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Most applications of the cloudy bag model to mN scattering involve unitarizing the bare diagrams

arising from the Lagrangian by iterating in a Lippmann-Schwinger equation. However, analyses of
the renormalization of the coupling constant proceed by iterating the Lagrangian to a given order in

the bare coupling constant. These two different approaches means there is an inconsistency between

the calculation of phase shifts and the calculation of renormalization. A remedy to this problem is

presented that has the added advantage of improving the fit to the phase shifts in the Pll channel.
This is achieved by using physical values of the coupling constant in the crossed diagram which

reduces the repulsion rather than adds attraction. This approach can be justified by examining

equations for the AN system that incorporate three-body unitarity.

I. INTRODUCTION

Chiral bag models have enjoyed a considerable degree
of popularity in recent years, due to their ability to in-

corporate quark degrees of freedom in descriptions of
meson-baryon interactions. In particular, the version
known as the cloudy bag model (CBM) has bo:n used with
apparent success in both the mN (Refs. 1—3) and KN
(Ref. 4) sectors. However, despite the initial success in
describing the low energy P» mN phase shifts, most at-
tempts in the P» channel ' have been disappointed to say
the least. The P» phase shifts have traditionally been dif-
ficult to describe, requiring a detailed cancellation be-
tween the low energy repulsion from the nucleon pole and
the attractive mechanisms that dominate at higher ener-
gies to produce the Roper resonance. Calculations based
on iterating the basic CBM interactions in a Lippmann-
Schwinger equation have usually produced an amplitude
that is much too repulsive at low energies, a consequence
of relying on a Roper pole term to provide the dominant
attraction. Although this is quite capable of forcing the
phase shifts through 90' at the Roper resonance energy, it
does not provide enough attraction at low energy to cancel
the repulsion and produce the small, negative phase shifts.

It is clear from the large probability for decay of the
Roper resonance via the process R~mh~mmN that a
complete description of the Pi i channel in the vicinity of
the Roper resonance should include contributions from at
least two pion states which are omitted in the usual
Lippmann-Schwinger approach. This is evident in purely
phenomenological calculations which, although reproduc-
ing the phase shifts quite well, are incapable of becoming
inelastic below the m.A threshold. Although ideally these
contributions would be included in a three-body descrip-
tion, an improvement to the fit in the P» channel has
been obtained by phenomenological inclusion of a msgr in-
teraction into a CBM description.

The above calculations all generate unitary phase shifts
by iterating the elementary diagrams that arise from the
CBM Lagrangian in a Lippmann-Schwinger equation.
This procedure gives rise to a renormalization of the bare

mNN coupling constant, which can be determined from
the residue of the m.N amplitude at the nucleon pole.
However, to date, the only estimation of the effects of re-
normalization on the coupling constant have relied on the
calculation of a small subset of diagrams from the multi-

ple scattering series. This indicated that the renormaliza-
tion was small, with a bare coupling constant squared of
about 0.09—0.10 needed to reproduce the experimental
value of 0.08. Consequently, all of the analyses of nN.
scattering described above have used bare coupling con-
stants in this range. In this paper we examine the impli-
cations of removing this discrepancy between the calcula-
tion of phase shifts, and the calculation of the renormali-
zation, by extracting the value of the renormalized cou-
pling constant directly from the Lippmann-Schwinger
equation. The results of this are somewhat disturbing.
We find that if we use the bare coupling constant suggest-
ed, then the renormalized coupling constant squared turns
out to be too small (about 0.06). Closer examination
shows that the discrepancy arises because some diagrams
important to the calculation of the renormalization are
not included in the partial summation of the perturbation
series via the Lippmann-Schwinger equation. These dia-
grams are excluded from the Lippman-Schwinger equa-
tion, which only respects two-body unitarity, but are part-
ly included in a description of mN scattering that satisfies
two and three-body unitarity. This observation leads us to
examine the consequences of starting with equations that
obey two- and three-body unitarity and then neglecting
contributions which are unimportant at low energies.
What we find is that the bare coupling constant should
only appear in the pole diagram. The vertices that form
the crossed diagram are dressed and therefore should have
the experimental coupling constant. This significantly
reduces the magnitude of the bare coupling constant re-
quired to reproduce the physical value. As a result, the
strength of the repulsive nucleon pole diagram is reduced
while the attractive crossed and contact diagrams remain
approximately the same, resulting in an immense im-
provement in the P&~ phase shifts.

The equations we present in this paper are general,
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needing as their input 8=-mB and mB= =mB interactions.
These interactions can be taken either from a microscopic
description such as a bag model or phenomenology. In
this paper we use the version of the CBM in which the

pions couple to the quarks throughout the bag volume.
After expansion to second order in the pion field {I} the
Lagrangian is

2@ )Y"{}p~(x)—~ 'gv ——,Wx)~(x+s+-,'((}„{t})'+
2

q(x)y"yp &„f. q(x)~) —,q(x)y ~ ({I)X{}„p)q(x)8,,

where q(x) and {}{}(x)are the quark and pion fields, f is
the pion decay constant, and 8 is the bag energy density.
b,s is a surface delta function and (I)v is 1 inside and 0
outside the bag. After projection onto the baryon sub-

space (see Appendix), the interaction part of this Lagrang-
ian contains a 8+~8 vertex [see Fig. 1(a)], a irB~mB
contact term [Fig. 1(b)], as well as a B=-m.irB vertex [Fig.
l(c)] which is not included in the present analysis.

In Sec. II we show how to extract the renormalized cou-
pling constant from the Lippmann-Schwinger equation,
including a discussion of how to correctly handle the in-
clusion of N' states. The results of this procedure are
presented in Sec. III. Section IV summarizes the three-
body mmN equations which have been formulated in Ref.
9 and shows the implications to the purely two-body sys-
tem with the results presented in Sec. V. In Sec. VI we
present our conclusions. The CBM Lagrangian and the
basic diagrams that arise after projection onto the baryon
subspace and form the input to our equations are
described in detail in the Appendix.

II. TWO-BODY EQUATIONS: FORMALISM

In this section we show how the coupling constant and
mass renormalizations are calculated to the same order as
is obtained by solving the Lippmann-Schwinger equation.
The method is to reorganize the diagrams summed by the
Lippmann-Schwinger equation into pole and nonpole
parts and then extract the coupling constant from the pole
part. This can be done either by direct manipulation of
the Lippmann-Schwinger equation with a potential con-
sisting of a pole and nonpole terms, ' "or by the tech-
nique of classification of diagrams according to their ir-
reducibility. ' The latter method has been applied to the
n.B system in Ref. 13 and we merely summarize the re-
sults here.

Before we can classify the set of all diagrams contribut-
ing to the process irB+-~B (8=nucleon or delta), propa-
gator dressing must be carried out on all baryons in order
to ensure that all cuts that separate initial and final states
lead to connected diagrams. ' %e implement this, in
practice, by ensuring that internal mB propagators use the

t(1)(E) t(2)(g)+t(2)(E)g(E)t'( l)(E) (2.2)

where g is the one particle irreducible m.B propagator.
Here, f"' is written in terms of the two-particle irreduci-
ble B~nB vertex f' 'as

f(1)(E) f(2)+f(2)g (E)t{1)(E) (2.3)

The dressed baryon propagator appearing in Eq. (2.1) is
given by

(2.4)

where the self-energy X"'(E) is given by

g( 1)(E) f( 1)(E}g(E}f(2)t (2.5)

and the bare baryon propagator d' ' is a diagonal matrix
with elements

l

physical baryon masses and by associating a factor of
Z2 with each external baryon leg (Z2 is the baryon wave
function renormalization constant). In so doing, we are
assuming that the factor of Z2 which arises from dressing
a baryon line in the presence of another pion can be
neglected. This assumption, which also avoids self-
consistency problems in calculating Z2, will be recon-
sidered in Sec. IV.

Using the technique of classification of diagrams, the
amplitude for irB scattering t' ' can be expressed as the
sum of a pole and nonpole' terms

t(0)(E) t{1)(E)+f(l)t(E)d(g)f(1)(g) (2.1)

where t is the mB=-irB amplitude, f is the B~n B ampli-
tude, and d is the dressed B propagator. The superscript
refers to the irreducibility of the amplitude. ' The nucleon
and delta are treated on the same footing in the sense that
t is 2X 2 matrix. If the Roper pole is to be included, then

f is a 3 X2 matrix and d is 3 X 3. If the Roper is exclud-
ed, then f and d are both 2X2 matrices. The nonpole
part of the amplitude, t"', satisfies a Lippmann-
Schwinger equation with driving potential t' ',

/
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FIG. 1. Diagrammatic content of the CBM Lagrangian. (a)
8~mB vertex, (b) n.8~mB contact term, and tc) B~mwB vertex.
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FIG. 2. The nonpole amplitude t'".
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d' ' '(E)=E —m' ', (2.6)

where ma
' is the bare mass of baryon a.

If we are concerned with maintaining only two-body
unitarity, then the vertex f' ' and the amplitude t' ' can
be taken from phenomenology or a bag model. With this
choice the diagrammatic content of Eqs. (2.2), (2.3), and
(2.5) are illustrated in Figs. 2, 3, and 4 respectively. We
also take the m.B propagator g to be real and diagonal with
poles appropriate to physical masses. That is, we take

g (p;E)=[E (p'+—m')'~ (p +—m'))~2] ' . (2.7)

It should be noted that Eqs. (2.1)—(2.6) are equivalent
to solving the I ippmann-Schwinger equation' ' "

Q2 Q2 + Q2 Q2 Q2 +

FIG. 4. The self-energy X"'.

f p (pp'E)=f p (pp)+X f "prprf r (py)gr(pr E}

Xt'y'p (pr, pp', E) . (2 12)

t'0'(E) =U(E) =U(E)g(E)t' '(E) (2.8) The superscript a is used to denote that the nonpole am-
plitude t'" is projected onto the partial wave whose quan-
tum numbers (IJT) match those of the baryon a. Note
that this amplitude is the same for a=N and a=R. Fi-
nally, Eqs. (2.4) and (2.5) become

d p (E) 5pd—' ' '(E) X p(E) (2.13)

with the potential

U (E) t(2)(E}+f(2)td(0)(E)f (2) (2.9)

Before Eqs. (2.1}—(2.6} can be used, it is necessary to
perform a partial wave expansion in order to reduce the
dimensionality of the integrals. After partial wave expan-
sion and consideration of the matrix nature of the equa-
tions, the trB::tyB amplitude is labeled by the orbital an-
gular momentum (I), the total angular momentum (J),
and the total isospin (T), as well as the initial and final
baryons (a, P, y, etc.). The baryon labels run over the nu-
cleon and delta as well as the Roper where appropriate.
Equation (2.1) becomes

X'" (E)=g I dp„p'f'" (p;E)

&gy(py'E)f ~p(py )
(2) (2.14)

tap (Pa Pp~4)=tap (Pa Pp'E)(0)LJT , (1)lJT

+ g f"'y(p„'E)d» (E)
y.eIUT)

Xf„"p,(pp', E), (2.10)

where the sum is over all baryons with quantum numbers
(IJT) (e.g., nucleon and Roper when IJT=P»). The non-
pole part, Eq. (2.2},becomes

(1)LJT . (2)/JT
tap (pa pp', E)=tap (pa pp', E)

2 (2)lJT+g dpypytay (pa~py~E)
y

—XNR«}

E —mR —XRR(E)(0) (1)d '(E) =
Xgr(pr'E} rp py»p E) . '(1)lJT

(2.15)

where (a,P) E {IJT I.
In order to extract the renormalized coupling constant

from the pole part of Eq. (2.1), we must ensure that
d "(E) has a pole with residue one at the nucleon mass.
If there were only one baryon associated with each partial
wave (which would be the case if the Roper were omitted),
then this can be done quite simply. The technique is
essentially the same as in Ref. 14, except that here we are
dealing with matrices. The situation is more difficult if
the Roper is to be included since the dressed baryon prop-
agator d(E) is not diagonal. In the P11 channel it is
(dropping the IJT superscript)

(0) (1)E —m N XNN(E)—
—XRN«)

(2.11}

Since the B~~yB amplitude only has a contribution from
I =1, the only labels required are the initial and final
baryons. We also write f p and f p in place off p and
f p, respectively, to obtain

Since this niatrix is real-symmetric for E &mN+m, it
can be diagonalized by an orthogonal matrix U such that

d (E):Ud (E)U—
E —m N

—XN(E)(0)

r
r

C~3 = C~3 + C3 with

E —m R —XR(E)(0) (2.16)

C22 + R + 93
XN(E) = —,(m R —m N +XNN(E)+ XRR(E)

—
I [m R +XRR(E)—m N

—XNN(E) ]
+ 0 ~ 0

FIG. 3. The dressed m NN vertex f"'. +4X( ) ) (E) I
1/2) (2.17)
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XR(E)= —,
' (m'„"—rn '„"+Xw„'(E)+X'Ra'(E)

+ ([mit'+Xita(E) —mw' —Xww(E))

+4X(1) (E) I
i j2) (2.18)

Zzw =(1—Xiw)

and the renormalized nucleon propagator is

d w(E) =(E —m w ) [1 (E——™w )Ziw X2w(E)1

(2.28)

(2.29)

The orthogonal matrix U is given by

1 v
U=

(1+vi)i~2 —v 1
(2.19)

Note that d w(E) has the desired property of a pole at
E =mN with residue one. It is now a simple rnatter to
extract the renormalized coupling constant from Eq.
(2.22) by evaluating the pole part at E =mw, giving us

with

Xww«) —Xw«} XR«) —XRa«}
XwR«)

(2.20)

Defining

f~@,(p;E): gU —rf„"p (p;E) (a=N, R; P=N, b, ),

(2.21)

with a similar expression for f "~p, enables us to write Eq.
(2.10) as (neglecting the 1JT superscript since we are only
considering the P» channel here)

(0) . (1)
&ap(p'a pp'E)=& p(p pp'E)

+ g f",'„(p,;E)d (E)f'„'p (pp, E) .
y=N, R

""
(2.22)

This procedure ensures that we are correctly treating the
physical nucleon as an admixture of bare nucleon
[(is&~2) ) and Roper [(Is»3}(2s&r3)) bag states. Typi-
cally, we find that UwR is about 10% of Uww.

Now that we have diagonaHzed the dressed baryon
propagator, the procedure for extracting the renormalized
couphng constant is straightforward. First, we expand
Xw(E} in a Taylor series about rn w to write

Xw(E) =Xw(mw)+(E —mw)Xiw+(E —mw) Xiw(E),

(2.23)

where

Xiw= EXw
E=mw

(2.24)

and Xiw(E) is a function chosen to produce the equality.
If we choose the nucleon bare mass such that

mw ——mw +Xw(mw),(0)

then from Eq. (2.16) we have

(E —m w)X3w(E)
d w'(E)=(E —mw)(l —Xiw) 1—

dw(E) =d ~w«»2w,

(2.26)

(2.27)

where the nucleon wave function renormalization con-
stant is

(1)f ww(po mw)f~ww =f~ww Z3w& (po&)f ww(po}
(2.30)

where po is the on-shell momentum. u(poA) is the bag
vertex function given in Eq. (A4) and is necessary for
comparison with the Feynman diagrams in terms of
which the experimental coupling constant is defined. The
factor of Z2w arises as a consequence of the baryon dress-
ing discussed at the beginning of Sec. II and f ww is the
bare coupling constant appearing in Eq. (A2). If the Rop-
er pole term is to be omitted, then we replace f"' by f'"
in Eq. (2.30) and Xw by Xw'w in Eq. (2.24).

If Eqs. (2.3) and (2.5) are truncated to the first two and
the first terms in their series expansions, respectively (see
Figs. 3 and 4), if the Roper pole diagram is omitted, and
if the two-particle irreducible amplitude t' ' is taken to be
the crossed diagram, then Eq. (2.30) is the same prescrip-
tion as that used by Theberge, Miller, and Thomas. The
factor of f "ww(po, mw)/f' ww(po) is equivalent to Zi ' in
their notation.

III. TWO-BODY EQUATIONS: RESULTS

~e can now begin to examine the consequences of the
above approach to renormalization. If the Roper and the
contact diagram are excluded and the series expansions
are truncated as described above, then we have the same
model as Ref. 2, except that we use relativistic mB propa-
gators and include baryon recoil in the crossed diagram.
The bare coupling constant few is adjusted so that f"ww
defined above is the experimental value of &0.08. The
bare delta mass only enters into the P33 channel and
therefore does not affect the determination of the bare
coupling constant. Its value can be determined by the re-
quirement that the P33 phase shift go through 90' at the
delta mass. Since the bare nucleon mass is determined
from Eq. (2.25), the only undetermined parameter is the
bag radius. The difference between truncating the series
as in Ref. 2 (solid curve) and using the full series (dashed
curve) can be seen in Fig. 5, which shows the bare cou-
pling constant f„ww, the nucleon wave function renormal-
ization Ziw, and the bare nucleon mass as functions of
the bag radius. It is clear from these graphs that includ-
ing the higher terms in the series (generated by the
Lippmann-Schwinger equation) dramatically alters the re-
normalization results. Closer examination shows that
most of the difference comes from the second term in the
series for X'" (omitted in Ref. 2) which has a contribution
of about 50% of the first term for a bag radius of 1 fm.
Also, for radii less than 1 fm, using the full series expan-
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FIG. 6. All contributions to the vertex function up to fifth
order in the coupling constant in a model with only a vertex in-

teraction.
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FIG. 5. The bare coupling constant, nucleon wave function
renormalization, and bare nucleon mass as functions of the bag
radius. The solid curve is with the truncation described in the
text, the dashed curve is without truncation, and the dotted
curve is without truncation and including the contact diagram.
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sions, there is no bare coupling constant that will repro-
duce the experimental value. This is refiected in the fact
that the wave function renormalization constant, Z2N, be-
comes alarmingly small. Since Z,N is the probability of
finding a bare bag, it indicates that, for radii less than
about 1 fm, pionic effects are very important and the nu-
cleon is essentially a mN bound state.

The effect of including the contact diagram is to de-
crease the required bare coupling constant, as can be seen
in Fig. 5 (dotted curve). Apart from this minor differ-
ence, its inclusion does not alter the basic results.

An explanation of these undesirable features can be
found by a careful examination of the diagrams that have
been included and those that have been excluded. In Figs.
6 and 7 we show aH contributions in perturbation theory
to the vertex and the derivative of the self-energy to fifth
and fourth order, respectively, in the bare coupling con-
stant. In Fig. 7 the & indicates which propagator the

(c)

(e)

h
a i

(&)

FIG. 7. All contributions to the derivative of the self-energy
up to fourth order in the coupling constant in a model with only
a vertex interaction. The cross indicates which propagator the
derivative acts on.

derivative acts on. It can be seen that there is a one to one
correspondence between diagrams of each series. Note
that Figs. 6(a)—(6c) and 7(a)—7(d) are explicitly included
in the expansions of Eqs. (2.3) and (2.S), while Figs. 6(f),
6(h), 7(e), and 7(g) are included implicitly since the nB
propagators have the physical baryon masses. Since the
degree of normalization is essentially the ratio of the
terms in these two figures [see Eqs. (2.30) and (2.28)], it is
important that for each diagram included in f'" the cor-
responding diagram be included in (8/BE)X'" and vice
versa. However, Figs. 6(d) and 6(e) are not included in
our expansion of f"', but their corresponding diagrams
[Figs. 7(c) and 7(d)] are included in (8/BE)X'". A rough
estimation suggests that the contribution from Figs. 6(d)
and 6(e) should be similar in magnitude to that of Fig.
6(c) and hence should be included. To put this into per-
spex:tive, for a bag radius of 1 fm and f NN

——0.08, the
contribution of Fig. 6(c) is about 10% of the sum of Figs.
6(a) and 6(b). Similar diagrams are omittal from f"' at
higher order in the coupling constant, while their counter-
parts are included in (8/M)X"'.

From this discussion it can be seen that the essence of
the problem is that the Lippmann-Schwinger equation
omits a certain class of diagrams which play a crucial role
in the calculation of the coupling constant. It may be
that, due to the correspondence between diagrams contri-
buting to f"' and those contributing to (8/BE)X"', the
truncation to Figs. 6(a), 6(b), and 7(a) (as in Ref. 2) will

yield something close to the correct result. However, if



8. C. PEARCE AND I. R. AFNAN 34

one then uses the resulting bare coupling constant to de-

fine the crossed and pole diagrams and iterates them in a
Lippmann-Schwinger equation to calculate the phase
shifts, then our results show that the physical coupling
constant einbedded in the calculation of the phase shifts
will not be the experimental value of 0.08. In fact, using
the same parameters as used in Ref. 3 to compute the P) i

phase shifts (R =1 fm, f iiN
—0.074, ma'=1510 MeV,

and f =97 MeV), the renormalized coupling constant
squared turns out to be 0.064.

A clue to a means of remedying this situation can be
found by observing that the Lippmann-Schwinger oqua-
tion is guaranteed to respect only up to two-body unitari-
ty, while Figs. 6(d) and 6(e) are excluded because they only
contribute to three-body unitarity. This leads us to the
next section, where we examine the consequences to renor-
malization of including three-body unitarity in the rtB
equations.

IV THREE-BODY EQUATIONS: FORMALISM

In Eqs. (2.1)—(2.6), we present a description of nB
scattering that guarantees at least two-body unitarity. Al-
though they can be derived directly from the Lippmann-
Schwinger equation, their derivation in terms of classifi-
cation of diagrams according to their reducibility makes it
relatively straightforward to include three-body unitarity.
This has been done in Ref. 9, and we simply summarize
the results here. The technique is to expose three-particle
unitarity cuts for all quantities that are two-particle ir-
reducible (particularly t' ') using the last cut lemma. This
will produce amplitudes that are three-particle irreducible
and provide a connection to the m trB Hilbert space.

In the two-body equations used above, the only interac-
tions that are needed from the interaction Lagrangian are
those whose initial and final states are from the one- and
two-body Hilbert spaces. Including the three-body Hil-
bert space means that the B~—mmB diagram of order f
shown in Fig. 1(c), which provides a direct connection be-
tween the one- and three-body Hilbert spaces, now needs
to be considered. Unfortunately, inclusion of this term
tends to make the resulting equations somewhat unwield-

ly. For the time being we shall restrict our basic interac-
tions to the 8~mB vertex and direct mB~mB interactions
such as the contact diagram.

Previously, the only two-body initial and final states
were mB states. Now we have the possibility of mB',
where 8' is a ~B resonance, and pB, where p is a mm reso-
nance. As a consequence, we need to modify our nota-
tion. We refer to the two pions as particles 1 and 2 and
the baryon as particle 3. For A, = 1 or 2, T&B will denote
an amplitude with nB' final stat. e, where 8' is a bound
state of pion A, and the baryon, while T38 represents an
amplitude with a pB final state. Since the amplitude for
)rB~mB couples to TiB, for consistency we use TBB in
place of t. We retain the superscripts referring to the ir-
reducibility of the amplitude and drop the energy argu-
ment, which is understood. The nucleon and delta are
still treated on an equal footing through the matrix nature
of the amplitudes. Using this notation, Eqs. (2.1) and
(2.3) become

and

TBB= TBB+f ' df '

f(1) f (2)(1+gT()) )

(4.1)

while Eqs. (2.4) and (2.5) are unchanged. TB'B is a solu-
tion of the coupled set of equations

TBB—— t"'+gF& '(l)G5iJF&" (j) (I+gTB'B)
lJ

+gFg '(i)G5;~~ (a)GT"B
ia

(4.3a)

and

+y 5 ~(2)(a)GT(i) (4.3b)

and

g d '(i)TB'B(a)5; if a=1,2,
(a)= i(2)

d-'t'"(3) if a=3 (4.5)

In the above, d (i) is the propagator of pion i, d is the
baryon propagator, and t'"(3) is the one-particle irreduci-
ble mm~~mm amplitude. Note that the 2)&2 matrix struc-
ture of M~ is maintained since d and t"'(3) are scalars,
while TBB(i) and d are matrices. The center of mass
(c.m. ) energy e at which the amplitudes TBB(i) and f"'
appearing in Eqs. (4.4) and (4.5) are needed will always
satisfy e=E —co~ &E —I,where E is the c.m. energy at
which the mB= =n.B amplitude TBB of Eq. (4.1) is required.
Hence it is always possible to work up in energy from
below the scattering threshold, where Tzq and thereforef'" are real in Eqs. (4.4) and (4.5), and the coupling to the
~B' and pB can be neglected.

Equations (4.4) and (4.5) are expressed diagrammatical-
ly in Figs. 8 and 9, respectively. Note that the crossed di-

Here, F is used to denote a mB+ nn 8 a—mplitude, while M
describes the process nnB=~nB. The subscript d means
that the amplitude is the disconnected part only.
Throughout this section, a number in parentheses follow-
ing an amplitude indicates which pion takes part in the
interaction, with the exception of the mnB==mmB ampli-
tude M~. In this case, if the number is a 1 or 2 it refers to
the pion taking part in the interaction, while a 3 labels the
amplitude in which the baryon is a spectator. The Latin
letters i, j, etc. are used where the sum is over the two
pions and Greek letters indicate summation over the pions
and baryon. Also, 5 tt= 1 —5 t). Note that the contact di-

agram of Fig. 1(b) now enters through the three-particle
irreducible amplitude t' '. The above equations are simi-
lar to those presented by Fuda' for the mirN sytse.m using
projection operator techniques. The amplitudes Fd ' and

m,' ' can be w~«en as

(4.4)
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agram arises in Eq. (4.3a) from the term

QFd '(i)G5,JFd
'

(j ) =g f")(i)d5;Jf'" (j ) . (4.6)
/J LJ

An important feature of this is that the vertices that form

this diagram are dressed.
In order to examine the diagrammatic content of these

equations, substitute Eq. (4.3a) into Eq. (4.2) to give (for
I

s 4

FIG. 8. The disconnected mB~mwB amplitude I'd '.

the purposes of this discussion we neglect the contact dia-

gram t' ')

f(1) f(2)+f(2)g y F(2)((}G5 p(2)t(J)( 1+gal() ) )+f(2)g y p(2)(()G5 M{2)(~)Gp() )

ia

Iterating Eq. (4.3) to lowest order and substituting into Eq. (4.7) gives

f( l ) f(2)+f(2)g+ +(2)(I)G5F(2) t(j)+f(2)g+ +(2)(&)G5+(2)t(j)g+F(2)(k)G5+(2)t(l)
fJ lJ kl

+f(z)g pe )(i)G5~d '(a)G +5,I'q ' (j)+

(4.7)

(4.8)

TBB—— t' '+gFg (i)G5;JFd ' (j) (1+gT'B'a) . (4.9)

Figure 10 shows the content of this equation, which
should be compared with Fig. 6, which shows all dia-
grams arising in perturbation theory (from a Lagrangian
in which there is only a 8~mB interaction) to fifth order
in the coupling constant. If all propagators include the
baryon dressing (i.e., have poles corresponding to physical
masses), then Eq. (4.8) includes all diagrams arising from
the perturbation expansion. In particular, Figs. 6(b), 6(e),
and 6(g) are contained in the second term of Eq. (4.8), Fig.
6(c) is contained in the third term, while Fig. 6(d) arises
from the fourth term. Figures 6(f) and 6(h) are also con-
tained in the second term of Eq. (4.8) by virtue of the
baryon dressing.

Our main reason for introducing three-body unitarity at
this stage was to shed some light on the problem discussed
in Sec. III. There it was found that iterating a potential
consisting of a pole and crossed diagram constructed from
the bare vertices of the Lagrangian gives an inconsistent
result due to the exclusion of some diagrams for the
Lippmann-Schwinger equation that are important in the
context of renormalization. As we have just seen, these
diagrams are included in the three-body equations. The
three-body equations clearly include dynamical processes
not present in a two-body description that will be impor-
tant above the pion production threshold, namely the for-
mation and decay of rrB' and pB states described by Tq')I.

However, for low energy scattering processes these effects
will be small and can be neglected. This will decouple
Eqs. (4.3), giving us

crossed diagram are dressed and have an energy depen-
dence. The solution of Eqs. (4.2) and (4.9) involves an ap-
parent self-consistency, to the extent that Eq. (4.2) givesf"' provided TI))I is known, while to solve Eq. (4.9) for
TI)n we need f'". However, Eq. (4.9) for Tz'n(E) requires
f"'(p, e=E —co), where co is the energy of the spectator
pion, while Eq. (4.2) for f'"(p, e) requires Tq')I(e). To
avoid this "self-consistency" we need to approximate the
energy dependence of the vertices in the crossed diagram.
First, we note that, if we include the factor of Z2 for the
internal baryon propagators, then each vertex appearing in
the crossed diagram is fully renormalized, i.e., of the form
Z2 f"'Z2, and therefore should reproduce the experi-
mental coupling constant. Second, for low energy scatter-
ing, we are mainly interested in energies E &mN+2m .
This means that the vertices f")(e) needed for the crossed
diagram are at any energy e=E —~z ~mN+m . At
these energies, f"' is a real function, having no contribu-
tion to two-body unitarity. It is therefore appropriate to
neglect its energy dependence and take the vertices in Eq.
(4.6) to be

(4.10)

~here the subscript R is to indicate that the coupling con-
stant should be adjusted so that fz ' yields the physical
coupling constants. Hence in the crossed diagram we use
the vertex of Eq. (A2) with f NN

——0.08u (poR}, which
ensures that the physical mNN coupling constant is repro-
duced. Although the bare mNN, ~Nh, and +Ah coupling
constants are related by the bag model, there is no reason

The only difference between this and the approach out-
lined in Sec. II is that now the vertices appearing in the

+ ~ o ~

FIG. 9. The disconnected mwB~mwB amplitude Md '.
FIG. 10. Diagrammatic equivalent to Eq. {4.8). The small

circles represent a one-particle irreducible amplitude.
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FIG. 11. The bare (solid curve) and renormalized {dashed
curve) vertex functions.

to expect that the renormalized coupling constants ex-
tracted from f"' will be in the same ratio. Ideally, if the
model works perfectly, the renormalized coupling con-
stants should all reproduce the experimental values.
Hence, rather than take the coupling constants in the
crossed diagram to be in the bag ratios, we take
f~NN. 3f~Na ——1:2, as dictated by experiment. ' Since ex-
perimental guidance as to the value of the nhh coupling
is unclear, we use the bag model ratio for f NN.f aa. The
effectiveness of approximating the momentum depen-
dence of the dressed vertex by that of the undressed vertex
is illustrated in Fig. 11, where we show the bare vertex
function f(p)=u(pR) (solid curve), and the equivalent,
appropriately normalized, dressed function f(p)
—f~NN(p;mN)/p (dashed curve) for a typical case.

For consistency, the pole diagram should include a fac-
tor of Zz on each external Ieg (but no factor of Z2 for
the internal baryon line). This can be done by using

1/2
fo=Z2NfsNN (4.11)

V. THREE-BODY EQUATIONS: RESULTS

Now that we have a model in which we have eliminated
the inconsistency between the calculation of the renormal-
ization and the scattering, we can begin to examine its
consequences. The first case considered is in the absence

instead of f NN as the coupling constant for the vertex

f' ' appearing in Eq. (4.2).
The above discussion means that the only change need-

ed to the equations of Se:. II is use of the experimental
coupling constant in vertices contributing to the crossed
diagram and fo in the vertex f' ' of Eqs. (2.3) and (2.5).
Also, Eq. (2.30) becomes

(I)
it f~NN(PO~~N)

f~NN=fo (p) Z2N & (po~) (4.12)
f"NN(uo)

Since Z2 depends on fo and not on f NN and Z2 indepen-
dently, the above prescription avoids the problems of
self-consistency in calculating Z2 alluded to just before
Eq. (2.1). We now adjust fo to obtain the experimental
coupling constant from Eq. (4.12) and use Eq. (4.11) to
determine the bare coupling constant f NN.
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FIG. 12. The bare coupling constant, nucleon wave function
renormalization, and bare nucleon mass as functions of the bag
radius using the renormalized coupling constant in the crossed
diagram. Solid curve is with the crossed diagram as the only
contribution to t' ', dashed curve is the same but with crossed
diagrams coupling constants in bag ratios, dashed-dotted curve
is with crossed and contact diagrams, while the dotted curve is
the same but with coupling constants in bag ratios.

of the contact or Roper pole diagrams. In Fig. 12 (solid
curve) we show the resulting bare coupling constant f NN,

Z2N, and the bare nucleon mass for a range of bag radii
(the dashed curve shows results obtained when the cou-
pling constants in the crossed diagrams vertices are in the
bag [i.e., SU(6)] ratios). The most notable difference be-
tween this and the earher results in Fig. 5 is that the bare
coupling constant now remains relatively stable as the ra-
dius is reduced. The corresponding P~~ phase shifts for a
radius of 1 fm are shown in the solid curve of Fig. 13.
Clearly, some other source of attraction is required to
make the phase shifts change sign.

The next step is to include the contact diagram«The
renormalization results with the pion decay constant f
set to the experimental value of 93 MeV in the contact
term, are shown in the dashed-dotted curve of Fig. 12 (the
dotted curve is with the crossed diagram's coupling con-
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FIG. 13. The P» phase shifts for a bag radius of 1 fm and

f =93 MeV. The sohd curve is with only the crossed diagram

contributing to t'~', the dashed curve is with crossed and contact

diagrams, while the dotted curve is with crossed, contact, and

Roper pole diagrams. Experimental data are from Ref. 18.

FIG. 15. P~~ phase shifts with crossed and contact diagrams.
Solid curve is with f =90 MeV; dashed curve has f =93 MeV.

Experimental data are from Ref. 18.

stants in the bag ratio). In this case the bare coupling
constant is significantly lower than was the case without
the contact diagram, over a larger range of bag radii.
This has the effect of significantly reducing the repulsive
nucleon pole diagram which, when combined with the ex-
tra attraction of the contact diagram, greatly improves the
fit to the Pii phase shifts, as can be seen in Fig. 13 (for
R =1 fm, dashed curve). In Fig. 14 we compare these
phase shifts (solid curve) with those obtained if the cou-
pling constants in the crassed diagram are in the bag ra-
tios (dashed curve). As can be seen, using the physical
coupling constants as dictated by our formalism results in
a better fit.

It is interesting to see if the fit can be improved by
ad hoc adjustment of the pion decay constant f .
found that increasing the strength of the contact diagram
(which adds needed attraction) also decreases the value of
the bare coupling constant and, consequently, the strength
of the repulsive nucleon pole diagram. This combined ac-
tion means that f only needs to be reduced from 93 to 90
MeV in order to produce the excellent ftt' shown in the

solid curve of Fig. 15. (The dashed curve is with f =93

MeV. ) In this case, we have R =1 fm, f NN ——0.0459,
ZzN ——0.6962, and m N' ——1086 MeV. This fit is quite re-

markable in the context of recent investigations af the P»
channel (that iterate potentials generated from the CBM
in a Lippmann-Schwinger —type equation), which have all
required the inclusion of the Roper pole diagram in order
to produce enough attraction to cancel the repulsive nu-

cleon pole. ' In these analyses, even though the phase
shifts are made to go through 90' at the physical Roper
mass, the shape is completely wrong at lower energies. In
contrast, our method succeeds by reducing the strength of
the nucleon pole rather than trying to cancel it by adding
more attraction. The question of whether one should
reduce the repulsion or increase the attraction is impor-
tant in the n NN system, where the pole and nonpole parts
of the Pi i amplitude enter into the calculation in differing
ways. ' In view of this, in Fig. 16 we show the phase
shifts from the nonpole part of the amplitude, Tan
(dashed curve), as well as from the full amphtude (solid
curve) for the case af 8 =1 fm and f =90 MeV
described above. %'e note here that TSB gives rise to a
resonance without the explicit introductian of the Roper
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FIG. 14. PI& phase shifts with crossed and contact diagrams

and f =93 MeV. Solid curve is with physical coupling con-

stants in the crossed diagram; dashed curve is with coupling

constants in bag ratio. Experimental data are from Ref. 18.
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FIG. 16. The total (solid curve) and nonpole (dashed curve)
P~ ~ phase shifts for R = 1 fm, f =90 MeV, crossed and contact
diagrams contributing to t' '. Experimental data are from Ref.
18.
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FIG. 17. The F33 phase shifts corresponding to the dashed-
dotted curve in Fig. 12. Experimental data are from Ref. 19.
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FIG. 19. Pj3 phase shifts for R =1 fm, f =90 MeV. Ex-
perimental data are from Ref. 19.

in terms of bag states [( 1 s iqz ) 2r iqz]. The addition of the
pole amplitude has the effect of shifting the resonance to
higher energy.

Despite the success obtained without the Roper pole, it
is interesting to examine the effect of including it. As
usual, with f set to 93 MeV we adjust the bare coupling
constant to obtain the correct renormalized coupling
constant, while the bare Roper mass is adjusted to make
the phase shifts go through 90' at the correct energy.
For R =1 fm we find f NN

——0.041S, ZzN ——0.7112,
mN' ——1076 MeV, and mR' ——1640 MeV, anth the P~~
phase shifts shown in the dotted curve of Fig. 13. The
poor ftt in this case is an indication that one should not
adjust the Roper bare mass to get the phase shifts through
90' without simultaneously satisfying three-body unitari-

Unfortunately, it would appear that the price to be paid
for the improvement in the Pi i phase shifts is a reduction
in the quality of the ftt in the P33 channel. Using the pa-
rameters that gave the best fit to the Pii channel (i.e.,
8 =1 fm, fr=90 MeV) results in the fit shown in Fig.
17. In this calculation the bare delta mass is adjusted so
that the phase shifts pass through 90' at the delta mass.
The fact that the width is so small is an indication that
the amount of renormalization of f Nh is insufficient.
This is best illustrated by calculating the quantity ri, of

Ref. 2, which is a comparison of the degree of renormali-
zation of the trNN and trNE coupling constants. In our
notation this is

R
fwNh fsNN

RfsNh f~NN

R
gNNf Nh

t
gNhfsNN

RfeNh

(1)
fogNh f Nh(so. irtN)

(z) Zzh u po~f~Nh(13o)
(5.2)

and Z2h is taken to be

(5.3)

The quantity rl as a «notion of bag radius is shown in
Fig. 1S for the case of no Roper pole and fr=93 MeV.
This shows that the renormahzation of f Nh is less than
that off NN, in contradiction with the physical value of'6

g =1.5.
The final application we wish to consider is the Pii and

P3i partial waves. These are independent of the bare cou-

where the matrix g is given in Eq. (A5). Analogously to
Eq. (4.12), the renormalized trNA coupling constant is
given by
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FIG. 18. Ratio of renormalization off Nh and f NN, 31,.

FIG 20 I 3 & phase shifts as for Fig. 19. Experimental data
are from Ref. 19.
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pling constant, having contributions only from the crossed
and contact diagrams. Using the parameters giving the
best Pii fit, namely R =1 fm and f =90 MeV, we ob-
tain the results illustrated in Figs. 19 and 20.

VI. CONCLUSIONS

We have examined the implications of calculating the
renormalization of the CBM m.NN coupling constant us-

ing the same series of diagrams that arise in a Lippmann-
Schwinger —type calculation of the phase shifts. We find
a large discrepancy between this approach and that which
is obtained by using only those diagrams to second order
in the bare coupling constant. This discrepancy can be at-
tributed to the omission of a certain class of diagrams
from the Lippmann-Schwinger equation which are impor-
tant in the renormalization due to cancellation. These di-
agrams are included in a description of the mN system
that respects two- and three-body unitarity by correctly
incorporating two-pion states. At energies below the
two-pion threshold, these equations can be approximated
in a way that provides greater insight into how the crossed
diagram should be treated in the two-body Lippmann-
Schwinger equation. In particular, the irBB vertices that

form the crossed diagram should have the physical rather
than bare coupling constant, since the two-body
Lippmann-Schwinger equation does not contribute to the
dressing of these vertices as it includes two-body unitarity
only. On the other hand, the vertices in the pole diagram
are dressed when the Lippmann-Schwinger equation is
solved. When this is put into effect, the bare coupling
constant required to reproduce the experimental value is
significantly less than previously. As a result, the repul-
sion in the P~& channel is reduced enabling immense im-
provement in the fit to the phase shifts without necessitat-
ing the introduction of extra attraction.
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APPENDIX

We use the version of the CBM in which the pion cou-
ples to the quarks throughout the bag volume. The La-
grangian expanded to second order in the pion field is

2q(x)r" ~,e(x) &ev ———q(x)q(x)~s+ —,'(& P)'+ q(x)y y5~ 8 pq(x)ev — q(x)y"r (p&(Q p)q(x)Q, ,
1—

2f 4f

(A 1)

where q(x) and P(x) are the quark and pion fields, f is
the pion decay constant, and 8 is the bag energy density.
bs is a surface delta function and 8& is 1 inside and 0
outside the bag. After projection onto the subspace of
baryons consisting of the nucleon, delta, and Roper [as-
suming the Roper to be a ( isin)'(Zsin) configuration] in
the usual way, the interaction part of this Lagrangian
yields a 8=-=~B vertex, a m8= =mB contact term, as well as
a 8=:mmB vertex. In the present work we neglect the

(2)
( )

477l f+NN
flap I in. & W.pG p(S»

277 v 2cop
(A2)

B~~mB vertex, taking the remaining two terms as the
driving terms for our description of the mN system. The
formulas we present here are after partial wave expansion,
suitable for use in the partial-wave expanded equations
presented in the main text.

The basic vertex function is

with

Gap(p) =u (pR)—

3ji(pR)
u (pR) =

pR

r

coa cop 3 &
& 1 i(PP) 6) r aQ)pP'

+CD dT I" Jo Ji
2R j 0(COa)j 0(cop) 0 P R R

Ct)~f Q)pI"
Jl ~ Jo

(A3)

and the matrix

5

g= 4v2
5

5(()

of coefficients g p given by

2v2 5P
'

- - in
5 4vZy, y=

3coi(cop —1)
2v 2y 5y'

(A5)

Here, co~ and cu2 are 2.04 and 5.40, respectively, and

&~=&) if a=N, A and ~~=~2 if 0'=R. ~~ is the energy
of the pion. The first term of Eq. (A3) is the same as
arises in the surface-coupling form of the CBM, while the
second term only contributes to vertices that involve a
1s+ 2s quark transition.

From this vertex and the baryon propagator, we can
construct the crossed diagram which will contribute to the
potential t, giving
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t"p
"

(P,P', E)=gf~p(P)~&(P»P'E)f"& (P')~ p, ~
yL

(A6)

I PL (x)dx
i g —(P +P +2PP x +rii )

where PL is the Legendre polynomial of order L, and

r

1L / &p
Q'p 3 2 2, w w w w 2I++g++p

A~pre —— L l s~spr~rp( —1) '
0 () ()4m 7f I. l 1

(AS)

where j=(2j +1}',and s~ and r~ are the spin and isospin of baryon a, respectively.
The contact diagram, which also contributes to r'2', consists of three parts, the first arising from the time derivatives

in the Lagrangian and the second two from the spatial derivatives.

tap (P~P )=
2 i f riprap(P~P )Cap+siaap(P~P )Cap+s2~ap(P&P )~ap 1 ~

(2)LJTcontae| J'T' l i JT l r LJT

f (2m) 2cop2oip

l cour oipr oi+r N pr» p(PP')=( &+,), d "jo jo +j JI (Pr)Ji(P'r), (A10)

omar coprs».P(PP')=
o

«»' jo Z ji
m~r m~r

J i JO ft Jl(Pr)Jl+ i(P r) PJI+ I(Pr)JI(P r)] (Al 1)

R c0+r cgpr tiler copr
s2iiap(P~P )=

o
«r Jo & Ji &

+ji
& Jo &

jl(Pr)j~(P r), (A12)

and the coefficients 8 and C are

l sp J 1 rp T
8 =2nrv 6N N ~p( —1) ' P ' P lv'/(/+1) ',

,
's~ I 1 r~ 1 1

3n+. —.+r I
C p —nv 6N~Npg~p( ——1)

'P@ Tp (A14)

The coefficient matrices g' and g" are given by

SW2
10

10 Sv2
v3 v3

v6 0
g"= 0 —2v 15

0

v2

v2
v3

(A15)

and the normalization coefficient is
1/2

1

jo(co~) (A16)
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