The nested contraction, as in Eq. (4.23), is of the or-
der of 1/N and has the value (A~),b 5,b—(B„)~.

(ii) If a&b, all contractions with interlacings, as in Eq.

(4.25), are of second or higher order in 1/N and in x.
They are neglected.

(iii) If a =b and q )2, there is one interlaced contrac-
tion of order 1/N. It can be converted into a nested one
by reversing the order of the factors on one side of the
center line, as in Eq. (4.26). Its value is (A ~)„(B—„)~.

With these rules, one obtains the sum over all cross
contractions to the order of 1/N:

q contractions q contractions

q)1
)ab ~abBaa+~ab y (A )aa —(1+~ah)[(1 A) ]ab ~ab(2+Aaa+Baa) .

q)2
(4.27)

Here, higher powers of B„have been suppressed, since they are of second or higher order in 1/N; see the inequalities
(4.20) and (4.21).

Collecting all results we find the following: (i) The correlation functions C, b, (de) of Eq. (4.2) vanish unless the indices
a, b, c,d coincide pairwise.

(ii) The cases a =c, b =d and a =d, b =c yield the same result due to the symmetry of the S matrix, namely

Cab ab(e) =C,b b, (e)=4( 1+x, ) '(1 +xb )
'

[ ( 1 +Dab )[( 1 —A ) '],b
—5ab(2+A„+B„)[ ) (4.28)

where x, A, and B are defined in Eqs. (3.8), (4.17), and
(4.19), respectively.

(iii) The technique of the present section can be used to
calculate the remaining nontrivial case with a =b, c =d.
One finds gxdx=1 D, (5.3)

because the width ~2crz of the function g is approximate-
ly equal to D; see Sec. II. Together with the normaliza-
tion

C,a bb(e') =4(1+xa ) '(1+xb ) '(A B)ab—(4.29) this implies

for a&b.
The following sections of the present paper are devoted

to the specialization and discussion of these results.

V. ISOLATED RESONANCES

I g=2+rg, «D . (5.1)

Let us assume that the transmission coefficients (3.18)
in all channels are small compared to unity so that the
formalism of Secs. III and IV can be reduced to the first
order in the coefficients x of Eq. (3.8). In this limit, the
formulae (4.28) and (4.29) are applicable to any number N
of channels, since the neglected terms of higher order in
1/N are of higher order in x anyway. The limit shall be
understood such that the compound-nucleus resonances
are well isolated, i.e.,

g(0) ~ (opD)
' ~ D (5.4)

C,b ob (e ) =Cob ba (E)

=C,bb(e)

=4A, b (F. )

(5.5)

We note that the compound nuclear cross section [see Eq.
(4.2)] is

which ensures that expression (5.2) is of the order of x .
Hence, B is negligible.

Because of the estimate (4.24), higher powers of A are
neglected and one obtains the correlation functions

The superscripts on the y's can be omitted, since the
denominators in Eqs. (4.6) and (4.9) contribute only higher
orders of x.

Under these conditions the matrix B—see Eq. (4.19)—
becomes

(5.6)

which yields just the transmission coefficient in the one-
channel case,

B ( )=2 (()x)'xi J (x,'(x)/(x —x+((('+)")/2)dx) o, =4~@,/D=~, for N =1, (5.7)

=2mr, rbvrg(e) &2' r, rbg(0)=O(x ), (5.2) as it should.
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VI. HAUSER-FESHBACH EXPRESSIONS

If there are so many open channels that in the elements
of the matrices A and B of Eqs. (4.17) and (4.19) one can
independently average numerator and denominator, then
for a&b the cross sections factorize into transmission

coefficients as stated by the well known Hauser-
Feshbach' formula.

How large must N be to allow independent averaging of
numerator and denominator in Eqs. (4.17) and (4.19)'?
From a Taylor expansion of y, yb/g, y, at the point

y/
——y for all channels f (the same idea is used in the

first one of Refs. 3), one finds

—j'[1—~ '(y /y —I)+~ '(y /y —y /y —(y /y )'+1)],
e

(6.1)

Hence, the approximation of the present section requires
the correction terms in the square brackets to be small
compared to unity. For Gaussian statistics, this condition
is met if N &&2, as one can verify by help of the statistical
moments given within the discussion that precedes Eq.
(3.3). See also the explicit result in Sec. VIII. Generally,
the number X required for the present approximation is a
function of the higher moments of the y's.

Let us assume now the matrices 3 and B to be

Ericson's theory of cross section fluctuations. ' The
correlation length is

r...= gr, D/2~, (6.9)

a result first proved in Ref. 5 under the assumptions of
Gaussian statistics and overlapping resonances.

A more complicated expression is found, if a =b;
namely

and

2&-2-2—~ b= y yb(r+ie)
D

(6.2) C««(e) =2r~ g r, +2vrie/D
e

+(K —2)r, (I +i@) 'D/2rr

B b=27Tlg Pb x —E+LI g x dx

We define a column vector u with elements

(6.3) r, i f g(x)(x —@+i—I ) 'dx D /2rr, (6.10)

ue =
1 /2

D(r+i~)
(6.4)

where K is the ratio of statistical moments,

K=y, /y, (6.11)

A=u u+F, (6.5)

with

—22F,b o,b (y'.—
y
—', )(1+i~)

D

The resolvent of 2 is

[(1—A) '],b
——[(u u )(1—uu ) '+ 1+F],b
=y, y b g r, +2rri e/D

e

(6.6)

and split A into the separable matrix u u and an extra di-
agonal matrix F,

i f g (x)(x a+i I ) 'dx = [D—(I +i@)] (6.12)

using Eq. (5.3). We then have

assumed to be independent of the channel a. (It should
not be confused with the X matrix, introduced in Sec. II
in a completely different context. ) Hence, the autocorrela-
tion function of elastic scattering cannot be expressed in
terms of the transmission coefficients: it carries informa-
tion on the details of the statistics of the y's (via K) and
the level positions (via g). To have an easier discussion of
Eq. (6.10), let us specialize it to the case of strongly over-
lapping resonances. This means I ~~D and, therefore, I
is much larger than the width v'2crz of the function g, so
that the integral can be approximated by

+&,b(1+F„), (6.7) C„„(e)=2r, (1 „,+ l E) 'D/2rr

and one sees that within the present approximation all re-
sults can be expressed by the second and fourth moments
of the y's.

The correlation function C,b,b(e) of Eq. (4.28) becomes

C,b,b(E)=r, rb g r, +2rrie/D ' for a&b .
e

(6.8)

This Lorentzian form —with the correlation length in-
dependent of the reaction channels a, b—is familiar from

+(K —3)r,'(I +ie} 'D/2m. . (6.13)

In the limit of strongly overlapping resonances, one may
roughly estimate to have strong absorption in all relevant
channels, i.e., ~, =1 and x, =1 for all e, and therefore
I =2I „„seeEqs. (3.8), (3.18), (4.9), (4.10), and (6.9). In
this approximation, the positions of the poles in Eq. (6.13)
are different by a factor of 2 and the ratio K of the statist-
ical moments could, in principle, be measured by studying
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for a&b. This function vanishes in the regime of strong-
ly overlapping resonances when the integral tends towards
the approximation (6.12). This behavior is confirmed by
the Monte Carlo simulation in Ref. 11.

The correlation function C, b, (be) equals the compound
nuclear cross section o.,~ at e=0; one obtains

cr,b r, rb ——g r, '[1+5,b( W —I)] . (6.15)

For nonelastic reactions, a&b, this is the well known
Hauser-Feshbach formula. Except for the condition for-
mulated at the top of the present section, it holds within
all generality of our statistical assumptions. The elastic
cross sections o.„are enhanced over the Hauser-
Feshbach result by the factor

W=2+ gr, (E 2)/I iD—f g(x—)(x+iI') 'dx'2~

(6.16)

The existence of an elastic enhancement factor is experi-
mentally' ' established. The implications of Eq. (6.16)
are discussed in the next section.

VII. THE ELASTIC ENHANCEMENT FACTOR

We continue to work under the assumption formulated
at the beginnin of Sec. VI. It was shown that inelastic
cross sections o,b with a &b can then be expressed by the
transmission coefficients which are functions of the

second moments y, . Any more details of the statistics,
such as, e.g. , higher moments of the y's and the function
g characterizing the distribution of the energy eigen-
values, enter only into the expression that describes elastic
scattering, namely the elastic enhancement factor 8' de-
fined by Eq. (6.15) and given explicitly in Eq. (6.16).

Let us discuss 8' in the limiting cases of overlapping
and isolated resonances. (i) In the case of strongly over-
1apping resonances, characterized by I »D, the integral
in Eq. (6.16) is approximated by Eq. (6.12) and the
enhancement factor becomes

W(overl. res. ) =2+(X —3) g , r/D(2m' )r. (7.1)

Here, K measures the fourth moments of the decay ampli-
tudes; cf. Eq. (6.11). If their distribution is Gaussian,
then K =3 and we expect W(overl. res. ) =2, in agreement
with other theoretical work ' and with an experiment by
Kretschmer and Wangler. ' These authors find from elas-
tic and inelastic proton scattering on Si, where the com-

autocorrelation functions of elastic scattering cross sec-
tions. If the statistics of the y s is Gaussian, then E =3
and the second term in Eq. (6.13) vanishes.

The correlation function of Eq. (4.29) is in the limit of
the Hauser-Feshbach approximation, introduced at the
top of the present section,

C„bb(e)=, b(r+ E)''D/2

r.—r, i J g(x)(x e+—ir) 'dx-D'/2~,

(6.14)

pound nucleus P was excited to E„=16.8 MeV in the
domain of overlapping resonances,

W(overl. res. ) =2.09+0. 14 . (7.2)

If we assume strong absorption, i.e., ~, =x, =1, for all
relevant channels e, then Eq. (7.1) yields

W(overl. res. ) =2+ (E—3 )/2; (7.3)

by Eqs. (3.8), (3.18), (4.9), and (4.10). The elastic enhance-
ment factor reduces to

W=K — gr, g(0)D'/2
e

(7.5)

to first order in the absorption coefficients and neglecting
terms of order 1/N. With r, ~0 we have

m2
W( isol. res. ) =IC =y, /y, (7.6)

Assuming Gaussian statistics, this gives W(isol. res. ) =3.
We note, however, that this treatment of the limit of

isolated resonances is not entirely realistic, since—in actu-
al compound nuclei —it implies 1ow excitation energy,
and, hence, only a few channels will be open. Therefore
the assumption N »1 is unrealistic in this limit and we
should use the results of Sec. V rather than those of Sec.
VI. Here, one can define an elastic enhancement factor

only if all channels are equivalent, i.e., y, =y is indepen-
dent of the channel e. Then all the inelastic cross sections
of Eq. (5.6) are equal and the elastic ones are enhanced by
the factor

IV(isol. res. l = (l,'

yayt ye a~b. (7.7)

For Gaussian statistics, this again gives W(isol. res. )=3
for any number N of open channels. The proof will be
given in Sec. VIII.

Experimental studies of low energy neutron ' and pro-
ton scattering find the decay widths y~ to follow
Porter- Thomas distributions. This distribution is im-
plied by a Gaussian statistics of the decay amplitudes y~, .
Hence, the experimental results imply W(isol. res. )=3.

In summary, the elastic enhancement factor 8' is a
function of the statistics of both the decay amplitudes y~,
and the energy spectrum E~. Assuming Gaussian distri-

cf. the discussion following Eq. (6.13). Hence, the experi-
mental result (7.2) yields the fourth moment of the decay
amplitudes, namely

E=y, /y, =3.18+0.28, (7.4)

and thus confirms Gaussian statistics.
(ii) In the limit of isolated resonances characterized by

D » I, the integral in Eq. (6.16) is approximately mg(0);
see Eq. (5.2) and the discussion there. Note that D » I
implies weak absorption in all channels which yields

g r, =4+x, =2~r/D
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bution of the y's, W decreases from 3 to 2 when the phys-
ical situation changes from well isolated to strongly over-
lapping resonances. Both limiting cases have been investi-
gated experimentally and were found to be in agreement
with Gaussian statistics. No experimental result is avail-
able for the intermediate situation.

The essential property of the energy spectrum showing
up in the enhancement factor W is its stiffness. As dis-
cussed in Sec. II, the variance V 2crz of the distribution g
is inversely proportional to the spectral rigidity, D/az.
Based on experimental evidence, we have so far assumed

oz -D. If, however, we consider oz to be a free parame-
ter, we obtain, from Eqs. (5.4) and (7.5),

(8.5)

f(.) =(I+2y~z)-'",
and this immediately gives

N

y, yb g y, =y /(N+2) for a&b
e=1

(8.6)

(8.7)

and

that are valid for any distribution w. If w(y) is normal,
one obtains

~&g all ~ =0
= —g(0)D /2~D/cr~ . (7.8) 7a Xe

—1

=3y'/(N+2) . (8.8)

g (x) =D '(4~o~ )
'~ exp( —x /4o~ ),

Eq. (7.8) gives

(7.9)

This roughly means that the stiffer the spectrum, the
steeper the slope of W with increasing absorption. If one
assumes g to be Gaussian, i.e.,

One sees that the approximation of Sec. VI which requires
independent averages of numerator and denominator in
these equations is obtained if N &&2. This conclusion had
already been drawn from Eq. (6.1). The elements of the
matrix 3 are

A,b
——(1+6,b)—y /(N+2),0 (8.9)

~&a all 7- =Oe

,' (~) ' D—/cd . (7.10)

The specialization of our results to Gaussian distributions
is treated in detail in the next section.

VIII. THE CASE OF GAUSSIAN STATISTICS
AND EQUIVALENT CHANNELS

In this section we specialize the results of Sec. IV to the
case in which the distributions w, (yq, ) and p(eq Eq)——
cf. Eqs. (2.9) and (2.11)—are normal. In order to keep
this discussion within reasonable limits, we set the param-
eter e of Eq. (4.2) equal to zero and require equivalence of
all channels, i.e.,

(8.10)

The Fourier transform of g (y) is exp( —z crz)!D and one
therefore arrives at

B b
——

g r (1+x) l(x, N, D/cd), (8.11)

where y, =y is defined in Eq. (4.9). To evaluate the
matrix B, one uses the identity

(r!rP —'r+ X Ir. +r.' ~ )g(r)&y
e=1

= f dz[f (z)] [f'(z)] f dy e '~'g(y) .

w, (y~, )=w(yg, )=(2~y') ' 'exp( yg, /2—y') . (8.1)
where a special notation has been introduced for the in-
tegral,

This means that the absorption coefficients x, of Eq. (3.8)
and the transmission coefficients r, of Eq. (3.18) are in-
dependent of the channel e,

I (x,N, D/o~ ) =D (2m o~ )

+zz l+x D

x, =x and ~, =~. (8.2) && exp( —z )dz . (8.12)

If p is normal with variance oz, then Eq. (2.14) yields Eq.
(7.9).

The matrices rI and B of Eqs. (4.17) and (4.19) must be
evaluated. This is best done using the generating function

f(z)= f e r 'w(y)dy .

o,b +[N~+2~(1+. x——)] '[1+5,b( 8'—1)],
with the elastic enhancement factor

(8.13)

The resolvent (1—A) ' can be calculated with the
method used in Sec. VI, and Eq. (4.28) yields the com-
pound nuclear cross sections

One easily verifies the relations W=2+ N +2(1+x) r[N+2(1+x)]I(x—,N, D/oz) .
(N +2)(1+x)

(
N

2 2 2y.yb
e=1

and

—1

z & —2 ' z 2dz

for a &b (8.4)

(8.14)

In Fig. 2 we reproduce the enhancement factor W ob-
tained by Hofmann et al. " via Monte Carlo calculations
for N =5 channels. Compared with their results is the
function (8.14), with the choice
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3
g

W
Elastic enhancement factor W
for N=5 channels

I„(g)=m ' exp(g ) f exp( —z )dz .

The function of Eq. (8.16) is given in Fig. 4.
We now turn to the justification of Eq. (8.15).

(8.17)

IX. LEVEL REPULSION

$ Monte Carlo calcuhtion by Hofmann et al.—present work

D/op ——2~~ . (8.15)

If one requires level repulsion, this choice is imposed —as
we shall show in Sec. IX. The agreement between the
Monte Carlo calculations and the present analytical result
seems to be perfect within the errors of the former. This
is so despite the fact that the calculations of Ref. 11 have
not been done for equivalent channels but rather for vari-
ous five channel cases with the transmission coefficients
different in different channels. These results are given as
a function of the coefficient r, in that channel a for
which the elastic enhancement was determined.

In Fig. 3 the enhancement factor of Eq. (8.14) is
displayed for N =10 channels and in Fig. 4 for the limit
of X~oo. This limit is taken such that the sum X~ of
the transmission coefficients remains finite. Equation
(8.14) then yields

I 1 1 1 1 I

05 1

Transmission coefficients &

FIG. 2. Elastic enhancement factor 8' for N =5 open chan-
nels as a function of the transmission coefficients ~. The points
with error bars are from Ref. 11, the curve is given by Eq.
(8.14); see text.

A

P(E„.. . , E )= g p( E), —
A, =1

(9.1)

introduced in Sec. II, is removed at the same time. Ac-
cording to Eq. (9.1), a level X is distinguished from anoth-
er level p, since they are found in the neighborhood of dif-
ferent mean values e~ and e„. There is no physical reason
for this; the levels should all be equivalent. We therefore
symmetrize P and consider the distribution

A

Pg(E, . . . , E )=(A!) 'g +p(F,, E„), —
A, =1

where the sum goes over all permutations of

(9.2)

7 1 y ~ ~ ~

1 ) ~ ~ ~ ) A

Note that this modification of the energy level statistics
does not affect any result derived so far: the results are
independent of the e~ and therefore symmetrization with
respect to e~ does not change them.

Let us now construct the two-point function P2 by in-

tegrating P over all variables but two, which gives

So far we have specified the quantity oz that character-
izes the statistics of the spectrum only qualitatively: The
experimentally observed stiffness of statistical spectra tells
us that it should be of the order of the mean level distance
D; see Sec. II. One can go a step farther and relate o~ to
the probability of finding degenerate levels. This can be
done in such a way that an unsatisfactory feature of the
joint probability distribution

with

W'(N ~ oo ) =3 NrI (Nr(2~—m)'), . (8.16) Pp(E„E2)= g p(ei Ei)p(ep —E2)[A(A——1)]
p)A,

@+A,

(9.3)

Using the approximations (2.13) and (2.14), one obtains a

W
factor W

W

I

05 1

Transmission coefficients &

2
0

Nx

FIG. 3. Elastic enhancement factor 8' for N = 10 open chan-
nels as a function of the transmission coefficients r. The stiff-
ness of the spectrum is given by Eq. (8.15); see text.

FIG. 4. Elastic enhancement factor 8' in the limit of
N~ oo, but N~ finite. The stiffness of the spectrum is given by
Eq. (8.15); see text.



1240 A. MULLER AND H. L. HARNEY 35

g(0) =D (9.5)

and, with Eq. (7.9), the parameter given in Eq. (8.15).
Equation (9.5) entails —by virtue of Eq. (7.10)—the

derivative

2 (9.6)

It is remarkable that this result is in exact agreement with
the theory which treats the matrix H of Eq. (2.4) as an
element of the GOE; see Sec. 3 of Ref. 10. We disagree
with Ref. 24, where the derivative of Eq. (9.6) was ob-
tained to be —4.

An unsatisfactory feature of the present approach
should be mentioned: Although Eq. (9.5) is very plausible
and although it correctly leads via Eq. (9.6) to the limit of
the GOE theory, it also leads to a ratio o.z/D which is
somewhat too small —see Eq. (8.15)—for the approxima-
tions (2.13) and (2.14) to be very good. These approxima-
tions are, however, needed if the ensemble averages shall
be stationary with respect to the total energy E. There
does not seem to be a simple and physically reasonable an-
satz for the level statistics that would improve this situa-
tion, and with the present section we have reached the
limit of the model presented here.

X. SUMMARY AND CONCLUSION

The main achievements of the present work are (or-
dered by their degree of specialization):

(i) A method for calculating first and second moments
of statistical scattering operators S is presented. The en-
semble of the statistical variables is not restricted to be
Gaussian. It takes care of fluctuations of the energy lev-
els and decay amplitudes. We calculate term by term the
ensemble averages of a power series expansion of S and
subsequently resum the series. The nonvanishing elements
of the mean scattering matrix S are given by the well
known' expression (3.17). Thus S is given by an energy-
scale independent ratio of model parameters; this ratio
does not depend on the resonance level distribution. All
further results are also stationary with respect to the ener-

gy.
The compound nucleus reaction cross section

~

Sfb
~

is
given in Eq. (4.28) in terms of the probability integrals
(4.16) and (4.18). Equation (4.28) contains an elastic
enhancement factor. Our calculation reveals the symme-
try of the S matrix as one of the origins of the elastic

relation between g and the two-point function P2', namely

Pq(E), E2) = [D —g(E) E—q)][A(A —1)] ' . (9.4)

The value of P2 for E]——E2 is the probability of finding
two levels degenerate. If we inject this information, then
the ansatz (7.9) yields the stiffness parameter. Requiring
Pz(E,E)=0, one obtains

enhancement factor; cf. Ref. 25. We emphasize that the
derivation of Eq. (4.28) contains an essential approxima-
tion; namely that the number X of open decay channels is
large compared to unity. One sees, however, that the
neglected terms are of higher order in the strength func-
tion x, of Eq. (3.8). Therefore the final result is valid for
two complementary limiting conditions which cover all
the physics of absorption into the compound nucleus:
The present formalism applies for any absorption if Ã is
large and it applies for any N if the absorption is small.
Note that small N occur mainly below neutron emission
threshold where absorption is small.

(ii) We have singled out the observable that is sensitive
to the properties of the statistical ensemble. This observ-
able is the factor W of enhancement over the Hauser-
Feshbach formula occurring for elastic scatterin; see Eq.' ~2(6.16). It turns out to depend on the ratio y /y of
statistical moments of the decay amplitudes and on the
autocorrelation function g [see Eq. (2.14)] of the reso-
nance level distribution. Introduction of Gaussian decay
amplitudes yields experimentally known results: W =2
for overlapping resonances, ' 8'=3 for iso1ated reso-
nances. ' We note that 8'does not depend on the reso-
nance level distribution in both limiting cases: very weak-
ly and very strongly overlapping resonances. This means
that the experimental results —in connection with the
present formalism —confirm the Gaussian statistics of res-
onance decay amplitudes. Considering 8'as a function of
the transmission coefficient, its slope is—for weak
absorption —inversely proportional to the stiffness param-
eter of the spectrum. The stiffer the spectrum, the steeper
the slope of 8" see end of Sec. VII. For intermediate ab-
sorption, 8 is given by a functional in the autocorrelation
function g. Since 8 essentially measures the correlation
between the in- and out-going channels, one may say "the
autocorrelation of the resonance level distribution weak-
ens the correlation of entrance and exit channel. "

(iii) If Gaussian statistics is accepted for the decay am-
plitudes, then the results of the present formalism depend
only on the stiffness of the energy spectrum (and, of
course, on the transmission coefficients). This parameter
can be determined by requiring Wigner's level repulsion;
cf. Eq. (6.5). We incorporate it into our model by con-
structing a joint probability distribution for the resonance
levels which is symmetrized in the energy arguments [Eq.
(9.2)]. This removes at the same time an artificial order-
ing of the resonance levels.

(iv) The present result for the enhancement factor W
agrees with the Monte Carlo calculations of Ref. 11
within the errors of the latter and for the full range of ab-
sorption; see Fig. 2.

In conclusion, we hope that the present work, in con-
nection with sufficiently precise experiments, will help to
decide whether Gaussian statistics and the fundamental
ideas connected with it (cf. Refs. 7—9) are realized in na-
ture.
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