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Geometric interpretation of the adiabatic model for heavy-ion fusion
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The relation between the finite basis adiabatic model and the classical adiabatic model (corre-

sponding to a complete set of degenerate states) is elucidated when the internal system is rotational
or vibrational. It is shown that the finite basis results can be obtained from the classical model re-

sults using the Gaussian quadrature to evaluate the former and Hermite quadrature for the latter.

I. INTRODUCTION

The importance of nonelastic couplings on the fusion of
heavy ions is well established. ' It has been shown that the
fusion cross sections are strongly infiuenced by deforma-
tion effects, surface vibrations, and transfer reactions.
The explicit inclusion of these couplings by means of
coupled-channel calculations becomes prohibitively time
consuming, particularly when heavy ions are involved in
the collision. This has led to the introduction of several
simplifying approximations to the coupled-channel calcu-
lations. The scattering of spherical projectiles by de-
formed nuclei has been studied by invoking the extreme
adiabatic approximation by Chase, Wilets, and Edmonds.
This model assumes that the rotational motion of the axi-
ally symmetric target nucleus is very slow in comparison
with the relative motion of the projectile and target nuclei.
Thus, one can evaluate an orientation-dependent scatter-
ing ainplitude, f(8), for the scattering of the projectile by
the target whose symmetry axis is oriented at angles 8
with respect to the beam axis. The elastic and inelastic
scattering amplitudes can be obtained by folding f(8)
with the distributions of orientation (D functions). This
model essentially assumes that the complete set of states
of the ground state rotational band are included and that
the Coriolis term of the kinetic energy operator can be
neglected. Within the context of the above model, the to-
tal fusion cross section is given by

sln8 Htusion(8)d8 r (1.1)

where trf s'o (8) is the cross section of the fusion of the
projectile and the target oriented at an angle 0 with
respect to the beam axis.

Similar adiabatic approximations have been made for
the treatment of coupling to vibrational states. These
have been studied for the case of a harmonic oscillator
coupled linearly or quadratically to the translational
motion. ' The respective total fusion cross sections in
these two cases are given in the extreme adiabatic limit as

trtu~sion= f d~ e "
"~tusionL' V(R)+x+of (~)l
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(1.2)

and
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respectively, where V(R) is the monopole nuclear plus
Coulomb potential, f (R) is the coupling form factor, and
ao is the amplitude of zero-point motion of the harmonic
oscillator. Equations (1.2) and (1.3) can be interpreted as
if the zero-point motion were very slow compared to the
relative motion of the projectile and target, so that one
evaluates the fusion cross section at different (frozen)
points of the zero-point vibration and averages with

—x 2/2the weight factors e
In contrast to these extreme adiabatic models, there ex-

ist more restricted adiabatic models, where a finite set of
coupled-channel equations are simplified by making the
adiabatic approximation (neglect of the internal excitation
energies of the target) and ignoring the Coriolis term in
the kinetic energy operator. These models include a fi-
nite number of excited states of the target and, because of
the separable nature of the coupling interaction, complete-
ly decouple the coupled equations. Thus, for both rota-
tional and vibrational coupling, one obtains a simple ex-
pression for the total fusion cross section,

Nr =1
a=1

(1.5)

total
+fusion= ~ ~at7fusion(+) r

a=1

where crt;,„(ct)is the fusion cross section of the two
heavy ions in the eigenchannel a where the real potential
is Vo(R)+A+(R), and the weight factors w satisfy the
condition
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In Eqs. (1.4) and (1.5), N refers to the number of target
states included in the coupled-channel calculation. The
parameters A,~ and m~ are dependent only upon the static
properties of the target nucleus and independent of the
dynamics of the collision.

In this article, we analyze the properties of the parame-
ters A, and wu for the cases of rotational and vibrational
coupling and study how they tend to the classical limit
[Eqs. (1.1)—(1.3)]. In Sec. II we discuss the scattering by
an axially symmetric rotor and discuss the decoupling of
the coupled equations. The properties of A, and w are
discussed in this section for the rotational coupling. In
Sec. III the decoupling of the coupled vibrator with both
linear and quadratic coupling is discussed. The summary
and conclusions are presented in Sec. IV.

II. SCATTERING BY AN AXIALLY
SYMMETRIC ROTOR

Under the adiabatic approximation, the Hamiltonian of
the system is

]]i d
j'L ———

2p dR

L(L+1)
R

(2.7)

the operator on the left-hand side of (2.5) becomes in-
dependent of L and I, and hence one can decouple the
coupled equations by a unitary matrix whose elements are
c numbers. This is a consequence of the assumption that
the coupling form factor F(R) is independent of L and I.
It can be shown that a transformation matrix, I LI, that
diagonalizes the coupling interaction, is

' 1/2

I' =i'+'-' (LOIO~ JO)P.. . (2.8)

where P I satisfies the eigenvalue equation

[(2I+1)(2I'+1)]'"
X (IOI'0

~
20) Pug =A,/ul .

If we now make the approximation of negle:ting the
Coriolis term in the kinetic energy operator, i.e., approxi-
mating I. by Jin

0=++VO+ ~coupling ~ (2.1) (2.9)

where K is the kinetic energy operator of relative motion,
Vp is the sum of the monopole nuclear and Coulomb po-
tential, and V„„pl;„gis the projectile-target coupling in-
teraction which we assume to have the form

The resulting decoupled equations are

[Kg+ Vp(R)+A, +zF(R)—E]W~(R)=0,
where

(2.10)

V„,p];„g(R,g') =PzF(R )y Ypp(R) Yip(g), (2.2) W~(R )=Q I Ii UI I(R ) .
LI

(2.11)

where f represents the orientation of the symmetry axis of
the rotor and R is the vector joining the centers of mass
of the two colliding nuclei. We have assumed that the ro-
tor has a deformation of a single multipolarity which we
take to be quadrupole.

The wave function for a total angular momentum J and
z component M can be expanded as

O'M(R g) —g P'~(R g) (2.3)

where

$11(R,g)=i + g (LMIIMI
~
JM)YL]]r (R)YI]]r,(g) .

where QLI.L I is defined by

dl d LI R, r R r2

(2.5)

(2.4)

In Eqs. (2.3) and (2.4), we have considered only the K =0
band of the rotor, and I is the spin of the state of the ro-
tor, M is its projection on the space-fixed z axis, and L is
the orbital angular momentum of the projectile-target rel-
ative motion. The radial functions UIL (R) satisfy the
coupled equations

(KL+Vp E)ULi(R)= 132F—(R)QQLI LI —UI I (R), .

The first term of the transformation coefficient,
' 1/2

gi + (LOIO
~
JO),2J+1

can be immediately recognized as the coefficient of
transformation from the laboratory to the intrinsic frame
of reference. ' (It should be noted, however, that we ro-
tate the symmetry axis of the rotor toward the R vector. )

The coefficient P~ which is the eigenvalue of Eq. (2.9) is
exactly the one that occurs in the sudden approximation
to Coulomb excitation developed by Alder and Winther. 'p

The resulting eigenvalues A, and eigenvectors P I have
been listed by these authors for the cases of coupling of
various rotational states with I,„=2,4, or 6. The adia-
batic model then yields the total fusion cross section as

N
total ~ 20 fusion ~ PapO fusian( & )

a=1
(2.12)

where err~;n„(u) is the fusion cross section in the eigen-
channel a with the effective spherical potential
Vp(R)+A+zF(R). We expect that Eq. (2.12) should be-
come identical to Eq. (1.1) in the limit that the number of
states of the rotor, I]I, included in the coupled-channel cal-
culations tends to infinity.

It is of interest to find a geometrical interpretation of
the eigenvalue A, and the weight factors Pup. An inspec-
tion of Eq. (2.9) shows that it is equivalent to the eigen-
value equation

Xd'L I «5» . (2.6) P2(cos8)f (8)=AJ' (8), (2.13)
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where f (8) is an eigenstate of the operator P2(cos8) and
is the corresponding eigenvalue. If I,

„

is the max-
imum spin to be included (all the spins are even), f (8) is
of the form

f (8}=gP rI'rp(8 0» (2.14)

where P r satisfies Eq. (2.9). Thus, we find that r(, is the
eigenvalue of the operator P2(cos8) and if Eq. (2.13) has a
solution for f (8) given by (2.14}, we need
Pr +2(cos8) =0. This is satisfied by the set of angles 8,
which are the zeros of Pr +2(cos8}, and the eigenvalues

become equal to Pz(cos8 ). Thus, we find that the A,

are bounded, ——,
'

&A,~&1. It follows that the equation
for the eigenchannels, Eq. (2.10), can be rewritten as

time ip keeps decreasing. The product of these two very
quickly reaches saturation, as has been clearly dernon-
strated by Lindsay and Rowley in their analyses of the
fusion of ' 0 by samarium isotopes.

%e have thus been able to show the correspondence be-
tween the extreme adiabatic limit, Eq. (1.4},and the corre-
sponding expression when a finite number of rotor states
are included, Eq. (2.12). This is merely the identity

tota&or';,„= sin8 err;„(8)d8
0

afusion +

where the abscissas, cos8, and weight factors, ip~, corre-
spond to Gaussian integration.

III. HARMONIC OSCILLATIONS COUPLED
TO TRANSLATIONAL MOTION

[&r+ Vp(R)+P2P(R)Pi(cos8 ) E]W—&g(R)=0 . (2.15)

The functions 8'~(R) are thus seen to describe the
scattering of the projectile by the target nucleus at fixed
orientations 8, where the 8~'s are the zeros of the Legen-
dre function Pr +i. If I,„=O,8 corresponds to
54.74', which corresponds to the zero of Pq(cos8 ), so
that the scattering contains only the spherical potential
VQ(R ). For I,„=2, we obtain two orientation angles
corresponding to the zeros of P4(cos8) in the range
0&8&m/2 The .corresponding weight factors Pp are
those corresponding to Gaussian integration, " i.e.,

P p ——2/(1 X)[Pr +—2(X )] (2.16)

where

Now consider the case of a harmonic oscillator coupled
to a translational coordinate either linearly or quadratical-
ly. The oscillator Harniltonian is

d a'
Hp(q) = — + —,m prpq

2m Qq~
(3.1)

and

H""„ii„s(q,R ) =f(R)q (for linear coupling) (3 2)

H'i „d&;„s(q,R)=f(R)q (for quadratic coupling) .

(3.3)

and the interaction term (considered separable) is of the
form

X =cos8 and Pr(X )= Pr(X ) .
In terms of the creation and annihilation operators a and
at for the harmonic oscillator, we have

Thus, if we include I =0 and 2 of the rotor, we obtain the
orientations 70.12' and 30.55' of the target with respect to
the beam direction, and these contribute to the fusion
cross sections with weight factors of 0.652 and 0.348,
respectively. From Eq. (2.15}, it can be noticed that, for
prolate nuclei (P2 & 0) and an attractive potential [Vp(R)
and F(R) both negative], the barrier corresponding to
70.12' will be raised and that for 30.55' will be lowered
relative to the case where the inelastic couplings were
neglected. (It will be the reverse for oblate nuclei, P2 &0.)
As we include more states with increasing I,„,more
orientation angles come into play, the largest of these
tending toward 90' and the smallest approaching to 0'.
Correspondingly, the weight factors for the largest orien-
tation angle tend toward unity, while those for the small-
est tend toward zero; the weight factors become propor-
tional to sin8. At energies much belo~ the barrier, the
lowest fusion barrier determines the fusion cross section,
0

1.e.,

and

Hp —(a ta+ —,
'

)%op,

H,',"„~i;„s——apf (R)(a +a t),

H q,„&i;„sag(R)(a ta t+——aa+2a ta + 1) .

(3.4)

(3.5)

(3.6)

A. Linear coupling

This corresponds to the usual harmonic vibrational col-
lective model of nuclei. Let us consider a finite number of
oscillator quanta. The eigenvalue equation corresponds to

(a + a ) g P'„'
~

n }=A, g P'„'
~

n }, (3.7)

The adiabatic (degenerate} limit is obtained by letting
cop~O and at the same time keeping ap finite by allowing
the mass parameter of the oscillator, rn, to tend to infinity
[cf. Eqs. (1.2} and (1.3)]. Let us now consider the cases of
linear and quadratic coupling separately.

total
~rusion(E « Vrr }=~aarusion(~) ~ (2.17)

where err„„,„(a)corresponds to the channel with the
lowest fusion barrier. As we incorporate more states of
the rotor, or~;,„(a)keeps increasing, while at the same

q g P'„'h„(q) =A, g P'„'h„(q), (3.8)
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where h„(q)is the Hermite polynomial of rank n. The ef-
fect of the q operator on the left-hand side of the equation
is to result in a superposition of Hermite polynomials up
to the rank %+1. The polynomial hiv+i(q) is absent on
the right-hand side. Thus the discrete set of values q
which allow for a solution of Eq. (3.8) correspond to the
zeros of hN+, (q), and the total fusion cross section can be
expressed as

total
afusion =~~a+fusion(a ) ~ (3.9)

where or;,„(a)is the fusion cross section corresponding
to the spherical potential [Vo+aoq+(R)], where Vo is a
monopole (nuclear plus Coulomb) potential. It can be ver-
ified that tU is the weight factor corresponding to the
Hermite quadrature with %+1 points. In the limit
X—+ oo, Eq. (3.9) becomes equal to Eq. (1.2).
or „„[Vo+aoq+(R)]is the cross section for an oscilla-
tor frozen at a separation q . The zeros of hiv+i(q) have
both positive and negative values of q and, since A, =q,
some of the fusion barriers will be lower and others higher
than the barrier without the coupling. The saturation of
subbarrier fusion in this case with the inclusion of a few
oscillator quanta has been demonstrated in Ref. 12.

q g P„' 'h„(q)=& g P„'h„(q)
n=1

(3.10)

has solutions for values of q which are the zeros of
hN+z(q}. Unlike the case of linear coupling, the only
basis states that appear in Eq. (3.10) correspond to an even
number of oscillator quanta. Since A, =q, I, is always
positive; this implies that the eigenchannel barriers are al-
ways higher [iff(R) is positive] or lower [iff(R) is neg-
ative] than the barrier with no coupling. This is a conse-
quence of the fact that whereas there was no diagonal
contribution in the case of linear coupling, the quadratic
coupling leads to a diagonal contribution ("reorienta-
tion"). Once again, the total fusion cross section can be
expressed as a weighted average of the eigenchannel
fusion cross sections

B. Quadratic coupling

A similar analysis can be carried out for quadratic cou-
pling. Such couplings arise in models for nuclear fis-
sion. ' In this case, the equation

Pal =&(21+1}PI(cos8 )Pao (4.1)

Thus, once the weight factor is determined, all the com-
ponents Paq of Eq. (2.14) are known. Hence, all other adi-
abatic cross sections (elastic and inelastic) can be easily
evaluated.

It should be noted that whereas the adiabatic model
may be reasonable in the case of scattering by a strongly
deformed nucleus in several cases, this is likely to be less
favorable in the case of vibrational coupling, where the
excitation energies involved are larger. Thus the adiabatic
model will tend to overestimate the fusion probability. '

However, its predictions can be used as a guideline before
fuller coupled-channel calculations are undertaken.

As a final comment, the analysis of scattering by de-
formed nuclei with more than one multipole deformation
(quadrupole and hexadecapole} becomes more difficult be-
cause the form factors Fk(R) become dependent upon the
multipolarity k of the coupling. Thus, one does not find
it easy to totally decouple the coupled equations without
making doubtful approximations of replacing the form
factors with values at a predetermined radius. The same
statement holds in the ease of a superposition of linear
and quadratic coupling in the case of a vibration. Thus,
even though the extreme adiabatic limits are known, one
does not know how to extract the finite basis results from
these.
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afusion= ~ ~a+fusion(a) ~
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where now the effective spherical potentials are
[Vo+aoq F(R)] and where q are the zeros of h&+2(q)
and w' are the appropriate weight factors. In the limit
X~ oo, this leads to Eq. (1.3).

IV. SUMMARY AND CONCLUSIONS

The relation between the finite basis adiabatic model
and the classical adiabatic model (which includes a com-
plete set of states assumed to be degenerate} was derived

One of us (M.A.N. ) wishes to thank Dr. Russell Robin-
son for enabling him to visit the Joint Institute of Heavy
Ion Research at Oak Ridge National Laboratory (ORNL)
where this work was undertaken, and another of us (N.T.)
thanks the members of the Theory Ciroup at ORNL for
their hospitality. %'e wish to acknowledge valuable dis-
cussions with Curtis Bemis and Ray Satchler which ini-
tiated our interest in this problem. We further wish to
thank Ray Satchler for his comments on the manuscript.
A. B. Balantekin is a Eugene P. VA'gner Fellow. This
research was sponsored in part by the U.S. Department of
Energy under Contract No. DE-AC05-840R21400 with
Martin Marietta Energy Systems, Inc. , and in part by a



M. A. NAQARAJAN, A. B. BALANTEKIN, AND N. TAKIGA%A 34

Grant-in-Aid for Scientific Research, Contract No.
60540166, from the Japanese Ministry of Education, Sci-
ence and Culture. The Joint Institute for Heavy Ion
Research has as member institutions the University of

Tennessee, Vanderbilt University, and the Oak Ridge Na-
tional Laboratory; it is supported by the members and by
the Department of Energy through Contract No. DE-
AS05-76ERO-4936 with the University of Tennessee.

'Permanent address: Daresbury Laboratory, Daresbury, %'ar-

rington %"A44AD, England.

Present address: Department of Physics, University of
%'isconsin —Madison, Madison, %'I 53706.

'R. G. Stokstad and E. E. Gross, Phys. Rev. C 23, 281 (1981);
M. J. Rhoades-Brown and P. Braun-Munzinger, Phys. Lett.
136B, 19 (1984); M. J. Rhoades-Brown, P. Braun-Munzinger,
M. Prakash, and S. Sen, in Fust'on Reactions Below the
Coulomb Barrier, edited by S. G. Steadman (Springer-Verlag,
Berlin, 1985), p. 162; I. J. Thompson, M. A. Nagarajan, J. S.
Lilley, and B. R. Fulton, Phys. Lett. 157$, 250 (1985); A. B.
Balantekin, S. E. Koonin, and J. %. Negele, Phys. Rev. C 28,
1565 (1983); M. Inui and S. E. Koonin, ibid. 30, 175 (1984);
A. B.Balantekin and P. E. Reimer, ibid. 33, 379 (1986).

2C. H. Dasso, S. Landowne, and A. Winther, Nucl. Phys. A405,
381 (1983), A407, 221 (1983); S. Landowne, in Fusion Reac-
tions Below the Coulomb Barrier, Ref. 1, p. 182.

3H. Esbensen, Nucl. Phys. A352, 147 (1981);H. Esbensen, J. Q.
%u, and G. F. Bertsch, ibid. A411, 275 (1983).

4R. A. Broglia, C. H. Dasso, S. Landowne, and A. Winther,
Phys. Rev. C 27, 2433 (1983).

5D. M. Chase, L. %'ilets, and A. R. Edmonds, Phys. Rev. 110,
1080 (1958).

A. B. Balantekin and N. Takigawa, Ann. Phys. (N.Y.) 160, 441
(1985).

7P. Jacobs and U. Smilansky, Phys. Lett. 127B, 313 (1983).
SR. Lindsay and N. Rawley, J. Phys. G 10, 805 (1984}.
9M. A. Nagarajan, Proceedings of Nuclear Structure and Xu

clear Reactions, La Rabida, Spain, 1985 (%orld-Scientific,
Singapore, 1985},

'OK. Alder and A. %inther, Electromagnetic Excitation (North-
Holland, Amsterdam, 1975).

~'M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

' N. Takigawa and K. Ikeda, Tohoku University Report, 1985
(unpublished).

3H. Hofmann, Nucl. Phys. A224, 116 (1974); P. Ring, H.
Massmann, and J. O. Rasmussen, ibid. A296, 50 (1978).


