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Inclusive observables calculated with the nuclear random walk model:
Application to the Ar + Zn reaction at 14.6 and 27.6 MeV/nucleon
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A model for peripheral heavy ion reactions which includes, in a consistent formalism, both pri-

mary and secondary phases of the reaction mechanism is described. The model is based on a "nu-

clear random walk" in the projectile-like fragment mass which depends on the number of collisions
between projectile and target nucleons along the classical trajectory of relative motion. Emphasis is

placed on simple evaluation of experimental observables. An application to the Ar+ Zn reaction,
at 14.6 and 27.6 MeV/nucleon, is made and differences between model predictions and measure-

ments, especially at the higher energy, are discussed.

INTRODUCTION

With the advent of medium energy (10—100 MeV/
nucleon) heavy ion accelerators, a considerable quantity of
data on the inclusive production of projectile-like frag-
ments has been accumulated. Examples of such studies
may be found in Refs. 1—6. These data have been
analyzed mainly in terms of ablation abrasion models' '

for the yields, while the energy spectra have often been
characterized by the momentum width parameter o.o relat-
ed to the Fermi motion of nucleons removed from the
projectile. On the other hand, it has been shown in many
works that the natural extension of Goldhaber's work to
the prediction of angular distributions fails to agree with
the measurements. ' '

Recently, a nuclear random walk model was proposed
in which the result of a nucleus-nucleus collision at a
given impact parameter was considered to be the result of
a random walk in the projectile mass, the number of
"steps" being obtained from a Poisson distribution around
the average number of nucleon-nucleon collisions calculat-
ed in the optical limit of Glauber's theory. ' The use of
the number of nucleon-nucleon collisions as a measure of
the reaction strength is also the basis for the calculation of
fragment yields recently published by Harvey. " In Ref.
8, following Karol, ' this latter quantity was approximat-
ed by a Gaussian function of the impact parameter thus:

T(b)=oNN j" dz f p&(r&)p2(r —r&)dr,

e
—(b +z ))/2a dz (1)

(2 2)1/2

where o.NN is the isospin averaged value of the free
nucleon-nucleon cross section at the beam energy con-
sidered and the trajectory which describes the relative
motion between projectile and target is assumed to be a
straight line in the beam (z) direction. The Gaussian ap-
proximation, shown by Karol to be valid at large impact
parameters, makes use of the constants K and o., which
characterize the projectile target combination. It leads to
particularly simple expressions for the fragment mass
yields. It also simplifies calculations of angular distribu-

tions based on an approximate classical deflection func-
tion obtained from a point Coulomb repulsion and a
"double folding" nuclear real attractive potential. ' This
approach visualizes the deflection of the fragment as a
combination of potential deflection and recoil effects (due,
as in Ref. 5, to the Fermi motion of the mass removed
from the projectile) and is similar in spirit to that used by
Van Bibber et at'. In Ref. 1 preliminary calculations us-

ing these simple hypotheses were shown to reproduce
quite accurately the form of the angular distributions of
projectile-like fragments in the Ar+ Zn reaction at
27.6 MeV/nucleon. An important ingredient of the calcu-
lation was the inclusion in the random walk of a probabil-
ity for the loss of alpha particles from the projectile in ad-
dition to those representing inelastic scattering and nu-
cleon pickup and stripping.

It is the purpose of the present work to present a more
detailed account of the model and show how one may ob-
tain various experimental observables. Examples of calcu-
lations for the Ar+ Zn reaction will be given which
reproduce most of the observed features of the data. This
reaction was chosen since it seems to be fairly typical of
light projectile reactions, but also because of the extent
(these data form part of a systematic experimental study)
and quality of the measurements.

Before comparing data and calculations we will make a
brief presentation of the model and discuss improvements
which have to do with geometrical aspects of the profile
T(b) which may be influenced by Pauli blocking' (Sec.
II A). In Sec. II B we present the formalism when alpha
particle emission from the projectile is included as a com-
peting probability in the random walk; Sec. IIC shows
how the improved geometry modifies angular distribu-
tions. The important consequences of evaporation from
excited fragments after the reaction will also be discussed
(Sec. IID). These improvements will clear the way for a
discussion of the Ar+ Zn data (Sec. III). An estima-
tion of the average energy loss of projectile-like fragments
is included in Sec. III, although in this work no attempt
has been made to make detailed calculations of energy
spectra. Finally, in Sec. IV we present a summary of our
principal results and some concluding remarks.
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II. THE NUCLEAR RANDOM WALK MODEL

A. Improvements to the model
50»

The principle of the model is very simple. The Poisson
distribution which describes the probability density for ex-
actly n nucleon-nucleon collisions is

P„=
T7l —T

where T(b) is given by Eq. (1). The simplest form of the
model states that the consequences of each nucleon-
nucleon collision may be described by constant competing
probabilities P ], P+&, and Po for single nucleon loss or
gain and inelastic scattering. We may then write down
the probability for a given mass loss mi from the projec-
tile at a given impact parameter b ( T) as
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where I is a modified Bessel function of order m~ ——i —jml

and n =i +j +k. Now, using the Gaussian geometry

dT db2

2o

and assuming ml «(P & P+~ )ICoNN, we—obtai.n the dif-
ferential yield as in Ref. 8:

I I

5 10
Impact parameter (fm)

I
5

Radial separation (fm)

I

10

FIG. 1. (a) Variation with impact parameter of the integral
along a straight line trajectory of the convolution of the Ar
and Zn matter densities. The solid curve is the exponential in-
tegral approximation with k =0.0367. The dashed curve is the
Gaussian approximation. The dotted-dashed curve simulates a
Pauli suppression factor of 10 (k =0.565). (b) Variation of the
convolution of matter densities of Ar and 'Zn with the radial
separation of their centers. The parameters used to specify the
Saxon-Woods forms for the densities are, for Ar, po ——0. 163,
r =3.659, and a =0.515; and for Zn, po ——0. 177, r =4.313,
and a =0.523. The solid line was obtained using Eq. (22)
(P=0.2874!.

= f 2nbdbP (T)
dmI ml

P 1
27TO

+1

ml /2 (P, +P+&)T
e

0

&&I,(2TQP )P+ ) )dT/T,

which, by taking advantage of the recursion relationship
for modified Bessel functions and substituting
a=(P ~+P+~)/2+P ~P+&), we may rewrite as

m, /2
do- 2~o-2

dml mI P+ i

do
dmg

2m-o-2 P+]
mg P

mg

If P+» P I, of course the cross sections should be ex-
changed as required by symmetry.

In Fig. 1(a) we show the quantity T/oNN [Eq. (1)]
evaluated numerically. The geometrical parameters used
in the calculation to specify the Saxon-Woods forms for
the densities of Ar and Zn are given in the figure cap-
tion. Also shown in the figure is the Gaussian approxi-
mation fitted to the numerical calculation at b =8.5 fm.
It can be seen that the approximation is reasonable only
for b & -8 fm. A considerable improvement may be ob-
tained, however, by using the form

X2 e I
l 1 x II+1 x dx

dT db
T 2o-2

which leads to the relation between T and b,

(9)

Now, choosing P ~ &P+& (the projectile loses mass, on
the average), we easily obtain that the cross section for
losing mass mi from the projectile is

b . kT(0)
2

=Ei kT(b)
ONN

(10)

d(x 2&o

dms mi

whereas that for gaining mass, mg, is

where Ei(x) is the usual exponential integral. We note
that for small arguments (small T at large b) we recover
the Gaussian form [Ei(x)—ln(x)+y for small x, where
y=0.577 is Euler's constant]. Thus, Eq. (10) has the dou-
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ble advantage of maintaining the Gaussian approximation
at large impact parameters, while producing a greatly im-
proved description of the geometry of two interpenetrat-
ing nuclei at smaller impact parameters.

A possible further advantage of Eq. (9) has to do with
the consequences of Pauli blocking. Harvey" has at-
tempted to introduce such effects in his calculation of
fragment yields by employing an empirical density depen-
dent effective nucleon-nucleon cross section. This pro-
cedure leads naturally to a decrease in the average number
of nucleon-nucleon collisions for small impact parameters
relative to that number calculated using the free value of
o.NN. Such behavior can be approximately simulated us-
ing Eq. (10), by introducing a Pauli blocking factor (RP)
equal to the ratio of the blocked average number of
nucleon-nucleon collisions at zero impact parameter to the
unblocked value (obtained using the geometrical convolu-
tion and the free nucleon-nucleon cross section). We thus
simply reduce the value of T(0) by a factor RP (increase
k). The form of the equation ensures that T will be un-
changed for large values of b corresponding to the fact
that o.NN tends to the free value at large separations of
projectile and target [Fig. 1(a)]. Thus the most peripheral
reactions will be insensitive to the value of Rz, whereas
more central reactions will show increased sensitivity.
Harvey finds that the inclusion of this effect has little
consequence for his calculation of yields. The analytical
simplicity of Eq. (9), on the other hand, leads straightfor-
wardly to a modified expression for the yields (compared
with that obtained using a Gaussian geometry), as will
now be shown. Equation (6) is replaced by

rnl /2
dg

dm1 m1 P+ )

X —,
' f e ' «'"[I 1(x) I +1(x)]dx, —

where

ky—
2~NNV P 1P+1

(12)

Using the shift theorem for Laplace transforms and sup-
posing that y «a (as is the case in practice), we obtain

do
dm1

do
dmg

2m.o. 1

m,

2mo-' P+ i

mg P

m

(1+e) '

(13)

where

e=r/(~' —1)'"=k/~NN(P —1 P+1) . (14)

The most important feature of Eq. (13) is that the cross
sections are now clearly energy dependent via the energy
dependence of o.NN, even if we exclude Pauli blocking ef-
fects. Of course, if k is increased from the geometrical
value the effects should be more striking. On the other
hand, it should be made clear that the rise in cross section
probably mainly concerns primary yields. Sequential
emission from excited fragments far from the projectile
tends to deplete these yields, and thus may stabilize the
cross sections with increasing energy.

B. Inclusion of alpha particle emission

The inclusion of alpha particle (or any other particle)
emission in the random walk formalism is straightfor-
ward. It leads to a simple extension of Eq. (3), which be-
comes

(POT) (P+1T) (P—1T) (P 4T) (P, +P— +P +—P )T—1 +I 0 —4

k! lt

ml /2
—1 —(P +P +P )T"

1=0P+)

(16)

where

where the index 1 indicates the number of alpha particles (mass four units in this context) emitted and m! ——4l +0 —j.
The associated cross section may be written

P ! ao ! 2T(0)QP P

+1 1=0 0

P+jP 4
2

2P 1+P )P+,
(P+1+P 1+P 4 —k/(TNN)

and q =
2+P (P+1

If the upper limit of the integral may be safely set equal to infinity, we obtain

/( 1) /21 4!
-

m, /2

o =2m.a.2 g ~ I (m! 31)P! 1

' [q/(q —1)' ],—
+1 1=0

(17)
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where P" is a Legendre polynomial. It can be shown by
using the Fokker-Planck approximation that the use of
the infinite upper limit is justified provided that
T (0)(P ] +4P 4 P—+ ] ) » m], a condition which is
reasonably satisfied in our calculations [see Sec. III and
Fig. 1(a)]. As in Eq. (8), the corresponding expression for
mz can be obtained by substituting mg = —mI and using
the fact that I,=I

C. Calculation of angular distributions

The basic ideas underlying the calculation of angular
distributions have already been explained in Ref. 8 ~ The
differential element do. =2m.b db is converted to a func-
tion of the laboratory deflection angle using a classical de-
flection function derived from a double folding nuclear at-
traction and a point Coulomb repulsion. The resulting
angular distribution which represents the sum of all pro-
cesses is then multiplied by the probability [Eq. (15)] to
produce a given mass deficit. Thus,

Developing the exponential, we find that the first term is

b oo

Op —— J V(r)dz,
2o- El,b

and that the full expression reads

~lab ~lab +~lab

b - ( —fl/JN)"= O]]+
2o. El,b „

Zz 2

V r "dz-
lab

(25)

(26)

where we have included the repulsion due to a point
Coulomb interaction. The first term of Eq. (26) was de-
rived in Ref. 8 using the Gaussian geometry, which results
in the simple relations

P [T(b)]
d Q]ab 277' sinO]ab d 0]ab

(18)
JN dT bJNT

V(r)=, Op ——

PNN d
'

2O Elab
(27)

The modified geometry influences the angular distribu-
tions partly through the Jacobian db /dT and partly by
modifying the deflection function. The modification to
the Jacobian is immediate:

d(7

d Q,],b

NN 2 dT P, (T) .
sinO]ab T d6']ab

(19)

b f" dV(r)d z
2

(20)

where

V(r)=JN f p](r])pp(r —r])dr] (21)

is obtained as the convolution of a zero range nucleon-
nucleon potential (with volume integral JN MeV fm ) with
the projectile and target densities. '

In Fig. 1(b) we show that the convolution itself is well
represented by a function of the same shape as that used
to describe the average number of nucleon-nucleon col-
lisions T(b). Thus V(r)/JN ——C(r) is approximately
given by solving

r =Ei[PC (0)]—Ei[/3C ( r ) ],
20

so that

(22)

dV(r)
dp

and thus

—V (r) pv].]iJ—
e

2(x
(23)

Onuc b f V( )
] ] +] ]~JN]d

2o- El,b

(24)

The modification to the deflection function comes about
as follows. The nuclear part of the deflection was written
in Ref. 8 as

1 ~ b dV(r)
dz

2E]ab —~ r dr

In this work we have used this approximation to evaluate
the (small) correction terms, but have retained Eq. (25) for
the evaluation of Op using V(r) given by Eq. (22). The
main result of the modification is to reduce 0]","b' for large
T and thus increase dT/dO], b in Eq. (19).

D. Effect of evaporation

Evaporation (secondary emission) corrections could, of
course, be included explicitly using a multistep Hauser-
Feshbach code, ' ' provided that knowledge of primary
fragment excitation energies and angular momentum dis-
tributions is available. In the absence of detailed
knowledge of these distributions, we are justified in for-
mulating an approximate treatment of evaporation. We
now show that a reasonable approximation to the results
of such calculations, and thus to the measured mass dis-
tributions following compound nucleus formation and de-
cay at low energies, may be obtained by once again invok-
ing a random walk process. The mass distribution follow-
ing evaporation from a compound nucleus is written

k
PN

P = g G(n, )n, !
n e!

e

IP'
l, !

(28)

where n, is the number of evaporated particles, m,
= k, +4l„n, =k, +I„G( n, ) is a normalized Gaussian
probability distribution characterized by the width o.„,e

and PN and P, represent, respectively, the nucleon and
alpha particle emission probabilities. Mass distributions
calculated with Eq. (28) are presented with the corre-
sponding data in Fig. 2. They were obtained with
(n, ) =E„/18.4 MeV, cr„=0.2 (n5, ), and PN P=0.5——
for all systems. The description of any given data set may
be improved by varying o„. The important point, is,n

however, that the square of the intrinsic evaporation
width remains small compared to (n, ). Of course, the
data in Fig. 2 are better described by the full multistep
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after the primary reaction). Multiplying this evaporation
probability by the probabilities that the evaporated parti-
cle will be either an alpha particle or a nucleon obtained
as described above by fitting evaporation residue mass dis-
tributions, we obtain PN ——P =0.5P, . It will have been
noted that the width induced in the number of evaporated
particles due to variation in the number of primary col-
lisions is considerably larger than that of Eq. (28). It fol-
lows that we make little error in neglecting the intrinsic
evaporation width, in which case we may incorporate the
secondary evaporation chain directly in the random walk
of Eq. (15). Thus,

P ( T) g ~P+] +P [ +P 4+PN+P )T
ml

j,k, l
k, 1

(P'+IT) (P' 1T) (P' 4T)

j! k! l!

~ il
~ lf ~Lft ol i IL hl & It

5 io » s io is
EVAPORATED MASS

(PNT) ' (P T) '

k, ! l, !
(32)

FKs. 2. Results of the random walk equation {28) (vertical
bars) compared with measured yields of evaporation residues
(solid circles). (a)—(f): ' 0+' 0 at E~,b ——35, 45, 52, 60, 70, and
80 MeV (data Ref. 17). (g)—(i): ' F+' C at E~,b ——50, 63.2, and
76 MeV (data Ref. 16). (j): ' 0+ Al at E~,b ——60 MeV (data
Ref. 16). The yields are plotted in terms of the number of mass
units removed from the compound nucleus.

Hauser-Feshbach calculations. Nevertheless, the almost
trivial formula (28) reproduces the main features of the
measured distributions.

To apply evaporation corrections to projectile-like frag-
ment distributions we need to make more assumptions
concerning the energy dissipation and the sharing of the
excitation energy E between projectile- and target-like
fragments. We assume

E„=PO(n )EI,b/A (29)

where Po is the primary inelastic probability, np is the
number of primary collisions, and E&,b/Ap is the beam ki-
netic energy per projectile nucleon. If this energy is
shared between the primary projectile-like and target-like
fragments in proportion to the projectile/target mass ratio
(equal temperature assumption), the excitation energy of
the projectile is given at small angles by

(P+)T)' (P )T) (P 4T)'

j,k, l k! $!
(33)

Equation (33) says that evaporation corrections can be in-
cluded directly in the random walk formalism, modifying
only the probabilities characterizing the random walk.
An equivalent statement is that inclusive measurements of
mass (charge) distributions of proj ectile (target--) like
fragments cannot be used to distinguish between primary
and secondary (evaporative) emission processes. These
statements, of course, remain true if we use some energy
partitioning other than Eq. (30). We require only that the
excitation energy of the decaying fragment be proportion-
al to the number of nucleon-nucleon collisions.

Constraints on the values of the random walk probabili-
ties may be formulated as follows:

P'
] +P'+

&
+P' 4+Po = 1

1
=P 1+PN ~

P 4 ——P' 4+P
(34)

where the primes are meant to designate primary proba-
bilities. By combining terms containing P'

&, PN and
P' 4, P, we obtain an equation similar to (15),

—(P )+P+)+P 4)T
ml

EiabE„=P,'(n, )
Ap Ap+A,

(30)
Po Ei.bPN+P =P, =

18.4(AP +A, )

so that, in terms of Eq. (28),
I

18.4( AP +A, )
(31)

which defines P, as the evaporation probability (the prob-
ability that a primary nucleon-nucleon collision leads to
subsequent evaporation of a nucleon or an alpha particle

These equations are, however, insufficient to determine
the individual probabilities.

We close this section with a comment on Eq. (28). Us-
ing this very simple equation we have obtained a reason-
able description of fusion-evaporation mass distributions,
despite the fact that the competing probabilities for nu-
cleon and alpha particle emission would be expected to
vary significantly with the nucleus encountered in the
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deexcitation chain. In this sense their values must
represent some of the average probabilities. The situation
may be similar for the primary emission probabilities; i.e.,
although these probabilities should vary from nucleus to
nucleus and maybe even with the exact position at which
the nucleon-nucleon collision takes place, average values
which are kept constant succeed in reproducing the main
features of the reaction mechanism.

the projectile.
Consideration of low energy direct reactions leads us to

expect that the primary inelastic probability is about 5
times larger than P' ] or P'+ &. We have accordingly fixed
these parameters as P'+~ ——0. 1, P'

&

——0. 15, and Po ——1

—P'
] —P'+& ——0.75. The secondary emission probabili-

ties are determined by Eqs. (34).

III. ANALYSIS OF THE Ar+ Zn DATA

The data to be analyzed consist mainly of charge yields
(do. /dz) obtained between 3' and 30 (lab) at 14.6 and 27.6
MeV/nucleon. The main features of the experiments are
described in Refs. 1 and 18. At the higher energy, mass
identification was achieved at small angles (3'—7'). The
expression for total reaction cross sections using the
Gaussian geometry [Eq. (1), valid at large impact parame-
ters] is'

o g
——2vro. [In(Ko.NN)+y] . (35)

This expression yields values of 3200 and 3050 mb,
which agree very well with the experimental values of
3110 and 3000 mb at 14.6 and 27.6 MeV/nucleon, respec-
tively. Since the measUred cross sections for fragments
between Af ——21 and 42, are, respectively, 1690 and 2200
mb, we thus see that a substantial part of the cross section
at the higher energy is due to rather central collisions
(and/or to events involving multiplicities & 1), and there-
fore will not be described correctly in the present model.
The more central collisions are expected to give rise to
very highly excited projectile-like fragments (perhaps with
temperatures as high as 7 MeV) which subsequently de-
cay. The calculations of Barbagallo et al. ' predict that
such nuclei would disintegrate, giving rise to three distinct
groups of fragments in the mass ranges A 1—5, 10—18,
and 19—35.

The model parameters consist, in principle, of four pri-
mary probabilities, P'+], P'

&, Po, and P' 4, the secondary
probabilities being determined by Eqs. (29)—(31). We
have supposed that alpha particle loss from the pro-
jectile-like fragment as a primary process is negligible, so
that with the condition P'+]+P' ]+Po——1 we are left
with only two free random walk parameters. A third pa-
rameter comes from the rather artificial introduction of
the effects of the Pauli principle. This parameter was
characterized in Sec. II by the ratio (Rz ) of the number of
collisions at an impact parameter b =0 fm to that number
obtained by multiplying the numerical integration of the
density convolution [Eq. (1)] by the free nucleon-nucleon
cross section, and has been fixed at Rz ——0. 1. Using a
constant value of Rz is equivalent to supposing that the
Pauli blocking effects do not vary strongly over the ener-

gy range considered, a supposition which is supported by
the nucleon-nucleus calculations of Hasse and Schuck. '

The primary nucleon gain probability would be expect-
ed to be rather less than the loss probability P' ]. This is
simply because P'

&
refers to nucleons which escape from

the projectile and are either captured in the target or
emerge as free nucleons, whereas P'+& refers to those nu-
cleons which escape from the target and are captured by

A. Mass and charge yields
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FICx. 3. (a) Measured charge yield in the Ar+ 'Zn reaction
at 14.6 MeV/nucleon. The calculation (dotted line) is the result
of Eq. (17) adapted for charge yields as explained in Sec. III A.
The solid line shows the effect of Pauli suppression as described
in the text. (b) Same as (a), but at 27.6 MeV/nucleon. The mass
yield multiplied by 2 is superimposed on the charge yield. The
mass yield corresponding to peripheral collisions (open circles)
also multiplied by 2 is also shown in the figure.

As mentioned in Sec. IIA, the modified geometry al-
lows us to calculate mass yields [Eq. (17)] either by using
a collision profile corresponding to the geometrical convo-
lution or by depressing the number of collisions for small
impact parameters. Calculations corresponding to these
two cases are shown in Fig. 3. The charge yields were ob-
tained from the calculated mass yields by folding with a
Gaussian distribution (corresponding to the observed
width in the mass distribution for a given charge) centered
about the most probable mass observed for each charge
and renormalized by a factor of 2. This normalization is
justified by the fact that the observed nuclei, in general, lie
close to the stability line.

As expected, the description of the data at the lower en-
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ergy is quite good, particularly when the Pauli suppres-
sion factor is used. At the higher energies it is necessary
to distinguish between the total observed fragment yields
and that part of the yield which refers to peripheral col-
lisions (referred to by the authors of Ref. 1 as "quasi-
fragmentation"). The magnitude and shape of this part of
the fragment yield is quite well reproduced by the calcula-
tion (Fig. 3). However, the total yield (shown for both
mass and charge) is about a factor of 2 larger. It seems
likely that this additional yield can be ascribed to the
disintegration of highly excited nuclei produced in more
central collisions. Preliminary calculations support this
idea. If this conjecture is correct, it means that such reac-
tions can provide good opportunities for studying the de-

cay of hot nuclei. Both the calculations by Barbagallo
et al. ' and by Bondorf et al. ' predict that such nuclei
may fragment into two or more large pieces, the principal
reason being that the ratio of Q value to the temperature,
Q(t)/t, diminishes with increasing temperature t.
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B. Angular distributions
10

Angular distributions have been calculated in accor-
dance with Eqs. (19) and (26). Since at a given angle the
differential cross sections vary smoothly with increasing
mass loss from the projectile, the distribution for a given
Z has been taken to be that corresponding to the most
probable value of mI (renormalized by a factor of 2). In
this calculation Pauli blocking effects were not introduced
into the real potential, which thus has the radial profile of
the convolution of the projectile and target densities. The
reason is that only the energy dependent part of the real
potential would be expected to be influenced by such ef-
fects, and the total potential is probably dominated by the
energy independent (Hartree-Fock) part. In making the
calculations it is also necessary to take into account the
effects of the recoil due to the missing mass. This was
achieved exactly as described in Ref. 8 by folding the cal-
culated angular distributions with a Gaussian whose
width is given in Ref. 8 as

2 2 2ag ——c G/PF, (36)

where PF is the fragment momentum (corresponding to
the beam velocity), and the value of the cro parameter has
been calculated using a Fermi momentum width parame-
ter cro 84 MeV——/c. The effect of the convolution is illus-
trated in Fig. 4. It will be recalled that Goldhaber has
shown that the evolution of o.

G with the final fragment
mass AF,

o g oAoF(Ap —AF )/——(A~ —1), (37)

does not depend on whether the mass is removed during
or after the interaction.

As seen in Fig. 4, the comparison of the shapes of cal-
culated and measured distributions is extremely satisfacto-
ry, even at the higher energy. It depends principally on
the ratio of the total nucleon emission probability P

&
to

the corresponding alpha particle emission probability P
and thus, in the present context, mainly on the value of
Po. In particular, the presence of an alpha particle emis-
sion probability is responsible for the change in slope near
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FIG. 4. (a) Angular distributions in the Ar+ Zn reaction
at 14.6 Me V/nucleon. The solid lines are predictions as
described in Sec. IIIB. In a few cases the distributions corre-
sponding to recoil alone have been included for comparison
(dashed lines, cro ——84 MeV/c). (b) Same as (a), but at 27.6
MeV/nucleon (data of Refs. 1 and 18).

C. Energy loss

As mentioned in the Introduction, the treatment of en-

ergy spectra will be limited in this work to the calculation
of the mean energy per nucleon of observed fragments as
a function of laboratory angle. The kinetic energy loss is
supposed, as in Ref. 8, to be due to the primary nucleon-
nucleon collisions. Explicitly,

EF=Ei,b(1 —1/Aq )", (38)

which corresponds to a loss of the instantaneous energy
per nucleon at each nucleon-nucleon collision. We may
now calculate the average value of EF/AF (the primes
denote primary fragments) for each primary fragment AF'

as

= g P„,(n)(EF /AF )
F n

(39)

7' for reasons discussed in Ref. 1. However, it should not
be forgotten that at 27.6 MeV/nucleon the calculation
concerns only about half of the measured cross section.
Thus at this energy the good agreement between the
shapes of calculated and measured angular distributions
may reflect a rather featureless angular distribution for
the part of the cross section due to disintegration of high-
ly excited nuclei, as is expected from kinematic considera-
tions.
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The calculations thus based on Eqs. (38)—(40) are
shown together with the data in Fig. 5, in which the mean
energy loss has been characterized by the parameter

04m

0.2-

Ep

Ap

(EF )
AF

(Ep/A~ ), (41)

0.8

p6

p4m

0.2

where p and F refer, as above, to the projectile and the ob-
served fragment. It will be seen that good agreement is
obtained with the data. At the lower energy the effect of
the Coulomb branch of the deflection function is particu-
larly apparent for fragments with Z close to that of the
projectile. Indeed, 6 initially decreases with increasing
laboratory angle for Z =17 at Ehb( Ar) =584 MeV and
the effect is reproduced by the calculations. For small an-
gles the primary energy loss is well approximated by a
straight line:

0.8

0.6
(EF')

AF

E»b 1—PQT

AF
0.4

0.2
(this equation is exact as P+ &

tends to zero), and provides
some a posteriori justification for the use of Eq. (29).

where P„, is the probability of forming a given primary
F

fragment at a particular impact parameter (primary labo-
ratory angle) for which there were n nucleon-nucleon col-
lisions. We also require the probability that a given pri-
mary fragment ( AF') leads to the final observed fragment
( AF), which enables us to calculate the average energy per
nucleon as

(E.) = gP, (EF/AF)AF, F F
AF

(4O)

Stated more simply, the spectrum of the energy per nu-
cleon of the observed fragment corresponds to the contri-
buting spectrum of primary fragments, each characterized
by an average EF/AF for a given primary laboratory an-
gle [given by Eq. (26)].

We should also comment on the energy loss due to Q-
value effects. For the secondary emission this quantity is
contained in Eq. (31). For the primary mass change the
required correction is expected to be small if the nucleons
lost from the projectile are transferred to the target (and
vice versa) and larger ( —8 MeV/nucleon) if the primary
mass change is accompanied by emission of nucleons. We
have, in this work, supposed the former mechanism to
predominate, and have therefore included no explicit g-
value corrections.

I \ I 1
10 20 30 40 &0 20 30 40

8 )ab (degj 8 (ab(detj)

FICs. 5. Variation of the parameter 6 (see text) with laborato-
ry angle for projectile-like fragments at (a) 14.6 and (b) 27.6
MeV/nucleon. The solid curves are model predictions as
described in the text. At small angles the two branches corre-
spond to Coulomb and nuclear parts of the deflection function.
At the lower energy the dashed line at small angles indicates the
cross-section weighted average of 6 for the two branches.

IV. SUMMARY AND DISCUSSION

We have presented in this work a simple analytical
model for peripheral heavy ion collisions which predicts
inclusive experimental observables in a consistent manner.
We have shown explicitly how to calculate mass or charge
yields of projectile-like fragments and corresponding an-
gular distributions. We also presented a limited discus-
sion of energy loss. An application of the model to the

Ar+ Zn reaction at 14.6 and 27.6 MeV/nucleon has
been made. At the lower energy the model predictions
agree well with the experimental measurements. At the
higher energy the measured cross section for the
projectile-like fragments is about twice as large as the
model prediction. Despite this fact, the form of the
predicted angular distributions is similar to that measured
experimentally. The origin of the excess cross section has
been discussed. It seems likely, in the light of the work of
Barbagallo et al. ,

' that highly excited projectile-like
fragments produced in central collisions disintegrate, pro-
ducing fragments whose masses are similar to those ex-
pected from an asymmetric splitting of the primary frag-
ment. It is not clear to what extent this second mecha-
nism may be thought of as simply the evaporation of mas-
sive fragments as described in the work of Moretto and
collaborators. However, it should be remarked that at
20 MeV/nucleon coincidences between fragments with
Z ~ 3 have been observed in the Cl+ Ta reaction with
yields estimated at a few percent of the inclusive produc-
tion rates. The central question is thus: Do primary
projectile-like fragments with an initial temperature of
5—8 MeV evaporate light particles (in which case an Ar
nucleus would be reduced to a collection of particles with
Z & 3), or do they, on the other hand, disintegrate into
two or more large fragments which, despite possible sub-
sequent evaporation, are observed as cold products in ex-
periments?

It is perhaps instructive to compare the present model
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with those familiar at higher and lower energies. At low
energies, it will be clear that the primary loss and gain
probabilities P'

&
and P'+~ may be reinterpreted in terms

of drift and diffusion coefficients characteristic of a dif-
fusion process and thus may be estimated either using a
macroscopic potential energy or by considering the in-
teraction of two Fermi gases. There appears to be some
experimental evidence that near the Coulomb barrier time
dependent probabilities are required to explain the mea-
surements. On the other hand, it should not be forgot-
ten that the absence of collective effects would probably
limit the application of the present model to energies well
above the Coulomb barrier. In any case it should be em-
phasized that the use of empirical probabilities allows us
not only to include secondary emission (evaporation), but
also to allow for emission of nucleons to the continuum in
the primary interaction.

At high energies ( & 100 MeV/nucleon) the formulation
of the model leads us to expect some similarity to the
abrasion-ablation approach. ' In this context it should
be pointed out that the presence of the inelastic probabili-
ty Po is, in some sense, equivalent to the final state in-
teraction invoked by Hufner et al. to account for
discrepancies between the predictions of the abrasion-
ablation model and experimental measurements. Howev-
er, herein the formation of an equilibrated piece of nuclear
matter (corresponding to the participant zone or fireball),
is not considered. The participant zone corresponds to

nucleons transferred from projectile (target) to target (pro-
jectile), to nucleons reabsorbed in their parent nuclei (or
nucleon exchange) corresponding to inelastic scattering, or
to nucleons emitted to the continuum. Another difference
is that the dissipated energy is assumed to arise from
nucleon-nucleon collisions and is not calculated as the
change in surface energy due to abrasion.

Besides investigation of these topics and a more exten-
sive treatment of energy spectra, other extensions of the
model are planned. One may easily make a calculation
for isotopic yields by separating the probability for nu-
cleon loss or gain into corresponding neutron and proton
probabilities. One may also calculate multiplicities and
angular distributions of light emitted particles, although
the calculation requires simultaneous treatment of the
projectile and target masses. Finally, one can predict re-
sults of exclusive experiments (probably using a Monte
Carlo representation of the model) in which light particles
are observed in coincidence with the heavier projectile
residues.
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