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Rigid reflection-asymmetric rotor description of the nucleus 'Ac
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A model based on a static quadrupole and octupole deformation of the intrinsic nuclear shape
gives an accurate description of the low-energy level spectrum and wave functions in Ac. Major
discrepancies between strong-coupling theory and experiment are removed by taking into account
the nonadiabaticity of the nucleonic motion.

The nature of a quantum spectrum is often character-
ized by the symmetries or asymmetries of the mathemati-
cal models which reproduce it. In nuclear physics, it is a
long-standing question whether certain nuclei can be
characterized by an "intrinsic shape" which violates the
reflection symmetry as well as the rotational symmetry of
the laboratory frame. According to mean field theory, the
nuclei in the A =220—230 mass region have equilibrium
shapes with both octupole and quadrupole deformation,
but the energy gain relative to a reflection symmetric
shape with quadrupole deformation only is rather
small. ' The orbits of the nucleonic motion, manifested
by the spectroscopy of odd-mass nuclei, are characteristic
of the reflection asymmetric equilibrium shape in some
states but are more consistent with the quadrupole-
deformed reflection-symmetric shape in other states. This
has been interpreted as evidence that state-dependent
dynamical octupole shape fluctuations, rather than a sin-
gle octupole deformed equilibrium shape, are needed to
characterize the spectra of nuclei like Ac. Spectroscop-
ic models with a microscopic basis large enough to em-
body such dynamical octupole correlations have been
based on reflection symmetric intrinsic shapes.

A quite different interpretation is that nonadiabaticity
of the nucleonic motion in some states may decouple
those orbits from the reflection asymmetry. Such "parity
decoupling" from the octupole deformation is analogous
to the familiar rotational or Coriolis decoupling from
quadrupole deformation. Both types of nonadiabatic cou-
plings will be seen to arise in the same way within the rig-
idly deformed reflection-asymmetric rotor plus quasiparti-
cle model. This paper presents a first realistic calculation,
where this model is applied to the well-studied nucleus

Ac. The spectroscopy of Ac has recently been ex-
tended by a study of the (a,t) and ( He, d) reactions in ad-
dition to the previous decay work. " Similar calcula-
tions for the other odd-mass nuclei in the A =220—230
region are in progress and are giving results of equal qual-
ity.

The Hamiltonian of the model,

2
K = (R f+R q)+ —,Eo (1 P)+H, p +H p„, , —

2W

is diagonalized in a strong-coupled basis symrnetrized to
good parity and angular momentum'
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2N

These odd-A strong-coupled basis states form parity dou-
blets with parity p =+1. The first part of the Hamiltoni-
an is the core rotational energy which splits apart core
states with different angular momenta: R =0, 1,2, . . . .
As usual in the particle-rotor model, ' the core angular
momentum can be written as the difference between the
total and single-particle angular momenta, R=I —j. The
moment of inertia parameter, est' /~, is set equal to 8 keV
for Ac, slightly smaller than E(2+)/6 in the two dou-
bly even neighbors. The second part of the Hamiltonian
splits apart the two sets of core states with opposite pari-
ty: R =0+,2+,4+, . . . and 1,3,5,. . . , respectively.
The core parity splitting parameter E for Ac is

chosen so as to put the 1 level at 290 keV, the average of
the values observed in the two doubly even neighbors.
The core parity can be written as the product of the total
and single-particle parities, P =p~. The diagonal matrix
elements of ——,E pm. are analogous to rotational decou-

pling factors and give rise to an energy splitting of the
odd-A parity doublets, while the off-diagonal matrix ele-
ments of this term give rise to the nonadiabatic parity
decoupling discussed above. The single-particle term

H, „contains the deformed Woods-Saxon potential of
Ref. 3. The deformation parameters (pz ——0. 168, p3 ——0. 1,
P4 —0.094, Ps=0.01, P6 —0.0052) lie in between the Stru-
tinsky equilibrium deformations of the two doubly even
neighbors, except for p3, which is somewhat larger here so
as to better describe the spectrum of Ac. In the basis
functions, 7& are the Woods-Saxon single-particle orbits,
and N, represents the deformed core with the same orien-
tation in space as the single-particle potential. The last
term of the Hamiltonian, Hp„.„represents the influence
of the pair field and is dealt with by a transformation to
BCS quasiparticle states, 7 ~. The Fermi level for Z =89
is placed on the forty-fifth strong-coupled orbit, and the
BCS gap parameter is set to 0.6 MeV, somewhat lower
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FIG. 1. Energy levels of Ac from experiment (solid lines) and the rigid reflection-asymmetric rotor calculation (dashed lines).

than the odd-even mass difference.
The experimental spectrum of Ac exhibits some

states which appear to derive from a reflection asym-
metric intrinsic shape and others which do not. ' The —,

ground state and first excited —, state manifest the parity
doubling that is characteristic of reflection asymmetry.
The common origin of the two states in a single
reflection-asymmetric Nilsson orbital is established by the
magnetic moments, which are equal to each other and to
the calculated value. The Nilsson orbitals —,[532] and
—, [651], which would be the reflection symmetric candi-
dates, have spin down and up, respectively, and would
give rise to widely different magnetic moments. No other
known features of the spectrum of Ac fit fully into the
adiabatic reflection asymmetric picture of parity doubling,
however. The level spacings are quite different in the ro-
tational bands built on the —, and —, levels, respective-3 3+

ly, with a strong signature splitting in the —, but not the
band (Fig. 1). The particle transfer cross sections to

these bands strongly favor the —, level (Fig. 2). This is
most compatible with a reflection symmetric —,

' [651)
Nilsson assignment, because the reflection asymmetric
Nilsson orbital is strongly mixed so that all spectroscopic
factors should be small. ' The two E = —,

' bands do have
decoupling factors of opposite sign, as predicted for a par-
ity doublet, but the absolute values of the decoupling fac-
tors are far from equal and approach the values expected
for the two reflection symmetric Nilsson orbitals T[530]
and —,

' [660] (Ref. 13).
The results of the present rigid reflection-asymmetric

rotor plus quasiparticle calculation are shown in Figs. 1

and 2, along with the experimental data. It is clear that
this reflection-asymmetric model, which includes nonadi-
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FIG. 2. Rotational signature of the parity-doubled ground-
state band in Ac. The structure factor (X ~u~a~c~l~) in the
particle transfer cross sections is plotted above the abscissa for
the positive-parity band members and below it for the negative-
parity band members. The solid bars are experimental values
(Ref. 8), and the unfilled bars are from the rigid reflection-
asymmetric rotor calculation. The arrows indicate what the two
largest structure factors would be in the limit of strong coupling.
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abatic couplings, reproduces all the features of the spec-
trum that are described above. There is no need to intro-
duce any state dependence of the octupole deformation.

Some further comments should be made on Figs. 1 and
2. For the K = —,

' bands the rotational decoupling factors
a that can be extracted from the three lowest observed
levels are given in Fig. 1. A deficiency of the calculation
is that although the absolute values of the decoupling fac-
tors do split apart, they do not split apart as far as in ex-
periment. This is not, however, a general failing of the
model. For example, in the K = —, ground-state parity
doublet bands of Ra, the absolute values of the decou-
pling factors split apart equally far in theory and experi-
ment. The energy splitting of the parity-doublet band
heads is calculated with the right sign for all three cases
in Fig. 1. Regarding the tentative —,

' doublet, it may be
remarked that the opposite sign would be obtained in
strong-coupling theory. The normalization of the experi-
mental transfer cross sections in Fig. 2 has been chosen to
make the —, structure factor equal to the calculated

&a+

value of 0.7. With the normalization of Ref. 8, it would
exceed the theoretical maximum of 1. The strong cou-
pling prediction, indicated by arrows in Fig. 2, has the
structure factor for —, smaller than for —,

13 + 9

In summary, the low-energy structure observables of
Ac are well accounted for with a static octupole defor-

mation. There are features of the parity-doublet bands
which are not characteristic of adiabatic nucleonic motion
in a reflection-asymmetric potential, such as the parity-
dependent magnitude of the signature splitting for K = —,,
the parity-dependent magnitude of the decoupling factors
for K = —,, and the large particle-transfer cross section to
the I = —, member of the ground band. These features

have been shown to derive from the energy splitting be-
tween the parities in the core ground band and the result-
ing nonadiabatic terms in the core-particle Hamiltonian.
Thus, the odd nucleon as a probe of core structure pro-
vides no further evidence for state-dependent fluctuations
of the intrinsic shape at low energy.

This result for "soft" octupole deformation agrees with
what is known about "soft" quadrupole deformation.
Transitional odd-mass nuclei which are not expected to
have a well-defined shape can be beautifully described at
low energy by the rigid triaxial rotor model. ' There is
usually little room for improvement from the introduction
of shape dynamical' or boson model' cores; and in the
fine detail of the electric quadrupole matrix elements, the
rigid triaxial rotor often proves to be superior. ' The
magnitude of the effective triaxial quadrupole deforma-
tion is usually somewhat larger than the equilibrium de-
formation calculated by mean field theory, just as the P3
deformation is found to be somewhat larger than the cal-
culated equilibrium value in the present study of Ac.
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