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Evaporation-like emission of light particles {n, H, He, . . .) has been observed for many nuclear re-

actions that populate composite nuclei with temperatures of up to =5 MeV and spins as high as
=15(Hi. The measured average energies for the light charged particles are often significantly lower

than calculations for evaporation from spherical nuclei. Detailed calculations have not been report-
ed for the role of deformation in evaporative emission patterns, and thus the interpretation of such

data has been severely limited. In this paper we describe a method for making evaporation calcula-
tions for deformed nuclei, and we present results for several systems with temperatures of 2—5

MeV. The trends of the calculated results are compared to those for spherical emitters in order to
get a feeling for those effects peculiar to the deformations. The patterns of calculated spectra and

angular distributions encourage the notion that such studies can give valuable clues to the shapes of
these very hot nuclei.

I. INTRODUCTION

In most discussions of reactions between complex nu-
clei, one divides the various degrees of freedom into those
of the intrinsic particles and those of collective motions,
such as the shape of the surface. ' A typical schematic di-
agram of the evolution of nuclear shapes during a heavy-
ion reaction is shown in Fig. 1. First, one conceives of
two nearly spherical and cold reactant nuclei being hurled
at one another to form a dinuclear system. Depending on
the balance between nuclear attractions and Coulomb and
centrifugal repulsions, this dinuclear system may break up
(e.g., quasielastic or deeply inelastic collisions, fragmenta-
tion, etc.) or it may develop a neck and fuse2 into, for ex-
ample, a pear-shaped or even more symmetric spheroidal
object.

While these collective motions are occurring, the intrin-
sic nuclear particles are, of course, undergoing individual
collisions and transfers between regions originally identi-
fied with the target or projectile. The individual particles
are being driven toward thermal equilibrium while, dur-
ing the same period, the nuclear surface is being driven to-
ward its equilibrium shape. The relative rates of these
two kinds of relaxation are not well known. Some treat-
ments have assumed that shape equilibration essentially
always proceeds thermalization, while others feel that
thermalization takes place much more rapidly than the
collective movements of the nuclear surface.

The liquid drop modd, in its various forms, has provid-
ed very clear guidance for nuclear forms after shape
equilibration, but it is much more difficult to determine
the time necessary to achieve such shape equilibrium. * '

The intuitive feeling of many is that shape equilibrium
may well be achieved rather often in nuclear reactions in-

volving reasonably low nuclear charge, incident energy,
and angular momentum. By contrast, it is the dynamical
shape evolution that is of major concern for high charge,
energy, and/or angular momentum, as there are no equili-
brium nuclear shapes (these systems are unstable with
respect to fission).

The statistical model for nuclear evaporation provides
very clear guidance for the energy and angular distribu-
tions of light particles emitted from a composite system

( TARGET 8 PROJECTILE I

TWO
BODY

BREAKUP

', PROLATE

EVAPORATION RESIDUES '

Fl'G. 1. Schematic diagram of a possible evolution of nuclear
shapes from the target-projectile entrance channel to two-body
breakup or evaporation residues.
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after energy thermahzation. Our understanding of the
preequilibrium emission of light particles is in a much
more primitive stage of development. ' Experimental
studies of the energy and angular distributions of light
particles generally indicate quite an abundance of
evaporation-like emission. " This evaporative emission
seems to occur both in route to evaporation residues and
prior to two-body breakup reactions.

The thermalized, emitting nuclei could conceivably be
identified with any of the forms in Fig. 1. It would be
very interesting to determine the properties of these very
hot nuclei before the cooling that results from a long cas-
cade of emitted particles, fission-like fragments, and y
rays. Most of the y-ray emission takes place towards the
end of this cascade and, therefore, y-ray studies give in-
formation primarily on relatively cool nuclei. Nuclear fis-
sion can occur from the hot, stretched-out nuclei and,
therefore, fission-fragment studies give information on
those particular nuclear systems in transition from saddle-
to scission-point configurations. ' Evaporative particle
emission begins to occur just after energy thermalization,
and therefore, studies of these particles can give informa-
tion on the very hot nuclei (either before or after fission-
like breakup or for nonfissile nuclei).

Evaporative spectra and angular distributions are deter-
mined by the spin, excitation energy, and potential barrier
of the emitter, as well as by the level density at the
"transition-state" configuration. '2 The efflux:tive size and
shape of this transition-state system are intimately related
to its potential barrier, moment of inertia, and tempera-
ture (especially for charged particles). ' ' Therefore, it is
possible to search for clues concerning these nuclear sizes
and shapes by detailed analysis of observed angular and
energy distributions of the evaporated particles. Our
focus in this study is on the role of the nuclear shapes and
the associated anisotropic effects that can be expected. A
kind of scaling of these effects can be expected to result
from alterations in the size of the emitting system.

The equilibrium statistical model has been very well
developed for the case of emission from spherical nuclei.
By contrast, for deformed nuclei only crude calculations
have been published for rather special situations (e.g., s-
wave emission, emission from the tips of a prolate nu-
cleus, etc.). In this paper we pursue a much more con-
sistent treatment of evaporation from deformed nuclei.
We use the Cassini shape parametrization as described by
Pashkevich, ' and semiclassical methods as discussed by
Eric son, Dossing, ' and others. " We follow the
signposts in Ref. 15, but since the required integrations
are not well suited for analytic methods (various nuclear
orientations, surface positions, exit-channel / values, etc.),
we employ Monte Carlo techniques in the framework of
the well-documented computer code |"ANES.

Our purpose in this paper is to describe the method and
to show how certain observable properties (e.g., mean en-
ergies and angular anisotropies) are predicted to vary with
the shape of the emitter. We compare calculated emission
patterns from prolate, oblate, pear-shaped, and spherical
nuclei for several cases. The results of these calculations
encourage the notion that evaporation spectra for light
charged particles can indeed give meaningful clues to the

shapes of very hot nuclei. Comparisons to experimental
results will be made in subsequent papers in which the
properties of the individual reaction processes can be dis-
cussed in more detail. '

II. AN OVERVIE% OF THE PROBLEM
AND OUR APPROACH

Eg ——Ep —E, —e,
where E, is the particle separation energy and

J~ ——Jp —1 or J~ ——Jp+I —Jpl cosX~,2= 2 (4)

where XI is the angle between Jp and 1. The level density
of the daughter nucleus is usually taken to be that for a
Fermi gas,

pq(Eq, Jq) ~exp(2v'aU)=pq(Eq, O)exp( E„,/'r), (5)—

with thermal energy U and temperature T given by

U =Eg —E„,=aT

The transmission coefficient in Eq. (1) is determined by
the height and width of the barrier as seen by the emitted
particle. For a spherical nuclear system (but not for a de-
formed one) the value of Ti(e) is independent of the az-
imuthal angle Pi, hence, for a given emission angle a
straightforward integration over this azimuthal angle
gives the result'

00 fi (Jo+/ )

SE, J,(e,g) ~ J /T~(e)pq(Eq, O)exp

&Io(2Pising)d/ .

The basic task of an evaporation model is the formula-
tion of the relative probability SE J (e, /, P) for emission of
a light particle with channel energy e and orbital angular
momentum / at an angle tI) with respect to the spin Jo of a
parent nucleus of total excitation energy Eo. This proba-
bility is taken as the product of a transmission coefficient
T~ (that contains the dynamical information) and a level
density p (or number of open channels) at the "effective
transition-state" configuration

SF, J,(g,e)~ I J /T~(e)pq(Eq, Jq)d/dPi . (1)

We use Pi to denote the azimuthal angle for 1 (in the
plane perpendicular to the emission direction) and we fol-
low the semiclassical approximation of integration over /,

where /=/+ —,'. Acceptable values of J~ are constrained

by the classical condition that 1 be perpendicular to the
direction of emission. The relevant level density can be
assumed to be that of the daughter nucleus (subscript d)
at the instant of particle emission. For first step emission
from a compound nucleus, the total excitation energy of
the parent nucleus is given by

Eo=E. +Q

and the total excitation energy and spin of the daughter
nucleus are given by
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In the above expression the quantity Pi is related to the

magnitude of I, the spin of the parent (Jo ——Jo+ —,
'

), the

temperature, and the moment of inertia Jx~ of the
daughter,

Pi A——Jul/~gT .

For a deformed nucleus the situation is much more
complex, as shown in Fig. 2, because the effective emis-
sion barrier, as seen by the particle, depends on its point
of emission on the nuclear surface. In other words, T((e)
is also a function of X(, as shown in Fig. 2. Furthermore,
for each emission direction ((), this emission point (or
birthplace) will also depend on the orientation angles (P'
and X) of the nuclear symmetry axis. Hence we must re-
turn to the integrand of Eq. (1) and find a way to make
the integrations over these orientation angles. The impli-
cit integrations over (()' and X must be addressed along
with the explicit integrations over I and P(. For this pur-
pose we have used a Monte Carlo method that involves
random samplings of the angles t))", X, and P(, as well as
for the other variables 1 and e.

The calculational framework has been provided by the
code GANES, for which we have constructed a special
version to consider deformed nuclei. This code employs
the weighted Monte Carlo method in which the variables
(e.g., (i)', X, P(, I, etc.) are uniformly sampled and a partic-
ular weight is assigned for each chosen event. ' Efficient
use of computer time is ensured by considering in detail
only those events that involve particle registration in a
given detector at a given position. In this paper we will
consider ideal coincidence (or singles) experiments that
employ small detectors placed at various angles P with

respect to the initial spin Jo (or 8 with respect to the beam
axis).

In brief, for a given parent nucleus (Eo,Jo) and detector
angle ((() or 0), we randomly select values for P', X, P(, 1,
and e. Then we follow the time-reversed trajectory of the
particle from detector to impact with the daughter nu-
cleus. We use the potential (Coulomb plus nuclear plus
centrifugal) of the deformed nucleus' to calculate the
transmission coefficient (T)), and we use the inertial pa-
rameters (Jx

ii
and Wi) (Ref. 20) to calculate its rotational

energy (E„,), a necessary ingredient for the level density
[Eqs. (5) and (6)]. The product /T(p is proportional to the
relative probability or "spectral weight" for that event

[Eq. (1)]; its value is stored and the procedure is repeated
for a large number of events. (The program also handles
a number of important details, such as transformation
from emitter to laboratory fraine, detector geometries and
thresholds, coincidence requirements, recoil effects, etc.)

For simplicity we consider here only the c.m. channel-
energy spectra for certain ideal situations. In the next sec-
tion we describe the shape parametrization used and the
associated potential energies.

III. SHAPE PARAMETRIZATION,
ASSOCIATED POTENTIAL ENERGIES,

AND MOMENTS OF INERTIA

The Cassinian system of orthogonal coordinates (R,x)
provides a convenient basis for describing a family of
shapes that is very useful for nuclear physics. ' A Cas-
sinian coordinate grid can be related to ordinary cyclindri-
cal coordinates (r,z) as follows:

R =[(z +r ) 2s(z r)+—s ]'—

Spin axis

Jo

I
~X

p($, &)

Symmetry
axis(gX)

= Beam axis

SgIlZ (z —r —s)2 2

x= ~ 1+
[(z2+P2)2 —2$(z2 —r2)2+s ]

' 1/2

(10)

where the scaling parameter s is the square of the distance
from the focus of the Cassinian ovals to the coordinate
origin. For example, by using only one parameter e
(s =eR(), where Ro is the equivalent spherical radius), one
may specify an extensive series of shapes, some of which
are shown in Fig. 3. After axial rotation these shapes
(scaled to constant volume) range from spherical (@=0)to
barely touching deformed fragments (@=1.0) to complete-
ly separated fragments of equal size (e & 1.0). For
0 & e &0.5 the shapes are nearly prolate spheroids with an
axis ratio d i /d 2 of

FIG. 2. Geometry for particle evaporation from a deformed
nucleus. Particle direction p at polar angle (() with respect to the
initial spin Jo and 0 with respect to the beam. Exit channel or-
bital angular momentum 1 at polar angle +I with respect to Jo.
Nuclear symmetry axis at angle P with respect to Jo aud az-
imuthal angle {lighthouse angle) J with respect to plane of Jo
and p. The finite impact parameter r satisfies the relationship
1=r&p, but its magnitude can be neglected for the angle defini-
tions. The solid spot represents the exit point of the particle
from the nuclear surface. Note that 1 is perpendicular to p, and
its azimuthal angle P~ (uot included) is measured in the plane
perpendicular to p.

di/d, =(1+—,e)/(1 ——,&) .

Similarly, for —0.5 & e & 0 the shapes generated (not
shown ln Fig. 3) are nearly oblate spheroids, also with the
axis ratio of Eq. (11). For 0.5 & e & 1.0 the shapes exhibit
a "neck" between two "droplets" of equal size, as indicat-
ed in Fig. 3.

It is also straightforward to generate shapes that are
asymmetric to reflection by a plane perpendicular to the
symmetry axis. To this end a "dipole" perturbation can
be introduced as follows, via the parameter e&..



880 N. N. AJITANAND et al. 34

FIG. 3. Cassinian ovals are a single-parameter family of
curves convenient for use in approximating the nuclear surface
shape. The volume is conserved in this figure. The parameter e
varies from 0 (sphere) to 1.2 with steps of 0.1 (a=1.1 and 1.2
correspond to separated fragments). At @=1.0 (Bernoulli lem-
niscate) the curve has a double point at the center of symmetry
{after Ref. 14).

+(& p)=
iV

y (iTtpd)»P»(0
k=]

(14)

experiment for which the spin vector is parallel to the y
axis (M =Jo), and (2) an ideal singles experiment for
which the spin vectors are uniformly oriented in the xy
plane (M=O) perpendicular to the beam (or z) axis. For
each emitter we use the integrand of Eq. (1) to calculate
the probability for emission (ITfpd)» that leads to detec-
tion of a particle with channel energy e at a certain angle
fi) with respect to Jo (or 8 with respect to the beatn). To
effect the integration [analogous to that in Eq. (1)],we bin
and sum these probabilities or weights as follows:

~ (x)=~a[1+ettPt(x)] (12)

where the direction of the particle detector is denoted by
p. The probability for each value of t))' is taken from the
Boltzmann factor

where Pt(x) is the first order Legendre polynomial. Ex-
amples of such perturbed shapes are shown in Fig. 4.
Thus with only two parameters (e and at), and the condi-
tion of volume conservation„one may represent a rather
extensive range of axially symmetric shapes.

The exact form of the Coulomb potential for such nu-
clei has been given in Ref. 14, in terms of elliptic in-
tegrals. Similarly, the nuclear potential has been
represented as an extension of the Woods-Saxon form for
a spherical nucleus,

V = Vo[1+exp(i(ir/a )]

where f is the approximate distance between a point and
the nuclear surface, and Vo and a are the conventional
well depth and diffusivity parameters. '" In our calcula-
tions the well depth Vo is taken to be 127 MeV, and the
diffusivity tT is chosen to reproduce empirical fusion bar-
riers between cold nuclei ' (a=0.8 fm). Exact relations
for the moments of inertia Wii and Wt (parallel and per-
pendicular to the axis) are given in Ref. 20. (We use a ra-
dius constant of 1.2 fm for the matter distribution. ' )

IV. OUTLINE OF THE CALCULATION

For simplicity we will consider an ensemble of Nr emit-
ting nuclei, each with the same initial excitation energy
Eo and spin Jo. We calculate the energy spectrum for
He particles in two situations: (1) an ideal coincidence

P»(rtr*) ~ exp( E„,/T)—

exp[ (fiJ—acorn ) (J t —J ii)/~iiJ ~T]

for the parent nucleus. ' (Note that for prolate shapes
Wt & Jr

ii
and fi)'=90' is preferred, while for oblate shapes

Wii & Jr~ and f()'=0' is preferred. )

Figure 5 shows an outline of the calculational pro-
cedure. (1) The first task is to obtain a potential energy
map for the emitted particle from the equations given in
Refs. 14 and 20. This map, as well as the moments of in-
ertia for the deformed nucleus, are then stored and used
for each individual calculation. (2) Then, for each event,
specific values are selected, by means of random numbers,
for each variable ( Jo, e, 1, (()', X, and pf ) shown in Fig. 2.
These selections are made uniformly over a range of suffi-
cient size to include any significant probability of oc-

CALCULAT I ONAL PROCEDURE
for Emitter (Eo, Zo) with Deformation (e,a, )

t. Map Potential between Particle 8 Deformed Nucleus

Then For Fach Event

2. Choose by Random Selection
Initial Spin Jo
Exit Channel e and l
Orientation of Nuclear Symmetry Axis AX
Direction of l Vector, $

3. Follow Particle Trajectory from Detector to Impact Point
on the Nuclear Surface

4. Calculate Potential Barrier {B,R) and Transmission
Coefficient, Tg

5. Calculate Level Density o& the Residual Nucleus, p

6. Add the Weight (ETg pd P6f&"))k to Bins for the Desired Spectra

FIG. 4. Cassinian ovals perturbed by "dipole" (a&&0) defor-
mation. a(e)=0.0, 0.2S, and O.SO correspond to the figures in
the upper row, ale) =0.75 and 1.00 to the lower row. (See Eq.
10 in Ref. 14.) In each figure, the curves correspond to a~ ——0.0,
0.1, 0.2, and 0.3 (after Ref. 14).

Repeat Steps 2-6 for Many Events to Obtain
a Sufficient Sample

FIG. 5. Outline of the calculational procedure. More detail
concerning the program GANEs and the weighted Monte Carlo
method is given in Ref. 16.
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and its level density from Eqs. (2)—(6). The nuclear sym-
metry axis is held fixed in space during particle emission,
but the spin axis is altered according to Eq. (4). [Note
that the probability weighting for P' is determined by
P(P'} above; the role of K in Eq. (15) is related to the
weighting of p and I for the emittK particle. ] (6) Finally,
we add the weight for this event to the appropriate bin for
the desired energy spectrum. This weighted Monte Carlo
integration process' ' is then repeated until all the vari-
ables have been adequately sampled.

For the particular results that are reported here, we
have assumed that the lifetime of the emitter is greater
than the rotation time. Hence, each value of the azimu-
thal angle X is equally likely. In addition, we have used
hyperbolic Rutherford trajectories, assuming that they
give a reasonable representation of the distribution of the
impact points (or birthplaces} on the surface of these de-
formed, but randomly oriented, nuclei. ' For the
transmission coefficients we use the particular potential
energy curve for the normal to the nuclear surface at the
impact point. Two separate parabolas are fitted to the
inner and outer curvatures (fico; and fico, ) of the potential
at the barrier maximum (8,R). Then the value of Ti(e) is
calculatmi from the modified Hill-Wheeler formula,

Ti(e) =(1+e") (16)

currence. ' (Note that our choice of independent vari-
ables, particularly Pi, differs from those in Ref. 18. These
variables lead to an equivalent description but are much
more convenient in this context. ) (3) Next we determine
the time-reversed trajectory of the emitted particle so as to
fix its exit (or impact) point, and (4) calculate its transmis-
sion coefficient. ' (5) From the conservation laws [Eqs.
(3) and (4)] we determine the excitation energy and spin of
the daughter ( Ed, J~ ), its rotational energy E„„(E
denotes the projection of Jq on the symmetry axis),

r

g2 J~2 g2 g2
(15)

formulations for several typical systems are very small
indeed.

In the present calculations we have employed certain
approximations to simplify the description: (a) Ruther-
ford trajectories, (b) Hill-Wheeler penetrabilities, and (c)
simplified level density formulation. None of these ap-
proximations is essential to the treatment, and, in fact, we
plan to remove several of them. Nevertheless, we feel that
the present treatment is more than adequate to demon-
strate the qualitative (and even semiquantitative} role of
shape changes on evaporative particle emission. Further-
more, we feel that this kind of Monte Carlo method is
both easy to employ and quite simple for maintaining
identity and control of the various features of the physical
model. The multistep evaporation codes that are already
in use often involve rather complex structures that are less
amenable to the addition of new features such as nuclear
deformation, the geometric constraints inherent in angular
distribution studies for various coincidence modes, etc.
Our approach, as embodied in the GA.NEs program, ' is
modular and flexible both in concept and in execution. It
also can provide results in the laboratory system even
when the reaction kinematics, recoil effects, etc. are com-
plex. This aspect is very important, especially if several
emission sources are present.

V. ANALYTICAL EQUATIONS
FOR SPHERICAL NUCLEI

It is very useful to consider the case of spherical emi-
tters before examining the results for deformed systems.
For the special case of sharp cutoff transmission coeffi-
cients,

Ti =0 for e ~8 +fi I l2iu R

Ti= 1 for e&8+iii I /2pR

one may integrate Eq. (1) analytically (over Pi, I, and e) to
obtain the following equations:9 "'s's i

where

fi I-= 8-+ ',
2pR iii (Jo+ )

~dT
pR

Wd+pR

SE r (P) o: exp(Pepsin ~}}) .

The anisotropy parameter is given by

(20)

(21)

1 1 1 1+
A69eg 2 ACOI. %COO

(18)

In this equation, 8 is the effective s-wave barrier and p is
the reduced mass.

This framework provides a simple means of describing
evaporative emission from a deformed nucleus with expli-
cit consideration of each of the important variables. The
method is semiclassical, and thus one must be alert in
each case to the possible role of specific wave mechanical
properties. Typically, the wave properties are effectively
averaged out if the number of important I waves is suffi-
cient, and if Jo ~ /. A test of this point has been made by
semiclassical and quantum mechanical calculations for
spherical emitters. The differences between these two

( p) 2iuR
2 T(1+Pepsin P)

Wd+pR
(22)

and

T + ( I )spinoff
Wd +pR

(23)

(e)~——8+T+T (1+P2sin P),2

J d+pR
(24)

The average of the square of the exit channel orbital an-
gular momentum ( I ) and the average exit channel ener-

gy (e) may be obtained in the same spirit by using the in-
tegrand of Eq. (1) as a weighting function. We have
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where

=B+T+T, +&e),p,,rr,J d+pA

spinoff
2p, R

=Pi Tsin P.
&~+pR

(25)

(27)

Bessel functions of the first kind (of imaginary argument)
are denoted by Io and Ii. For the case of M=O (ideal
singles), all the same effects are present that were men-
tioned above for M =J (ideal coincidence). However, the
averaging over all directions for the emitter spin strongly
reduces the angular dependences.

The trends of the calculated results for deformed emit-
ters can be much better understood by reference to these
analytical results for spherical emitters.

VI. CALCULATED RESULTS
FOR SOME TYPICAL CASES

WE J (8) o:exp( ——,'ir32sin 8)Io( —,'P2sin 8), (28)

and for the average of I,

The anisotropy parameter P2 controls the angular
dependence of the emission probability [Eq. (20)], the
average of I [Eqs. (22) and (23)], and the average energy
[Eqs. (24)—(27)]. There is a component of &I 2) that is
spin dependent (through P2), and another component that
arises from thermal motion alone [Eq. (23)]. The average
energy &e)~ has components derived from three driving
forces: the emission barrier B, the temperature T, and the
spin [through P2 in Eq. (27)]. The component of the
mean energy that is driven by angular momentum is
called the spinoff energy [Eq. (27)]. Its value has a max-
imum at 90' to the spin and is zero along the spin axis.
The overall pattern of these emission energies will differ
strongly depending on the relative magnitudes of B, T,
and P2.

A similar set of equations can be derived for an ideal
singles experiment (M=O). Here one must average over
all orientations of the spin axis in the plane perpendiculai
to the beam. (We use double angular brackets to indicate
this averaging. ) In this case the relevant angle (8) is mea-
sured with respect to the beam direction. Here we have,
for the relative probability W~ q (8),

A

V'

(g)
485- Mev

32"
00

)0(~
28-

L26" c)0 o

24-
20-

~'V

15-

56F6 + l97A ~ 255105+,
E' = 0.5

&b~
l90-MeV Ar + Al

22 E = —0'5
20
18

14:
12-
60-

~67G0 +

Qo

The emission patterns for deformed systems respond to
the same three driving forces discussed above: the emis-
sion barrier B, the temperature T, and the spin (or, effec-
tively, lr32). In this situation, however, each of these driv
ing forces also depends on the shape of the deformed nu-

cleus. We have prepared several figures to illustrate the
interplay between these driving forces for reaction systems
which are currently being studied experimentally. In this
section we emphasize the trends of the calculated results;
comparisons to experimental data will be made else~here.

In Figs. 6 and 7 we show, for fixed shape, the effect of
spin on the anisotropy W(90')/W(0') and on the average
quantities &e) and &I )'/ or I, , for /=0' and 90'. To
dramatize the role of deformation (and the associated
emission barriers), we have made one series of calculations
with P' fixed at 90' for the prolate shape and P'=0' for
the oblate shape. These results are shown in Fig. 6. For
zero spin the changes between /=0' and / =90' arise sole-

fiz Jrd+pR

0

10-

0
D 5-

4Q

X 1+P2cos 8

+ —,P2sin 8 l+
Ii( —,Pepsin 8)

Io( —,
'
P2sin 8)

(29)

Q ~

14-
12-

0
QiL

90
4 I

0 20
j

40 60

J,(4)
80 100

0
14-
12-
10-
8-
slj

120 Q 10 20 50 40

J,{4)

and, finally, for the average of e,

«.)),=B+T+, « I')&. .
2pR

FIG. 6. Dependence on emitter spin J for certain average

quantities ( e), W (90') /W (0 ), and I, , (a) 485 MeV
Fe+ ' Au ' 105* (T=2.4 MeV, e= + 0.5 prolate). (b}

190 MeV ~Ar+ 7A1~6'Ga* ( T=2.9 MeV, e= —0.5 oblate).
In these cases the orientation of the symmetry axis was frozen
at 90' to the spin (i.e., t(l =90' for prolate, P =0' for oblate).
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(a)
485- Mev 56Fe + '~"AU

52- 8=0.5
50
28-

('
26-
24-
20,-
15—

255 105+
(b)
190-MeV A + Al ~ Ga"

05
0 - 20-

18-
16—

12—
60

C)
IQ

0

g3
C) 20

(0-
rr

14-
12-

co 1Q-
E 8"

6-

0 20 40 60 80
Jo(%)

0
14-

9 '
lQ

QO

6:
I 4
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J,(%)

I
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FIG. 7. Dependence on emitter spin Jo for certain average
quantities ( e ), W(90') / W(0'), and i, . (a) 485 MeV

Fe+ ' Au~ 105 (T=2.4 MeV, e= + 0.5 prolate). (b)
190 MeV ~Ar+ 'Al~ 'Ga ( T=2.9 MeV, e= —0.5 oblate).
In these cases the orientation of the symmetry axis follows the
Boltzmann equation, as indicated in Eq. (14).

ly from shape. The average energies for /=90' are small-
er than those for /=0' because the emission barriers are
smaller along the long axis of the nucleus (specifically
oriented at /=90'). The values of I, for /=0' are
somewhat larger than those for /=90' because the aver-
age of R is larger if one views the nucleus along its short
axis [Eq. (22}]. Similarly (for Jp=0}, the anisotropy
W(90')/8'(0') is due completely to the lower Coulomb
barrier along the long axis.

As we increase the emitter spin Jp, the preferential
emission at /=90' is enhanced in much the same way as
for spherical systems [Eqs. (20}—(27)). The average ener-
gies [Eqs. (26) and (27)] and l~, values [Eq. (22)] increase
with spin for /=90' due to the spinoff effect. (There is
actually a small decrease of (e)& p. and l,& p. due to
the decrease of temperature with increasing spin and rota-
tional energy. ) Of greater interest is the important change
in balance between the Coulomb and the spinoff effect (on
(e) and l, for /=90') for the heavy system [Fig. 6(a)]
compared to the lighter one [Fig. 6(b)]. This is due to the
relative magnitudes of the emission barriers and the mo-
ments of inertia [note that P2 ~ Wd

' in Eq. (21)].
In Fig. 7 we show results for the same reactions, but

now we allow for a distribution of P' as described by
Pk(P') in Eq. (14). In this situation the differences be-
tween /=0 and /=90' are greatly reduced due to the
spread of orientations about P' =90' for the prolate shape
and about P'=0' for the oblate shape. For small spins
the width of the P* distribution is very large, but for large
spins it becomes rather narrow. Next, we discuss results
(Fig. 8) for the heavy system with Jp ——67% and for the
light system with Jp ——308. It is important to note (Figs.

6 and 7) that for the former there is very little influence
from spinoff effects at Jp ——67%, while for the latter there
is a very strong influence of spinoff effects for Jp ——3(Hi.

In Fig. 8 we show, for fixed spin, the effect of shape on
the same average properties. For the spherical shape, the
changes between /=0' and /=90' arise solely from spin-
off effects. Clearly, these effects are very small in Fig.
8(a) and very large in Fig. 8(b). As we increase the defor-
mation, e, the average energy at /=90', is reduced. This
decrease results from the combined effects of lower aver-
age emission barriers and smaller spinoff energies due to
an increase in the moment of inertia (Wz ).

For both I, and W(90')/W(0') we see an interesting
contrast in the effect of deformation. For the heavy sys-
tem [Fig. 8(a)], the spinoff effect is very weak, and the an-

isotropy [ W(90')/W(0') increases with deformation due
to the lowering of the emission barrier along the long axis
(or towards /=90')]. Similarly, the values of / y 9p.

are essentially constant while l, ~ 0 increases slightly
with deformation. By contrast, for the light system (Fig.
8(b)], the spinoff effect is very strong, and the values of
both 8'(90')/W(0') and i~sf —9p decrease with deforma-
tion due to the increasing moment of inertia (Wz) and the
associated decrease of the spinoff effect. These two cases
illustrate the limiting situations discussed by Dossing'
for the dominance of Coulomb forces [Fig. 8(a)] or centri-
fugal forces [Fig. 8(b)].

In Fig. 9 we show, for fixed spin, a second study of the
effect of shape. Here we compare oblate and pear shapes
to the spherical and prolate forms in Fig. 8. The average
energies (e) follow rather similar trends for the two sys-
tems. The spinoff enhancement in Fig. 9(a) is almost
negligible for (e)~ 9p, but it is quite large in Fig. 9(b).
The contrasting results for /, and W(90')/W(0') are
very clear in Fig. 9, just as in Fig. 7 above.

In Figs. 10(a), 11(a), and 12(a) we show calculated re-
sults (for ideal coincidence experiments) with three addi-
tional reaction systems. The reaction 1080 MeV

Ar+ U (Fig. 10) is distinguished by its very high
temperature, near the limit for energy containment in a
composite nucleus. The rotating liquid drop model
(RLDM) gives no equilibrium shapes for this system;
therefore, any evaporative emission from the composite
nuclei should occur along the dynamical path toward
"fast-fission. " The reaction 340 MeV Ar + ' Ag (Fig.
11) is of particular interest due to the roughly equal
amounts of fusion fission and evaporation residue (ER)
formation. The RLDM predicts a driving force toward
oblate shapes for the lower-spin zone [(0—72)fi] that leads
to ER's. The higher-spin zone [(72—103)fi] that leads to
fission should be driven toward prolate shapes. This
higher-spin group should be divided between dynamical
paths that must surmount a fission barrier and "fast-
fission" paths that have little or no barrier. Quite dif-
ferent dynamical shapes might thus be expected for reac-
tions leading to ER's and to fission. For both of the cases
shown in Figs. 10 and 11, the effects of Coulomb and cen-
trifugal forces are important, but neither is completely
dominant.

The reaction 140 MeV ' 0+ Al (Fig. 12) is particu-
larly interesting because of the exceptionally strong domi-



N. N. AJITANAND et al.

nance of spinoff effects. This dominance can be related,
in part, to the mass factors iuR /(Wd+iuR ) and
Wdl(Wd+pR ) in Eqs. (21)—(27). For heavy systems the
first factor is very small and the latter factor is almost un-

ity. For this reaction both factors are = —,, and this leads
to a very large value of Pi and hence to very large spinoff

effects. Figure 12(a) shows these effects very clearly in
the anisotropies and in the differences between (e)&
and ( t )ii,

Each of these reactions (Figs. 10—12) has a particular
character, and it will be interesting to see if the role of
shape can be identified and, indeed, if the effective shapes

485-MeV 5 Fe+' Au 253l05+'

~He evaporation
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at =0.0
T = 2.42 MeV

0
0
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&&G. 8. Dependence on deformation (near prolate shapes} for certain average quantities. (a) 485 MeV ' Fe+ ' A.u~ ' 105

( T=2.4 MeV, Jo ——67k', Pq,~h„,——0.61). (b) 190 MeV ~Ar + ~7A1~67Ga ( T=2.9 MeV, Jo 30fi, Pq,~h„,————4.0). The units of B and
W are MeV and A MeV ', respectively.
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t.sn be determined.
For actual experimental measurements it is never possi-

ble to achieve the ideal situation of perfect alignment as
discussed above. It is beyond the scope of this paper to
cover the extent of alignment that can be realized by vari-
ous coincidence requirements (e.g., with fission frag-

ments, y rays, other light particles, etc.} Neverthe-
less, it is clear that, as the degree of alignment is reduced,
the observable effects will be reduced by the averaging
over the orientation angle for Jo. ' ' A commonly en-
countered situation is for Jo to be uniformly distributed in
a plane perpendicular to the beam (i.e., M=O). This
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Jo Jo Jo "o
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E =0.9
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8, =6.80
f3p- 8 47
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FIG. 8. (Copggjgged).
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geometrical description is a good approximation for many

inclusive experiments. ' '

In Figs. 10(b), 11(b), and 12(b) we give calculated results
for such singles experiments. All the trends in Figs. 6—9,
10(a), 11(a), and 12(a) are still present, but the magnitudes
are greatly reduced. In each case the mean energies for

/=90' (M =J) must be equal to those for 8=0' (M=O);
geometrically, they are equivalent, since for 8=0' all
values of P are 90'. By contrast, for 8=90' (M=O) the
geometry averages over all spin directions from /=0' to
8=90'. In the case of Fig. 12, where the anisotropy is ex-
tremely large (strong preference for /=90'), the mean en-

48S-MeV '~Fe+'9'au ='~~ 1QS"

+He evaporation
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FIG. 9. Same as Fig. 8, but for oblate, spherical, prolate, and pear shapes.
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ergies in singles, even at 0=90', are very close to those for
8=0' (or /=90'). However, for the cases shown in Figs.
10(b) and 11(b) the mean energies in singles at 8=90' are
closer to the average of those for /=0 and 90. This
difference is due to the strength of the weighting from the
angular distribution.

We conclude that singles data can be very useful, but
that the sensitivity of the probe can be strongly enhanced
by achieving some degree of alignment. In the GANES

program we have provided several options to simulate
various coincidence triggers and their expected effects for
spin alignment. As these situations are quite varied, they

lcIO-MeV ~Ar+~ Al =~ Ga
+He evaporation
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FIG. 9. (Continued).
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are best discussed individually in the context of each par-
ticular experiment.

The major conclusion that we draw here is that the
shape of the nuclear system can be expected to cause
readily observable effects on evaporative ~He emission.
The degree to which these effects can be identified de-
pends on the extent and detail of the combined experimen-
tal and theoretical attack and, in particular, on the power
of the coincidence trigger. Several high-quality experi-
ments have already been performed and others are in pro-
gress (see, for example, Refs. 24—31).

2)

22 ~

2

O

V=o.o 7 =0.5 7=0.5 Q=0.3

FIG. 11. Dependence on shape of certain average quantities.
334 MeV Ar+ '

g
P2»h«, ——1.2). (a) Ideal coincidence experiments. (b) Ideal sm-

gles experiments.

VII. SUMMARY

%e have described a method for calculating evapora-
tion spectra and angular distributions for deformed nu-
clear systems. The semiclassical approach follows very
closely the widely used Ericson formulation for spheres.
A Monte Carlo technique has been employed in the
framework of the well documented computer code
GANES. The calculated results indicate that effects due
to differences in nuclear shapes are large enough to be ob-
served, especially for carefully executed coincidence ex-
periments. These results provide encouragement that eva-
porative particle emission contains important clues to the
shapes of very hot nuclei.
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