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We derive the zero-temperature second random phase approximation using Rowe's double-

commutator equation. Subsequently, we show that the zero-temperature second random phase ap-
proximation exhibits formal properties in analogy with the usual 1p-1h random phase approxima-
tion. In particular, the second random phase approximation preserves the energy-weighted sum
rule.

Recently, an extension of the simple random phase ap-
proximation (RPA), referred to as the second RPA, was
formulated in Ref. 1 following Rowe's equations-of-
motion method. This extension accounts for residual
couplings to (and inside) the 2p-2h subspace in addition to
the couplings inside the 1p-1h subspace.

This second RPA has been employed to describe a
variety of aspects of nuclear dissipation. In particular, the
second RPA is very efficient in describing properties of
giant vibrations like the spreading widths. ' The second
RPA can also provide an answer to the question of the
missing strength in the case of the Gamow-Teller excita-
tions as well as to the question of the screening of the
tensor force in finite nuclei.

The aim of this Brief Report is to supplement the pre-
sentation in Ref. 1 by showing that the zero-temperature
second RPA exhibits formal properties in complete analo-

gy with the simple RPA. At the same time, it can also
serve as a brief, but self-contained, introduction to the
theory of the second RPA as a whole.

As is the case with the simple RPA, the search for for-
mal properties of the second RPA is greatly simplified by
the fact that the second RPA excitation operator 0—
which creates a one-phonon state —satisfies the following
double-commutator equation:

( HF
~

[R,[H, O ]] ~

HF) =i)ico„(HF
~
[R,O ]

~

HF),
for all R, (1)

where fico„ is the excitation energy,
~

HF) is the Hartree-
Fock ground state of the nucleus, and R is any operator in
the same space as 0 . H is the exact many-body Hamil-
tonian.

The double-commutator equation (1) was introduced in
Ref. 2, where its equivalence to the simple RPA was also
shown. As we will subsequently outline, not only the sim-
ple RPA, but also the second RPA equations can result
from an equation-of-motion like Eq. (1). Notice, however,
that even though the generic structure of Eq. (1) remains
unaltered when the extension of the first to the second
RPA is implemented, the pivotal new element is the
difference in the approximation for the excitation opera-
tor 0 . Specifically, the second RPA 0 comprises 2p-2h
components in addition to the familiar case of 1p-1h com-
ponents, namely

0„=g [Y;(co )a ci; —Z;(co„)a; ci ]
ml

[Y~pij ( co )a~ an ci~ a;
m &n, i &J

(2)

In Eq. (2), the a's are fermion-creation and fermion-
annihilation operators, while the Y's and Z's are forward
and backward going amplitudes. Indices m, n,p, q denote
particle states, while indices i,j,k, I denote hole states.

Equipped with Eqs. (1) and (2), one can repeat the steps
in Sec. III of Ref. 2 and show that all the formal proper-
ties familiar from the simple RPA hold for the zero-
temperature second RPA as well. In particular, these for-
mal properties are the following:

(1) The solutions of the second RPA appear in pairs
having symmetric positive and negative eigenvalues.

(2) The second RPA solutions have real energies when
Thouless's stability condition is fulfilled.

(3) Spurious solutions reflecting the center-of-mass
motion separate out and have exactly zero energy.

(4) The second RPA solutions are orthonormal.
(5) The nonspurious second RPA solutions form a com-

plete set.
(6) The matrix elements of any operator W calculated

in the second RPA preserve the energy-weighted sum rule.
Since the steps associating the forrnal properties listed

above with the second RPA are similar to the steps in the
case of the simple RPA, henceforth for illustration pur-
poses, we will focus only on the energy-weighted sum rule.
This selection has also been motivated by the prominent
role that the energy-weighted sum rule plays in the discus-
sion of the properties of giant vibrations. ' ' Moreover,
we will discuss this sum rule in connection with a non-
Herrnitian operator.

However, before proceeding further with the discussion
of the energy-weighted sum rule, we first outline for corn-
pleteness how the second RPA equations result from the
double-commutator equation (1).

Indeed, it is a matter of algebra to show that insertion
of expansion (2) in Eq. (1) yields the following linear set
of second RPA equations:

( (co, ) (co„)
~(co,) " ~(co„)=fico„, (3)
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where M and M are 2)&2 matrices,

7~mnij, pk mnij, pqkl
(4a)

+mi, pqkl

7

mnij, pk mnij, pqkl
(4b)

and

9'(co„)=
Y;(co ) Z;(cu )

~(iu )=
Ymnij (~v) mnij (~v)

The form (3) for the second RPA equations is quite
analogous to the simple RPA form as introduced by
Thouless. The difference lies in the larger dimensions of
the matrices M and A. '

The elements of the matrix M are defined as

A; pk
= (HF

I [a; a, [H,apak]] I
HF), (6a)

Ami, pqki (HF
I
[a a [H apaqaiak]] I

HF)

Amnj pk
——(HF

I
[a; aj. a„a,[H,apak]] I

HF), (6c)

A „;. ki=(HF I [a; aj a„a. , [H,apaqaiak]] I
HF) . (6d)

The elements of the matrix M have the same form as
the elements of the matrix M apart from the following
two differences:

(i) In the second product of fermion operators, the par-
ticle indices p and q are interchanged with the hole in-
dices k and l, respectively.

(ii) A minus sign appears in front of the whole expres-
sion.

For example, the matrix element B;pqkl is

B;pqki
= —(HF

I
[a; a, [H,aktai aqap]] I

HF) . (7)

A lengthy, but straightforward, calculation shows that
the matrix elements of M can be expressed as

Amipk ~, m, i ( m ei )6mp6ik +~ m, i~p, k mkip

Ami pqki ~m i [+(Pq ) '&kl p Vk-iip6mq +(k )++pq, k Vmkpq6ii]

Amnij pk ~mn ji[+(mn ) Vijkm6pn +(V ) Vpimn6kj ]

Am„;, pq« ~mn;, [(em+en —e; —e, )+(Pq)W(kl)5 p6«5, ,6,„—k(mn)+(ji)+(Pq)+(kl)~p, V«i»6nq6k

+(nq np)+—(kl) V „pq5k6ii+(ni nk)4—'(Pq) Vki15«p6„q]

(8a)

(8b)

(8c)

(8d)

~ a, P &a&P &a&P &P &a (loa)

and

aP, y &a&Ply+ &a&P y (lob)

aP y$ a&P y $ a P y (10c)

The symbols n. , n =1—n denote the occupation
probability of a hole and a particle state, respectively, at
zero temperature. They result from corresponding
fermion-creation —fermion-annihilation (or uice uersa)
contractions over the Hartree-Fock ground state and as-
sume either the value 1 or 0.

For the 8 matrices, one finds

and

+mi, pk ~m, i~p, k ~mpik (1 la)

+ml, pqkl mnl J,pk mn/J, pqkl (1 lb)

Here, the matrix elements of the two-body force V are
antisymmetrized. The single-particle energies e are the
stationary Hartree-Fock energies, namely

ea raa+ g Vjaja ~

J

where t refers to the kinetic energy contribution and
a,P, y, 5 are free indices. +(rs) is the antisymmetrizer
for the indices r,s. The definition of the symbols ]"is

W =M (Hermitian),

=A (symmetric) .

(12a)

(12b)

Additionally, in analogy with the simple RPA, the
second RPA amplitudes can be expressed as

Ym«J(cuv) = (RPAII
I
a; aj a„amOv

I
RPAII), (13a)

Zm«J(cuv) = (RPAII
I
a a„aja;0„ I

RPAII), (13b)

Ym;(cov) = (RPAII
I
a; a 0 '

I
RPAII ), (13c)

Zm;(iuv) = (RPAII
I
a a;0

I
RPAII) . (13d)

In Eq. (13),
I
RPAII) is the correlated second RPA

ground state defined by

0, I
RPAII ) =0, for all v . (14)

To show the validity of Eq. (13), one uses Eq. (14) to in-
troduce an intermediate commutator and then calculates
this commutator by replacing the correlated ground state
by the Hartree-Fock determinant. This procedure is simi-
lar to the treatment of the simple RPA amplitudes.

From the structure of Eq. (3), there results the follow-
ing orthonormality relation for the second RPA solutions:

Since the factors ~ in Eqs, (8) and (11) contribute only
with the value 1, the 2&2 matrices W and A exhibit
symmetries in complete analogy with the simple RPA, '

1.e.)
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(isa)

or

(HF
~ [O„,O„]

~

HF) =5„~, (15b)

(HF
~
[a;a,a~p]

~

HF) =~;5 5;&,

(HF
~
[a; a~a„a, a a~ra&]

~

HF)
=~ „;J k(mn) k(ij )5 5„p5Jr5;s,

(HF
~
[a;a,a~~ras] ~

HF) =0 .

(16a)

(16b)

(16c)

We return now to the discussion of the energy-weighted
sum rule for an operator W, not necessarily Hermitian.
Such a non-Hermitian operator, for example, arises in the
case of the Ciamow-Teller excitations.

The energy-weighted sum rule for any operator 8' is
specified by the relation'

SPy+S ~ = g (E„Eo)
~

(v —
~

W
~

0)
~

where I is the unit 2 X 2 matrix.
Finally, as is the case with the simple RPA, the 1p-1h

and 2p-2h base vectors obey boson commutation relations,
i.e.,

rule is a crucial test for the accuracy of any given approx-
imation. In particular, for the second RPA the following
statement applies: When one evaluates the left-hand side
(lhs) of Eq. (17) by using the second RPA eigenenergies
(E„—Eo)RP~» ——fico„and the second RPA expressions
(v

~

W
~
0)apron for the transition matrix elements, one

finds the same result as when calculating the rhs of Eq.
(17) by replacing the exact ground state

~

0) by the
Hartree-Fock determinant,

~

HF ) .
To proceed with the proof of this statement, one needs

the second RPA expression for the transition matrix ele-
ments. This expression is given by

(v
~

W
~
0)Rp«& ——(RPAII

~
[0,W]

~

RPAII)

—= (HF
( [0„,W]

)
HF) . (18)

Since the second RPA eigenvectors form a complete
base, any operator 8' devoid of spurious components can
be expanded as

W= g I (HF
~
[Og, W]

~

HF)Og
A, &0

—(HF
~
[Og, W] i HF)Og],

where O~ and O~ are the second RPA eigenvectors. Sub-
stituting expansion (19) into the expression

(HF
~
[W, [H, W ]] ~

HF), (20)

where E and
~

v } refer to the excitation energies and
corresponding states of the system, while the index 0
refers to the ground state of the system. Observe that the
right-hand side (rhs) of Eq. (17) does not depend on the
excitation energies and states.

Relation (17) is an identity when the corresponding ex-
act quantities are used. Thus the preservation of this sum

and using the equation-of-motion (1), the orthonormality
relation (15), and expression (18), one can see immediately
that the zero-temperature second RPA preserves the
energy-weighted sum rule.

In summary, we have derived the zero-temperature
second RPA through an application of the double-
commutator equation introduced in Ref. 2 and have
shown that it exhibits formal properties in analogy with
the simple RPA.
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