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Complex scaling in the description of nuclear resonances
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A powerful approximation method based on the separable expansion of the potential has been
used to solve the Schrodinger equation for a complex rotated Hamiltonian with nuclear short-ranged
and nuclear short-ranged plus Coulomb potentials. It is shown that for potentials analytic in a prop-
er domain of the complex r plane (e.g., the Foods-Saxon potential up to its first pole) solving the ro-
tated Schrodinger equation on the real harmonic oscillator wave function basis is equivalent to solv-
ing the original equation on the complex harmonic oscillator wave function basis. For nonanalytic
potentials (e.g., the nuclear charged-sphere Coulomb potential which is discontinuous in the complex
r plane) the equivalence does not hold and it is the latter version that gives the correct solution. It is
demonstrated that the method leads to an accurate determination of the resonance energy and (for
not very broad resonances) of the wave function as well.

I. INTRODUCTION

In nuclear physics, as in almost all branches of physics,
the description of resonances is a most important task. A
resonance can be viewed and approached from two dif-
ferent angles: as a delay connected with an enhanced
phase shift in a scattering process or as a long-lived but
decaying state of a compound system. The main observ-
able characteristics of a resonance are the position and the
width. In the first picture they are to be determined from
the phase shift {or cross section) as a function of energy.
In the second picture the long-lived state is regarded as an
extension of the concept of a bound state in that it is a
solution to the Schrodinger equation with purely outgoing
asymptotics belonging to complex energy. The real and
imaginary parts of the energy give the position and width
of the resonance, respectively. The two aspects are con-
nected by the fact that the complex eigenenergy of the
Schrodinger equation with purely outgoing asymptotics is
a complex pole of the scattering function or Smatrix.

There are problems in the case of which the second
viewpoint offers some advantages over the first one. The
well-elaborated bound state methods can easily be general-
ized so as to cover resonances, and can provide us not
only with the position and width of the resonance but also
with the resonant wave function. Although this wave
function, called the Gamow or Siegert function, does not
belong to the Hilbert space, there are rules worked out to
make its use possible in calculations. So nuclear reactions
leading to unbound states can be described with standard
theories by substituting for the bound-state wave func-
tions with the resonant-state wave functions instead of
considering a continuum of scattering states. Also, in
structure calculations profit can be derived from the use
of the concept of a resonant state, e.g., in the description
of unbound members of rotational bands or rotational
bands based on unbound states, in representing isobar ana-
log resonances, etc. Moreover, the resonant states may be
members of complete sets consisting of the bound states,

selected resonant states, and appropriate continuum states;
by including several resonant states in an expansion,
which can be done on an equal footing with the bound
states, a part of the continuum can be taken into account.
The advantage lying in the concept of the resonant state
can be exploited also in the determination of many-body
resonances, as many calculations, carried out mainly in
atomic and molecular physics, testify.

All of these explain the huge amount of work invested
in studying the ways and means of describing the resonant
state. Recently it was demonstrated' that the powerful
approximation method based on a separable expansion of
the potential {local or nonlocal) and used in a great variety
of bound-state problems, can be extended so as to produce
the resonant states as generalized bound states both in
coordinate and momentum representation. Those prob-
lems ranged from one particle moving in a spherical or
deformed short-ranged potential ' to two neutral particles
moving a short-ranged potential {'sO), and two neutral
particles and one charged particle interacting pairwise via
a realistic local potential, etc. It is noteworthy that the
potential separable expansion {PSE)method proved to be
superior to wave-function expansion methods, especially
in representing the wave function in the asymptotic region
on a much smaller basis and in generalizability. E.g., the
otherwise inaccessible Gamow states of deformed poten-
tials or potentials containing a tensor term can easily be
generated with the PSE method; similarly the bound and
resonant solutions of Saito's orthogonality condition
model, which is a successful substitute for the microscop-
ic cluster model, can efficiently be solved with it. The in-
clusion of long-ranged interactions into the scope of the
method is a most natural demand.

In Sec. II we briefly review the PSE method as it was
successfully applied to short-ranged potential problems
and display how the direct application to the long-ranged
Coulomb potential fails. The aim of this paper is to show
that the complex scaling method borrowed from atomic
physics helps to manufacture the energies and wave func-
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tions of the resonances developed in a short-ranged plus
long-ranged potential with essentially the same machinery
that was used for the short-ranged potential.

The complex coordinate scaling, which is a well-

founded, mathematically sound, and widely used method
of generating single- and many-electron resonances, is
described in Sec. III as it is applied to neutron resonances.
With what can be learned from the neutron case we attack
the proton problem in Sec. IV. As a numerical example
we have chosen the commonplace Saxon-%'oods plus
charged-sphere Coulomb potential case that can numeri-
cally be integrated, in order to have a basis for compar-
ison. Our conclusions and remarks will be gathered in
Sec. V.

&g
~

h &= lim J exp[ er —]g(r)h(r)dr
g~O 0

= I g(k)h(k)dk .

(5a)

(5b)

Here h(k) is the generalized Fourier transform of h (r),
' 1/2

h(k)= lim — I exp[ er —]h(r)Ji(kr)dr,
e~O 1T 0

(6a)

and uice uersa

tors are Gainow vectors and to lead to the usual result if
the factors are bound-state vectors. From among the
more or less equivalent prescriptions we have chosen the
ones given by Berggren

II. THE PSE METHOD

This method amounts to finding the solution to the
problem

' 1t2
2h(r)= f h(k)J, (kr)dk . (6b)

and
~

i & and
~ j& are members of an orthonormalized

complete set I ~i &I. The operator VN is Hermitian if V
is Hermitian.

Limiting ourselves to a purely outgoing (bound or
resonant} solution of Eq. (1), after some straightforward
rearrangement we obtain the approximate state vector

N

i
yN& y N V G(+)(E)v)

i
(4)

l,j=0

where c„~=(j
~
f„&, and Go+' is the outgoing free

Green's operator. Multiplying Eq. (4} by (k
~

we arrive
at the system of algebraic equations

N N

g ak, —g (k ~GO')(E„')~i&V,, c„",=0,
j=0 i=0

k =0, 1,. . .E (1')

for the coefficients c„j. The necessary and sufficient con-
dition of the solvability of Eq. (1'), namely

D(E)=—det 5k —Q (k
~

6()+'(E) ~i & V; =0,
i=0

provides a transcendent equation for the approximate
eigenenergy. The negative real roots yield the bound-state
energies; the complex ones with

(2mE„ /A2)'~ =k„=a„iy„, a—„&y„&0—

yield the resonant-(Gamow) state energies. The quantum
mechanical inner product is taken here in a generalized
fashion so as to be sensible even if one or both of the fac-

H
~ g & = (T + V—)

~ g & =E
~

1i &

as the N~ ao limit of the series of intermediate problems

(T+ v"-)
I
P&=E"

I P&
where

Nv"= g ~i&v„&q ~,
ij =0

Ji(kr) =krj i(kr) are the free parti-cle wave functions,
ji(kr) standing for the spherical Bessel functions. L+ is
the Rek&0 part of a curve L of the complex k plane
characterized by the following properties: if k is on L so
is —k;

~

Rek
~

&
~

Imk
~

on L; and for large values of
~

Rek
~

L coincides with the real axis. The functions

g (r) and h (r) are bound, Gamow or scattering wave func-
tions taking their asymptotic k values from that part of
the complex k plane which is above L. Based on Eqs. (5)
and (6) a code has been written' for the solution of (1'};
in Ref. 10 all formulas and numerical procedures used can
be found. As a basis set the harmonic oscillator wave
functions (HOWF) were used because they are equally
well manageable in coordinate and momentum representa-
tion and make the computation of the matrix elements,
necessary in (1'), possible in whatever representation is
more favorable. Encouraged by our really good results
with short-ranged and screened Coulomb potentials, '

we tackled the nuclear Coulomb problem. We searched
for the bound and resonant states in a potential

uN ——Vof(r)+ V~— lcr,1 df(r)
r dr

1f(r}=
1+exp[(r —roA )/a)

u, =(e Z)Z2/2R, )(3—r IR, ) r (R,
=e Z)Z2/r R, ~r .

%e use here the commonplace notation. In Fig. 1, the
convergence of the complex eigenvalues E to the results
obtained with direct numerical integration (DNI) of Eq.
(1), with the aid of the code o~ow (Ref. 11), is
displayed for a selection of states. A most confusing pic-
ture emerges: The bound and pseudobound (positive ener-

gy, zero width) cases show rapid convergence to the DNI
results, the energies of the narrow resonance fluctuate
around it, but those of the broad resonance just depart.
The failure reminds one of the doubts cast on the very ex-
istence of any basis on which the separable expansion of
the Coulomb potential might converge it certainly does
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FIG. 1. Left-hand side (lhs): the potential (7) with parameters indicated in Table II plus the centrifugal barrier and the energies of
the 2s&qq bound, the first and second unbound s, and the first unbound g9~ levels as obtained by DNI. Right-hand side (rhs): the
PSE energies as functions of the basis size; solid lines, left-hand scales for the real parts; dashed hnes, right-hand scales for the imagi-
nary parts.

not converge on the HO%'F basis, at least with a tolerable
basis size. This is a consequence of the long-range charac-
ter of the potential. Still, this alone cannot be the reason
for the lack of convergence of the energy, since there is
the very same (nonconvergent) potential present in all of
our examples. It is the wave function that differs strik-
ingly: In the convergent cases it is square-integrable, in
the nonconvergent cases it is not. One is tempted to con-
clude that the poor behavior of the potential can be over-

balanced by the good behavior of the wave function. If it
were so we could resort to the Aguilar-Balslev-Combes
(ABC) theorem' standing a fair chance. This theorem
states that under a special U(8) transformation the
Schrodinger equation may transform so as to keep its
bound and resonant eilenvalues unchanged while the
respective eigenfunctions become square-integrable. The
next section will be devoted to the ABC theorem and its
combination with the PSE method.
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III. COMPLEX SCALING

The U(8) transformation of the ABC theorem is de-

fined by

( U(8)f )(r) =e f(re ) =f—e(r),

( U(8)f)(p) =e ' ' f(pe ) =fe(p),

(Sa)

(Sb)

where r and p are the space and momentum variables,
respectively, and 8 is complex with the restriction that

~
Im8~ & arctan(y/~) T.he strongly restrictive sufficient

conditions of the ABC theorem are given with mathemati-
cal rigor in Ref. 14; loosely speaking they amount to the
requirement that all quantities in the Schrodinger equa-
tion be dilation analytic. This means that there exists a fi-
nite region of

~

Im8
~

in which their transforms obtained

by the application of U(8) are analytic. For the solution
of the transformed Schrodinger equation

Q= U(8) '1(te . (10)

The resultant E and g are exact or approximate depend-
ing on whether the method of solving (9) is exact or ap-
proximate.

Let us now use the PSE method as described in Sec. II
as an approximation method to (9). It is known (see, e.g. ,
Ref. 14) that the transformed kinetic energy
T(8)=e T, so the equation to be approximated with
the PSE method reads

or

[E-"T+U(8)VU(8) '~
~
qe&=E

~ ye&

the whole arsenal of methods developed for the bound-
state problem is at our disposal. The obtained value of E
is the wanted eigenenergy; the wave function f comes
from ge as

H (8W'e=EPe

H (8)= U(8)HU(8)
(9)

[T+e U(8) VU(8) 'j
~ Pe) =e E

~ Pe),
for which the analogs of (1') and (4) are

N

5kj —e g (k ~GO+'(e E„)~i)(i
~
U(8)VU(8) '~j) c„e 0, k=——0, 1, . . .N,

j=0 i=0

Iy, &=."y c.j,e(i
~

U(8)VU(8)-'~J&G~~+~(e»E~) ~;&.
Ij =0

For the sake of the following examples let us confine ourselves to local potentials V= V(r) and calculate their matrix ele-
ments in coordinate representation; the matrix element of the Green's operator is easier to calculate in momentum repre-
sentation.

The matrix elements of the rotated potential

V( r, 8)= U(8) g Vj (r) Y) (Q, ) U(8) (13)

on the HOWF basis I ~
i ) j = I ~

nljm ) I are, in obvious notation,

(njlm
~

V
~

n'!j''m') = lim g ~, exp[ er ]R„t(r,b—)+t'J (Q„s,)
'-Ot-m"

X U(8)Vt-~-(r)Yt ttt (Q, )U(8) 'R„I (r, b)$'t J. ttt (Q„s,)r drdQ, , (14)

(r
~
njlm ) =R„~(r,b)3'tj~(Q„s, ), (15)

where b is the real oscillator parameter.
Due to the square integrable HOWF, the integral exists also for e=0. Because of the well-known dependence of Yt~

on r= Ix,y,zj (Ref. 15) the application of (Sa) leads to

( nlj m
~

V
~

n'lj''m ') = g ~~) R„t(r,b) O'IJ~ (Q„s,) V~ ~ (re )Yt-~-(Q, )R„ t (r, b)9't ~' (Q„s,)r dr d Q, .
Itt tt

~=re'

takes the form

(16)

The integration over the angular variables and the sum-
mation over the spin degrees of freedom can easily be per-
formed in each term; the radial part V„E„I with the
transformation

V„t„t =e 3e f R„~(te e,b)V(t)R„t(te e, b)t2dt;

the equation of c is (16). If the potential is dilation ana-
lytic, by virtue of the Cauchy theorem,

~ggj, gg
'I' e

O
~fgI

XR„I(re, b)r dr
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FIG. 2. The real and imaginary part of the radial wave functions of the resonance displayed in Table I. {a) Heavy solid and dashed
lines are obtained with DNI for Ree=Im8=0; light solid and dashed lines for Re8=0, Im8=0. 12. The crosses indicate the PSE re-
sults to the rotated problem; the dots show the rotated-back wave functions. {b)The same for Im8=0.20.

R„(re,b) =e R„(r,bee); (19a)

is obtained. If, however, the potential possesses discon-
tinuity or singularity, a contribution to (18) may arise.
The radial HOWF has the property

on HOWF with a comp/ex size parameter (CPSE).
As a simple example let us consider a resonance in the

potential UN of Eq. (7). It is dilation analytic up to its
first pole in the complex r plane; the position of this pole
imposes an upper bound on Im8,

therefore,

V„I„I——f R„~(r,be )V(r)R„&(r,be )r~dr .
~a

Im8 ~ arctan
row

'~' (22)

R„~(pee,b)=e 3' R„I(p„bee),

namely

(G,'+'(e "E))„„,=e "f R-„,(p, be' )L+ E —p /2m

(19b)

Also for the matrix element of the free Green's operator
occurring in (11'),

(nljm
~
U(8)U(8) 'Go+'(e' &)

~

x'Ij''m'),
a simple expression is derived, by simple manipulation
and by using the property of the HOWF analogous to
(19a) for the momentum representation

In Table I are displayed the eigenenergies corresponding
to an 1=6,j = —", resonance as obtained for various values

of the purely imaginary 8 by the direct numerical integra-
tion of Eq. (9), by the real-basis-function PSE approxima-
tion to Eq. (9) (RPSE), and by the complex-basis-function
PSE approximation (CPSE) to Eq. (1).

In Fig. 2 the intermediate wave functions and the
rotated-back wave functions are compared with the ones
obtained by DNI for two different values of Im8=p. The
energies show the independence from 8 and the
equivalence of the RPSE and CPSE methods. The figure
demonstrates that the quality of the approximate inter-

XR'Hp»e )p "p . (21) TABLE I. An I,=6, j =
2 neutron resonance {in MeV) in a

%'oods-Saxon potential. '
Equations (20) and (21) inserted in (11') and (12) produce
the unrotated PSE equations (1'), the only difference be-

ing that the real osri11ator parameter b has to be substitut-
ed for by the complex quantity b =be =be'~.

It is the equivalence of two distinct procedures that is
stated here for the case of dilation analytic potentials: the
approximation of the rotated Schrodinger equation with
the PSE method based on HOWVF anth a real size parame-
ter (RPSE), and the approximation of the original (unro-
tated) Schrodinger equation with the PSE method based

Im8

0.00
0.08
0.12
0.16
0.20

9.596—i 0.916
9.596—i 0.916
9.596—i 0.916
9.596—i 0.916
9.596—i 0.916

RPSE=CPSE

9.592—i 0.915
9.592—E 0.915
9.592—i 0.915
9.592—i 0.915
9.592—i 0.915

'The parameters of the potential are Vo ——30 MeV, V =5.8
MeV, ro ——1.19 fm, a=0.75 fm, and A =208. Thirty basis func-
tions were used; b =2.4 fm, Re8=0.
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TABLE II. An l=4, j =
2 proton resonance (in MeV) in potential (7).'

CPSE

0.00
0.08
0.12
0.16
0.20

13.5701—i 0.3394
13.5684—i0.3302
13.5620—i 0.3127
13.5374—i 0.2648
13.4673—i 0. 1425

b
13.5743 —i 0.3336
13.5646 —i 0.3155
13.5384—i 0.2653
13.4702 —i 0.1466

b
13.5751—i 0.3402
13.5724 —i 0.3402
13.5716—i 0.3399
13.5713—i 0.3398

'The parameters of the potential are as follows: VD ——50.9 MeV, V =5.8 MeV, ro ——1.19 fm, a=0.75

fm, A =208, Z~ ——82, Z2 ——1, and R, =r OA
' '. Thirty basis functions were used; 5=2.4 fm.

Not converged.

mediate wave functions is independent of 8 and is satis-

factory (at both y values the crosses obtained with the
PSE method lie on the curves yielded by the DNI), but the
operation U(8) ' on the intermediate wave function am-

plifies the error, especially in the asymptotic region (the
dots from the PSE method follow the curve of the DNI in
case a but deviate, especially in the asymptotic region, in
case b). The larger 8 is, the stronger the amplification.
This means that (i) whenever it is passible [e.g., for com-
puting the matrix elements of an operator 0 whose
U(8)OU(8) ' transform is known] we had better use the
intermediate wave functions; (ii) if we need the rotated-
back wave function we should take the one belonging to
the smallest qr value in the interval of 8 independence; (iii)

l

as the complex-basis-function PSE method automatically
yields the rotated-back wave function it may be restricted,
from the point of view of the wave function, to the region
of the narrow resonances.

IV. PROTON RESONANCES

As we have seen in Fig. 1, the PSE method does not
converge at 8=0 for resonances in the full potential (7).
So this problem would be a nontrivial testing ground of
the complex rotatian technique. Unfortunately the v,
term af the potential is not continuous in the complex r
plane. This discontinuity adds a nonvanishing, 8-
dependent contribution to the matrix element (18)

e Z, Z2e I R„t(te,b)[(3 t /R, )/2—R, —1/t]R„ t (te s, b)t2 . (23)

The curve c connects the complex points R, and R,e .
This is a deviation from the dilation analyticity, the suffi-
cient condition of the ABC theorem. To decide whether

I

the ABC theorem remains valid in spite of this particular
deviation, i.e., that the energy of Eq. (9) is really 8 in-
dependent, me solved the rotated Schrodinger equation

Ref
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y=0.24

tie El
(HeV)

De 0- =p 2q

13.5—

I )
I -13

0.46— —2
g I

lg-o —12 y-0
I

S

I, 0.42—
I
1

/
I

g 0.38— 0
l l \

I —1

~Sa ~eeeQ

II l I
I~I] I 0.30—

II —8

I l I I I I I I I I I I I I I I I I I I I I I

12 14 16 1$ 20 22 24 26 28 30 32 N 10 12 14 16 1$ 20 22 24 26 28 30 32 N

FIG. 3. The energies, as functions of the basis size, of the g&/2 (a}and the broad sl/2 (b} resonances of Fig. 1. Solid lines, lhs scales
for the real parts; dashed lines, rhs scales for the imaginary parts; b=2.4 fm.
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FIG 4 &he surfaces of the real and imaginary energies of the g9/Q level of Fig. 1 over the complex b =Ee'~ oscillator parameter as
obtained by cubic spline interpolation (upper part). Lower part: the 13.57—0.002 & ReE & 13.57+ 0.002 and the
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region of parameter independence.

"exactly, " i.e., with DNI. What we have found is
displayed in Table II: The energy is 8 dependent; the
ABC theorem is not valid. The RPSE, which is an ap-
proximation to the rotated problem, faithfully exhibits the
same 8 dependence. This same deviation destroys the
equivalence between the RPSE and the CPSE, which is an
approximation to the unrotated problem. The third
column of Table II contains the remarkable result that the
CPSE is convergent and yields 8-independent energy that
approximates. the DNI energy of the unrotated problem
(tp=0) well.

In Fig. 3 the energies of the two resonances of Fig. 1

are shown as functions of the basis size N at fixed (com-
plex) 8. Figure 4 displays the energy surface over the
complex b =be'~ and the region of b independence at a
fixed basis size. In Table III the regions of q& indepen-
dence at various basis sizes are presented for the narrower
resonance. Figure 5 displays the wave function compared
to the one obtained by DNI. As is to be expected, the
wave function of the wide resonance follows the exact one
only up to —10 fm at a qr value which makes the pro-
cedure convergent. On the basis of the results presented,
the separable expansion of the potential on complex basis

functions appears as a viable method for describing (not
very broad) proton resonances, even if it is lacking
mathematical pedigree, having lost the connection with
the complex rotation of the Hamiltonian.

V. CONCLUSIONS

The complex scaling is a well-developed technique in
atomic and molecular physics which has been thoroughly
investigated both from the conceptual and computational
points of view. ' For no obvious reason it does not belong
to the commonly used means of nuclear physics. We hope
to have demonstrated that some profit can be derived
from its application to nuclear problems.

Its combination with the HO%'F-based PSE method led
to a fair approximation to the nuclear Coulomb problem
notwithstanding that our numerical example was the ex-
treme case of a Pb-like problem. Also, it appeared to be
an interesting example of the complex-basis-function
method working without being substantiated by an under-
lying complex rotation of the Hamiltonian. This seems to
be a counter-example to the common belief. ' Being as it

TABLE III. An /=4, j=
2 proton resonance (in MeV) in potential (7). (For the parameters see the caption to Table II.)

0.04 0.08 0.12 0.16 0.20 0.24

18
21
24
27
30

13.606—i0.326
13.564—i 0.314
13.549—i0.344
13.575 —i0.357
13.584—i 0.338

13.587—i 0.337
13.570—i 0.329
13.564—i0.340
13.S71—i0.345
13.575 —i 0.340

13.579—i 0.340
13.572 —i 0.336
13.570—i 0.339
13.571—i 0.341
13.572 —i 0.340

13.575 —i 0.339
13.572 —i 0.339
13.571 —i 0.339
13.571—i 0.340
13.572 —i 0.340

13.574—i 0.333
13.573—i 0.341
13.571—i 0.339
13.572 —i 0.340
13.571 —i 0.340

13.558—i 0.299
13.588 —i0.352
13.563—i0.337
13.576—i0.340
13.569—i 0.340
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FIG. 5. The real and imaginary parts of the radial wave
function of the g9/2 resonance of Fig. 1 as obtained by DNI
(heavy solid and dashed lines, respectively) and by rotating back
to y=O the PSE function belonging to 6=2 4fm. , y=0.12 rad
(dots).

appears here, a method detached from the complex coor-
dinate rotation, the complex-basis-function technique
deserves some further investigation which may lead to an
improvement of the wave function for broad resonances.
In determining the position and width in general, and also
the wave function for narrow resonances, it is successful
in its present form.

%'e conclude by remarking that the complex scaling
technique is obviously not restricted to the PSE method; it
can be associated with any (single-particle or many-body)
approximation method. We have promising preliminary
results concerning resonances in six-nucleon systems in
the framework of the generator coordinate method.

The authors are indebted to Dr. T. Vertse for his help
in modifying the code GAMOW so as to accommodate
complex coordinate rotation and to Dr. G. Szekely for
creating Fig. 4.
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