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Cross sections and analyzing powers are calculated for proton-proton bremsstrahlung (ppy) using
the Paris and extended Reid soft-core potentials. One pion exchange contributions have been added
for partial waves with J& 6. Relativistic spin corrections, certain other relativistic corrections, and
some Coulomb corrections have also been added. The calculation utilizes fully relativistic kinemat-
ics and is performed in the center of mass frame in order to put to zero the leading contribution of
the double scattering terms. This is the first ppy calculation to use one of the modern theoretically
based nucleon-nucleon potentials. The results of this calculation are compared with experimental
data, as well as older potential model and soft-photon approximation calculations. The off-shell
behaviors of the Paris and extended Reid potentials are also investigated. %e find that the analyz-
ing powers are sensitive to details of the calculation. Asymmetry data are expected from a new

TRIUMF ppy experiment which will provide the first opportunity for a detailed comparison of
such data with a modern potential model calculation.

I. INTRODUCTION

Proton-proton bremsstrahlung (ppy),

p+p p+I +a
has been studied both theoretically and experiinentally by
a number' of authors in the hope that off-shell aspects
of the nucleon-nucleon (N-N) interaction could be under-
stood. To date, however, little has been learned about
these off-shell effects. For some of the older experiments,
where standard calculations agree with data, and at lower
energies, it is now known that there should be less sensi-
tivity' to off-sheB effects than for some of the more re-
cent experiments. However, in an experiment where pre-
vious potential model calculations indicate that off-shell
effects are enhanced, namely the 200 MeV TRIUMF ex-
periment, it appears that a soft-photon approximation
(SPA) calculation fits the data as well as previous poten-
tial model calculations. This is particularly disturbing
since SPA calculations require only on-shell information.
Even more puzzling is the poor fit by existing potential
model calculations to some of the 42 MeV data. 6 At such
a low energy„one would expect relativistic corrections to
be small and the potential model calculation to be essen-
tially exact.

Motivated by this poor agrecmcnt between theory and
experiment and the possibility that it may be simply duc
to unsatisfactory potential model calculations of the ppy
observables, we have undertaken a new and more modern
potential model calculation of ppy cross sections and
asymmetries. Our calculation utilizes for the first time a
modern theorctically based potential, namely the Paris po-
tential and, for comparison purposes, an extended version
of the Reid soft-core potential. Neither of these poten-
tials have been used in previous ppy calculations. In ad-
dition, this calculation combines several contributions
which have been examined individually in previous poten-

tial model calculations but have not been combined in a
single calculation. In particular, we have included the so
called relativistic spin contributions, some Coulomb
corrections to the N-N amplitudes, one pion exchange for
the high partial waves, and appropriate frame transforma-
tions for the N-N amplitudes. All kinematics have been
calculated relativistically and we have, in addition, includ-
ed some other relativistic corrections not previously exam-
ined.

Our basic approach is that of a nonrelativistic potential
model, which originates from the two-potential formal-
ism, with the electromagnetic interaction taken just to
first order. The half-off-shell N-N amplitudes are calcu-
lated by solving a T-matrix equation in momentum space,
to obtain the on-shell amplitudes and the half-off-shell ex-
tension functions for a given potential. ' These ampli-
tudes are then combined with electromagnetic vertex and
propagator factors to produce the full ppy amplitude.
This is basically the same general approach utilized by
Drechsel and Maximon" and differs from the alternative,
but in principle equivalent, approach used by, for exam-
ple, Heller and Rich, ' in which the full wave functions
are calculated first and used to evaluate matrix elements
of the electromagnetic current operator numerically. The
calculation is done at present in the center of mass frame
so as to make zero the leading contribution from double
scattering terms, which have not yet been included expli-
citly.

Our attempt to improve the status of ppy calculations
has been motivated also by a new ppy experiment at TRI-
UMF. ' The new experiment has obtained data at 280
MeV, just below the threshold for pion production, and
will eventually have results for both cross sections and
analyzing powers. The measurement of ppy analyzing
powers is an important feature, as such data are virtually
nonexistent. We will thus be afforded a unique opportun-
ity for the comparison of analyzing powers from experi-
ment with our potential model calculations.
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In the next section we give the total T matrix for ppy
and show how the electromagnetic vertex operator is cal-
culated and how relativistic corrections are introduced.
The gauge invariance of this calculation is also discussed.
Section III deals with the half-off-shell N-N T matrices,
the associated half-off-shell functions, Coulomb correc-
tions, and the one pion exchange contributions. In Sec. IV
we briefiy discuss the partial wave Paris potential and in
Sec. U we construct the cross section and analyzing
powers. Results are given in Sec. VI where our potential
model calculations confront experimental data and SPA
calculations. The significance of our results is also can-
sidered there. Some preliminary results of these calcula-
tions have been given in Ref. 14.

II. THE T-MATRIX FORMALISM

The total T matrix for the ppy process is obtained us-
ing the two-potential formalism of Gell-Mann and Gold-
berger. ' This method splits the total proton-proton in-
teraction into a strong N-N interaction, which is treated
"exactly, " and a weak electromagnetic interaction, which
is taken to first order only. Drechsel and Maximon have
given a detailed derivation" of this T matrix as appropri-
ate for ppy.

The total T-matrix operator, to first order in V, , is
then

T=t(Ef)(Ef Ho+ie) —'V, +V, (E; Ho+i@—) 't(E;)

+t(Ef)(Ef Hp+ie) —'V,m(E; —Ho+is) 't(E;) .

(2.1}

Here, t(E} is the N-N T matrix, Ho is the free two pro-
ton Hamiltonian, and V, is the electromagnetic interac-
tion operator. E; and E/ are the initial and final energies
of the two protons. Figure 1 shows the diagrams arising
from this T matrix.

We have included in our calculation the first two terms
of Eq. (2.1) corresponding to the "single scattering" terms
in which a photon is emitted either before or after the N-
N interaction. Our calculation currently neglects the final
or "double scattering" term in Eq. (2.1). In order to mini-

FIG. 1. Diagrammatic expansion of the ppy T matrix: (a}
single scattering terms; (b) double scattering terms.

mixe the contribution of double scattering terms, however,
the calculation has been carried out in the center of mass
frame, where it can be shown that the leading term of the
double scattering piece is proportional to the total center
of mass momentum, and thus vanishes. ' The result for
the T matrix is eventually multiplied by the appropriate
factors to make it an invariant, so that the cross section
can be easily evaluated in the lab, as appropriate for com-
parison with experiment.

The total ppy T-matrix operator is next evaluated be-
tween the states

~
p, SM) and

~
k), where p, S, and M

are, respectively, the relative momentum, total spin, and
spin projection of the two protons, and k is the photon
momentum. The momenta in this process are kinemati-
cally constrained by

pr +p2 =p3+pc+k"
where p('=(E&, ,p;) and k" are, respectively, the proton

and photon four-momenta and E~=(p +m )' with m
the proton mass. Using these momenta we have, for the
single scattering contribution to the T matrix,

( T)„„si,——g (S'M', (p) —p4)/2
~
t(Ef)

~ (pi —pi —k)/2, S"M")(Ef Ep, g Ep ) '—(5"M"—
~
V,'m

~

SM)
+IItt

+terms for radiation from protons 2, 3, and 4 . (2.2)

The quantization axis for all spins has been taken along
the beam axis and the intermediate spin variables S" and
M" are summed over all allowed values.

The V," factors represent matrix elements of the elec-
tromagnetic interaction operator corresponding to the ith
radiating proton. The electromagnetic interaction opera-
tor is obtained through a Foldy-%outhuysen reduction'
of the Dirac Hamiltonian describing a proton in an exter-
nal electromagnetic field. Liou and Sobel have explicitly
written out this operator to O(m ).' The usual nonre-

I

lativistic electromagnetic interaction

(2.3)

is obtained if one retains only the O(m ') terms, while
the additional pieces of O(m ) are called the relativistic
spin correction terms.

We find, for the spin matrix elements of V,",
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(S'M'
~

p' '
~

SM) = A ' p&5&&5MM +3@& [(2S+1)(2S'+1)]
2am k

gl
X

2

1

2

5
( —1)

2 m ~m2m3m4

(2 4)

wheie p =2.793 is the proton total magnetic moment, ei is the photon polarization vector, j~i refers to the other of the
two protons, and the ml subscripts label spherical components. In the static limit, the factor B~ ~ ~ =k~ 5~ ~ and
g('J'=1. The full expressions for g and 8 containing the relativistic spin correction terms which we have included in
our calculation are

2p;+25;p; k+k
4m Sm

and (2.5)

(f J) k
&~'m

2 4 1 4

1 k.
Pl +5!

pp 4~'l Pp

r

6;+1
2p;+25lk pl+k —(pp —1) k p +k

((Mp
—1)k Pp 1 —

m( (5;+ 1)k
p — [1-(-i) + ]p +- "

( —1) 'k (p ) p+4m Pz 4M@&

m2

—m&

where 5;=1 for i =3,4 and 5;=—1 for i =1,2,j is the
member of the pair (1,2) or (3,4) different from i, and
8(2 i) and 8(43i are to be multiplied by an additional
phase ( —1)s+

We have chosen the incident beam direction for our
axis of quantization in order to facilitate the calculation
of analyzing powers and to make the axis the same in the
laboratory and center of mass frames. The form of our
relation for the spin matrix elements of V, thus differs
somewhat from the results of Ref. 11, in which the axis of
quantization is defined by the photon momentum.

The first relativistic correction to 2 "I' is due to a term
of O(m ) in the Foldy-Wouthuysen expansion. Liou
and Sobel' have added this term in their calculation, ar-
guing that it is comparable in size to the O(m ) terms.
We have included in addition a number of other O(m )
terms We find .that the O(m ) terms contribute nor-
mally at the few percent level, though in a few instances
can change the analyzing power by 10%%uo or so. The pj
term in 8" ' is the correction term required when one
sums the electromagnetic interactions for the two indivi-
dual protons. '

Now consider the important question of gauge invari-
ance in the potential model calculation. For a local poten-
tial, the sum of single and double scattering terms is, in
general, gauge invariant to all orders in k. Furthermore,
the leading O(k ) pieces of the double scattering terins
are just those needed to make the single scattering terms
gauge invariant to O(k ).' Since we have not yet includ-
ed the double scattering term, something must be done to
make the result gauge invariant. Note first that these
O(k ) double scattering terms are both proportional to
the momentum of the center of mass and unique, being
determined by the soft photon approach. Thus they van-

I

ish in the c.m. frame. Since we work in the center of
mass, our amplitude is uniquely gauge invariant to 0 (k ).
In addition, Liou and Cho have shown that one can
make the ppy amplitude gauge invariant to all orders in k
by adding to the single scattering terms a piece which is
proportional to the c.m. momentum. Therefore, by work-
ing in the c.m. frame, our result is also gauge invariant to
all orders in k. However, the O(k) and higher terms are
not uniquely gauge invariant and, in fact, the Liou-Cho
gauge term has the wrong analytic structure since there is
a k p term in the denominator which can come only from
the external radiation (single scattering) terms, not from
the double scattering term. ' To have a complete and
unique amplitude, one must add the higher order pieces of
the double scattering terms, as was done using different
methods by Brown and Belier and Rich. '

One must, in principle, also add gauge terms arising
from the momentum dependence of the N-N potentials.
At present, no one has included these effects in a ppy po-
tential model calculation and the correct form of such
terms is, in fact, not agreed upon.

In Eq. (2.2) we use the same form of propagator as
Drechsel and Maximon. " It should be noted that the co-
variant propagators used by Liou and Sobel' are not
strictly equivalent to ours. They differ by some higher or-
der terms in the nonrelativistic reduction, and if used,
would change the numerical results at the few percent lev-
el.

III. THE N-N T MATRICES

In order to evaluate Eq. (2.2) for the total ppy T ma-
trix, we require half-off-shell N-N T matrices of the form
(S'M', p'

i
t(E')

i p, SM) and (S'M', p'
i
t(E)

i p,SM).
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We need only calculate one of these, say the latter, obtain-
ing the former through the symmetry relation

dE'
dp

m„nonrelativistic,
4

(p'+ m„')'~' relativistic,
(3.5)

( S'M', p'
i
t (E')

i p,SM }= (SM,p i
t (E')

i
p', S'M' },

(3.1)

which follows from parity and time-reversal invariance.
An added complication is due to the fact that for Eq. (2.1}
we require the N-N T matrix in the frame in which the

ppy T matrix is evaluated (the overall center of mass
frame) and with spin quantized along the beam axis,
whereas it is most conveniently calculated in the individu-
al N-N center of mass (which differs for different dia-
grams) with spins quantized along the initial relative
momentum. The transformation between frames is han-
dled most easily by multiplying the N-N T matrix by the
square roots of all the initial and final energies so as to
convert it to an invariant which can be calculated in the
N-N center of mass and then used in whatever frame is
desired. The on- and off-shell momenta used for evaluat-
ing the N-N T matrix were also obtained by Lorentz
transforming from the overall center of mass frame to the
center of mass of the N-N system. The transformation to
a common axis of quantization is obtained through a rota-
tion so that the N-N T matrix, quantized along the com-
mon beam axis, is given in terms of that quantized along
the initial relative momentum or p axis in the N-N center
of mass by

and m„ is the reduced mass of the two-proton system. In
Stapp s notation, M is the singlet p-p scattering ampli-
tude and, for the triplet scattering amplitudes, i and j la-

bel the initial and final total spin projection. Stapp has
given the relation between the full p-p scattering ampli-
tude and the partial wave scattering amplitudes.

%e calculate the partial wave N-N T matrices through
a Lippmann-Schwinger (LS) equation and sum them using
the formulas of Stapp to obtain the full N-N T matrix.
The LS equation is'

t(E,q', q)=V(q', q)+ J d q"V(q', q")G(E,q")t(E,q",q),

(3.6)

in which the following notation is used,

t(E,q', q)=(q'
~

t(E)
~
q),

G(E,q') =(E Eq +—i e)

V(q', q)=(q'
~

V
~
q),

(3.7)

where
~ q } is a plane wave state of center of mass

momentum q, and V is the N-N potential.
We next expand V(q', q), t(E,q', q), and t(E,q",q) in

terms of partial waves, using the general relation

(1M,p'
~

t(E)
i p, 1M ) = g D—"',(aPy) V(q, q) =Z V.(q', q) ~.~(q) ~:~(q ), (3.8)

X (1M', p'
i
t(E)

i p, 1M")

XlD"'«Py)/M M (3.2)

A A t
X Zcosa=
sin

A At—Z'X
cosy =

siil

A A tZ'P
siny =

sin
(3.3)

with the beam along z in the xyz fraine and with the
primed frame defined by z '=p and Y '=p Xp'l

~ p X p'
~

.
Our N-N matrices are related to Stapp's scattering am-

plitudes 8 through the relation

Mij ———(2n. ) p
dE (S'M', p'

i
t (E)

i p, SM ), (3.4)

wherein

where D~'~ are the usual rotation matrices and where
the angles are given by

A A. t

cosP =z.z ', sina =
sinP

'

with an analogous expansion for t(E,q', q). The ampli-
tudes are actually evaluated for states of spin S and orbi-
tal angular momentum I. coupled to total angular
momentum J,

~

LSJ) Through. out, these matrix ele-
ments will be implicit with the eigenvalues labeled by su-

perscripts or subscripts, For uncoupled waves we label
only the orbital angular momentum state —leaving S and
J implicit. This will not be possible for coupled waves.
We therefore begin the analysis with a treatment of un-

coupled waves. The equations for uncoupled waves are
easily generalized to the coupled case and are much less
cumbersome. Equation (3.6) for uncoupled waves then
becomes

tt(E, q', q)=VL(q', q)+ J dq"q" Vt. (q', q")

XG(E,q")tL, (E,q",q) .

(3.9)

A problem arises in Eq. (3.9), for q" such that Eq E. ——
Here G(E,q") '~0, which could cause problems in a
numerical solution. Kowalski has shown a simple way of
avoiding this singularity. By adding linear combinations
of Eq. (3.9) for tL (E,q', q) and tL(E,q, q), one obtains

tt. (E,q', q) = VL(q', q) 2 VL(q, q")
+ dq "q" G(E,q") Vt (q', q}—Vt (q', q) t (,q",q) .

VL q, q VL q, q
(3.10)

It has been shown that tL (E,q', q) can be written as

tt. (E,q', q) =fL (q', q)tL (E,q, q), (3.11)
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where fL (q', q) is a real function, the so called "half-off-shell extension function. " Substitution of Eq. (3.11) into (3.10)
yields, for fl (q', q),

VL(q' q)
fL(q', q}=

V
+ dq"q"«E, q") VL(q' q"} —

V
VL(q q") fL(q" q) .

Now, in order to solve for fz (q', q) numerically, the integral in Eq. (3.12) is approximated by a sum. The methods of
Gaussian integration are used to pick integration points and weighting factors. Having solved for fL (q, q), we may ob-
tain the on-shell N-N T matrix, tI (E,q, q), by substituting Eq. (3.11) into (3.9) and using the condition fL (q,q) = 1 to ob-
tain ce

' —1

&1.(E,q, q)= VI. (q, q) 1 —f dq'q'~G(E, q')VI (q, q')fL(q', q) (3.13)

Having evaluated Eqs. (3.12) and (3.13), we have the
on-shell N-N T matrix tr(E, q, q) and the half-off-shell
function evaluated at X values of q;. In order to obtain
the half-off-shell T matrix tl (E,q', q), where q' is some
arbitrary value of momentum, we use Eq. (3.11). The ap-
propriate value of fL(q', q) is found using Lagrange inter-
polation on the grid of fI (q;,q) values. Since the on-shell
T matrix is calculated from the half-off-shell extension
function, the whole procedure can be checked by calculat-
ing the phase shifts from the on-shell amplitudes and
comparing them with those tabulated for the potential
used or those calculated by solving the Schrodinger equa-
tion or the on-shell LS equation directly.

Generally, we must include coupled waves made neces-
sary by the tensor part of the N-N interaction which cou-
ples different L values to the same J. The coupled I.S
equation analogous to Eq. (3.9) is

t ~ (E,q', q) = V ~ (q', q)
J+1

+ g f dq "q" V (q', q")
L"=J—1

J+1
tL, (E,q', q) = g f~ L-(q', q)rL, -L, (E,q, q) . (3.15)

L"=J—1

In order to obtain the matrix of off-shell extension
functions, we numerically solve the matrix equation

J+1
AL ~1-(i,j)fL-I ~(j)=CL ~L~(i),

I."=J—1

(3.16)

J+1
Cqq(i)= g VL.r. (q;,q)(VI L} '(q, q) (3.17)

For coupled waves, the scalar multiplication in Eq. (3.11)
is replaced by matrix multiplication, and we have

XG(E,q")&L L, (E,q",q) .

(3.14)
l

&L,L, (&j)=5&5I.,L, wzq 2m„G(E,—qJ)[VI, L (q;,qj) VL 1(q;,q)(V—&1 ~ ) '(q, q)Vz L-(q, qj)] .
I

(3.18)

Note that all our summations on intermediate angular momenta include L =J—1 and L =1+1 but not L =J.
Throughout, V denotes the matrix inverse of V. In Eq. (3.18}, the intermediate angular momenta L and L' are
summed as in Eq. (3.16). The factor wj is a Gaussian weight.

The on-shell N-N T matrix is now calculated via

ti, ~,«q q)=(DL, i) '«q q)Vii, (q,q»

wherein D ' means the matrix inverse of
N

Dz, l, (Eq,q)=5L,I,+inm„qVI, L, (q, q} guz[q Vl, l. (qj,—q)fLz, (qz, q) qVI L, (q,q)]2m„—{q —qj )
j=l

(3.19)

(3.20)

In both (3.19) and (3.20), L is summed.
With the above relations and a particular choice for the

potential, we can calculate the N-N T matrices for any
given partial wave. We have generally calculated from a
potential all partial waves up to and including J=5. The

higher partial waves as obtained from one pion exchange
amplitudes have also been included, unlike most previous

ppy calculations. These have been conveniently calculat-
ed in Ref. 30. Note that we have used an on-shell approx-
imation to the true one pion exchange amplitudes.
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These partial wave amplitudes are now summed to give
the full half-off-shell N-N T matrices, in the

I
SM ) basis.

At this point, Coulomb corrections are added, in essential-

ly the same way as done by Stapp, i.e., Coulomb scatter-
ing amplitudes are added to our N-N amplitudes, which
are multiplied by the appropriate phase in order to pro-
duce interference between the two interactions. Thus, in

this approximation the Coulomb corrections are also on
shell.

This method of making Coulomb corrections does not
make the overall ppy calculation consistent to second or-
der in th@ electromagnetic interaction. It does, however,
account for those Coulomb corrections to the N-N ampli-
tudes which can be obtained via adding a nonrelativistic
Coulomb potential to the strong interaction, and it does
go one step further than many previous ppy calculations.

IV. THE PARTIAL WAVE PARIS
N-N POTENTIAL

Most previous calculations of ppy have used simple
phenomenological potentials such as the Hamada-
Johnston ' or Reid soft-core potentials. Since these cal-
culations, however, there have been major advances in the
development of theoretically based potentials such as
those of the Bonn and Paris groups. One of the main
aims of this calculation has been to use one of these po-
tentials, the Paris potential, for the first time in a ppy cal-
culation. As a check, and an alternative for comparison,
we have also used an extended Reid soft-core potential.
This is phenomenological like the original Reid soft-core

and differs from it by the inclusion of several higher par-
tial waves. At a later date we plan to perform the calcula-
tion with the Bonn potential as mell.

A word of caution is in order, however. It becomes
possible to use the Paris potential in a calculation such as
this only because of the existence of a simple
parametrized form. This form was obtained by fitting
the on-shell predictions of the full Paris potential results.
Thus, there is no real guarantee a priori that the off-shell
behavior of the N-N amplitudes obtained with this pa-
rametrization will agree in detail with that which would

be obtained in a full off-shell calculation starting with the
same physical picture. It should be approximately
correct, however, since the physical picture of the one bo-
son exchange does lead to a potential of the Yukawa
form.

To evaluate the expressions of the preceeding section
for any potential we must obtain the partial wave matrix
element VLs(q', q). The method used to decompose a po-
tential into partial waves is well known. Since the Paris
potential has been parametrized in terms of a series of Yu-
kawa potentials, it may be partial waved, as is the familiar
Reid soft-core (RSC} potential. Most of the necessary re-

sults are tabulated in Ref. 34. The RSC potential, howev-

er, does not have an energy dependent central potential,
nor does it have a quadratic spin-orbit part. An energy
dependence presents no difficulties in momentum space
but, the quadratic spin-orbit (SO2) potential requires extra
attention.

In order to evaluate VLs(q', q) for the SO2 potential, we

must evaluate

00

VL~s, Ls(q' q}=&q' L'S'J
I
—Vso2(r)ftso2I q L~J&= r'«jL, (q'rj~L(qr)Vso2(r)&L'S'J

I
~soiIL~J& (4.1)

wherein

12 g.
Vso2(r) = g z 1+ +

i (m;r)z mJr (m, r)2

—mr
e

(4.2)

Qso2 I
Lsl) =]—,

' [J(J+1) L(L +1)—S(—S+1)]—L (L +1)]
I
LSJ) . (4.3)

[QL, + i(ZJ)+Qz, -i(ZJ }]

Q (Z)+ [Q (Z) —Q (Z}]— [Q (Z) —Q (Z)] &0 },4qq' 3qq' 3'
mJ mJ (2L +3) mJ (2L —1)

(4.4)

The parameters g; and m~ are tabulated in Ref. 7 and jL(pr) is a spherical Bessel function. Since the N-N potential con-
serves the total spin S, and the SO2 potential does not couple angular momentum states, L and S are good quantum
numbers and we may write VL, s Ls simply as VLs. For L =0 states, the SO2 potential is zero, while for L & 2 the in-

tegral in Eq. (4.1) is easily evaluated to give

12 gSO2
" '

2 ~2j
1

q +q
i mmJ (2L +1) PtlJ

where

+g +PlJ
Z 2' (4.5)

SO2

j J

S02 S02

j mj j mJ
(4 6)

For the L =1 case, however, the integral in Eq. (4.1) is
divergent. By using the constraints

for the SO2 parameters, the divergent part of Eq. (4.1) can
be removed as follows. The troublesome term is
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00 —m-r.
r drjo(q'r) e 'jo(qr) .

0 (mjr)

By using the substitution

1 mr= lim
(mr) P o [(mr) +p2]2

(4.8)

and evaluating the integral before the limit P~O, the log-
arithmic divergence can be separated out and is propor-
tional to g.(gj /mj ), which vanishes by virtue of the
constraint in Eq. (4.6). Thus, taking the finite part into
account gives for states with L = 1 the result that the last
term in square brackets in Eq. (4.4), i.e., the one propor-
tional to Ql —Qr 2, should be replaced by

3a tan +3a'tan
1+0 —0

+ —,
' I[1—(a'+a) ]in[1+(a'+a) ]—[1—(a' —a) ]in[1+(a' —a) ]1+0 —0

—4(a'+a)tan '(a'+a)+4(a' —a)tan '(a' —a) ]

3
1

1+(12'—a)
(4 9)

1+(a'+a)
with the abbreviations a2=q/m and a'=q'/m .

Having calculated the necessary components of our total ppy T matrix, we now proceed to construct the observables
which have been calculated.

V. THE ppy OBSERVABLES

We use the following relation for the ppy cross section:

do=(22r) [(p1 p2 —E1E2) m "—] ' d p3d p4d k(E3E4k) '5 (pi+p2 —p3 p4 k) g g l
(E2E4k)' T(E1E2)' '

l

splns

(5.1)

in which the flux, phase space, and amplitude factors are
individually invariant. In the invariant amplitude, we
evaluate the sum on photon spins,

g glT l2=-,'gg g(s'm'lT lsd)'
SPlnS ~ SM S'M'

I

where the above subscripts 1 and 2 denote a spin projec-
tion for the incident proton of + 21 and —21 along the
beam axis, and

Tgb = g ((m3m4
l
M

l am2 ) (m2m4
l
M bm2 )'

m2m3m4

x(s'~ lT ls~), (5.2)
(m3m4 lk Mlam2)(m3m4 k Mlbm2) )

and sum the photon polarization, in the transverse gauge,
using

g l
T

l

'=M.M' —k.Mk M*, (5.3)

where k is a unit vector along the photon momentum and
T=e M.

In order to calculate the analyzing powers, we must
change the spin basis using

(5.7)

By symmetry, A„=A, =O in coplanar geometries. It
should be noted that our convention that A~ is positive
along the positive y axis, together with our choice $2=0,
which puts p2 in the first quadrant of the x -z plane, gives
results which differ by a sign from the old calculation of
McGuire and Pearce.

lmim2) =g lsM)(SM lmim2),
SM

(5.4) UI. NUMERICAL RESULTS
AND DISCUSSION

(T12+T21)/( Tl1 + T22)

~y ='(T12 —T21)/(Tii+ T22)

~.=(Tii —T22)/(Tii+ T22),2 2 2 2

(5.6)

where m 1 and m2 label the spin projections of the indivi-
dual protons.

The analyzing powers can then be calculated from

Tr(cr.n;TT )
A;= (5.5)

Tr(TT )

where n; is a unit vector along either the x, y, or z axis.
Explicitly, we have

Before giving new results from our calculation, we out-
line some of the checks and comparisons with older calcu-
lations which have been made. First, we have checked
our potential model calculation against a SPA calculation
at laboratory energies of 25 and 280 MeV in the limit
k~O. Potential models also satisfy the SPA, so differ-
ences in this limit should be primarily residual differences
from different on-shell behavior only. Our potential
model results for both cross section and analyzing power
do converge to the soft photon results as k~O. As an ad-
ditional check, we have calculated integrated ppy cross
sections for coplanar final protons with 03——04——30 .
These integrated cross sections agree, to about the 10%
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FIG. 2. Paris potential (solid line) and SPA {dashed line) cal-
culations of do /d 03d04d8~ as a function of 8~ for an incident
proton energy of 42 MeV. Final proton polar angles are
03—8~——22'. The experimental data are from Ref. 3.

FIG. 4. Effect of dropping the relativistic spin corrections
(dashed curve) to the cross section for the kinematic conditions
of Fig. 3. The solid line corresponds to the full Paris potential
calculation.

level, with those given by Drechsel and Maximon, " if we

drop the relativistic spin corrections terms. Considering
the differences in details of the two calculations, such
agreement is quite satisfactory. Some comparisons with
other previous calculations will be mentioned in the next
section.

In Figs. 2 and 3 we compare our calculation to data
from the 42 and 200 MeV ppy experiments. For the pur-
pose of comparison, SPA calculations have also been in-
cluded. Figure 2 displays the cross section,
da/d Qid Q„d8&, as a function of the photon polar angle

8r for a laboratory energy of 42 MeV and coplanar final
protons with 83——84 ——22'. Here, our potential model fit
to the data is not appreciably different from older
Hamada-Johnston potential model calculations of Liou. '

The apparent disagreement between theory and experi-

2.0

ment is difficult to reconcile for this low energy, where
one would expect the potential model to work best. In
particular, the calculation of Brownies indicates that con-
tributions from the double scattering term should be insig-
nificant at this energy and likewise relativistic corrections
should also be small.

In Fig. 3 we have again plotted cross sections versus the
photon angle. The potential model and SPA calculations
correspond to the 200 MeV TRIUMF experiment having
coplanar protons with 8i ——84——16.4'. Corrections due to
the finite detector size have been incorporated into the fi-
nal result. Clearly, the Paris potential curve lies only
marginally closer to the data than earlier potential calcu-
lations. Both the Paris and extended Reid soft-core calcu-
lations are above the data over most of the angular range.
The SPA curve appears to give a somewhat better fit. If
the double scattering terms were to alter the cross section

0
1.6

OI
L

N

~ 1.2

8q=8~=16.44

E~= 200 MeY ~ ~

0
~

0.16

0.12

8~=84=16.4'
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~ 0.8

~ 0.4
0

0.08
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0.0
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I
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8„(«g)
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o.oo
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s„(deg)

FIG. 3. Paris potential (solid line), SPA (dashed line), and ex-
tended Reid soft-core (dotted line} calculations of
do /d 03d Q~d8~ as a function of 0~ for an incident proton ener-

gy of 200 MeV. Final proton polar angles are 83—84 ——16.4'.
The experimental data are from Ref. 2. In this figure the
theoretical results have been multiplied by corrections for finite
detector size.

FIG. S. Effects of dropping correction terms to the calcula-

tion of A~, with the geometry and energy of Fig. 3. We com-
pare the full Paris potential calculation {solid line) to the calcu-
lations neglecting individually the Coulomb corrections (dashed
line), relativistic spin corrections (dotted line), and the one pion
exchange for partial waves with J & 6 (dotted-dashed line).
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FIG. 6. Cross sections, labeled as in Fig. 3, for an incident
proton energy of 280 MeV and final proton polar angles
L93

——84——30'.

FIG. 8. Cross sections labeled as in Fig. 3, for an incident

proton energy of 280 MeV and final proton polar angles

83——84 ——10'.

by the order of 10%, as suggested in Brown's paper, and
if they lowered the cross section, the fit to the data would
be only marginally improved. It is not even clear that the
addition of double scattering terms would lower the cross
section. Brown's calculation for a laboratory energy of
158 MeV, with 83——8q —30', shows that, in at least that
geometry, the addition of double scattering terms in-

creases the cross section.
In Figs. 4 and 5, at 200 MeV, we explore the effects of

dropping individual contributions to our calculation. The
most significant contribution is due to the relativistic spin
correction terms. These terms lower the cross section by
about 25% near 8„=0' and 180'. The Coulomb correc-
tion and the one pion exchange for high partial waves
contribute negligibly to the cross section. The analyzing
powers, however, are more sensitive to such corrections.
The addition of one pion exchange amplitudes for high
partial waves and both the Coulomb and relativistic spin
corrections appear to be significant, at least at some an-

gles, in the analyzing power calculation. However, the

largest contribution is again due to the relativistic spin
correction terms, the removal of which tends to flatten the
analyzing power curve. This sensitivity provides an addi-
tional motivation for the measurement of analyzing
powers in the 280 MeV TRIUMF experiment.

As a check on our calculation of analyzing powers, we
have compared our results to the older calculation of
McGuire and Pearce. We find, at 200 MeV, 8q ——20',
and 84 ——40', fairly strongly disagreement with the results
of McGuire and Pearce. Our results do follow the SPA
results rather well, ho~ever, as they should in this
geometry. The calculation of McGuire and Pearce differs
from ours in that they have not included relativistic spin
corrections and have not calculated the higher partial
waves which we obtained from the one pion exchange.
They have also chosen to extend their amplitudes off shell
using the one pion exchange potential alone. While these
ingredients may account for some of the difference, most
must be due to a different on-shell behavior, since the cal-
culation of McGuire and Pearce does not have the proper
limit as k~0. Bohannon has also calculated analyzing
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/X
0.48 - l

I
I
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0.00
02'

30 60 90 120 150
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180 0.00
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FIG. 7. Paris potential (solid line}, SPA (dashed line), and ex-
tended Reid soft-core (dotted line) calculations of A„as a func-
tion of 8& for an incident proton energy of 280 MeV and final
proton polar angles 83 ——84——30'.

FIG. 9. Calculations of A~ labeled as in Fig. 7 for an incident
proton energy of 280 MeV and final proton polar angles
03 ——84——10'.
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FIG. 10. Half-off-shell extension functions f~{p,q) for the

Sp state as a function of off-shell momentum q for an incident
proton energy of 200 MeV. The solid line corresponds to the
Paris potential and the dashed line corresponds to the extended
Reid soft-core potential.

powers within the potential model for a few specific cases.
Figures 6—9 show potential model and SPA predictions

for cross section and analyzing powers at the energy of
the new TRIUMF experiment. The qualitative behavior
here is similar to that exhibited at 200 MeV. Note that at
83——84 ——10' there is a marked qualitative difference be-
tween the potential model and SPA analyzing powers
which should be easily distinguishable in the new TRI-
UMF experiment. All of this should be contrasted with
the results for 8i——84——30'. The photon now carries away
much less momentum, so that the potential model and
SPA calculations begin to merge. Thus, the greatest
differences between the SPA and potential model calcula-
tions are visible for small final proton angles.

One of the initially rather surprising results evident
from Figs. '7—9 was the very similar cross sections and
analyzing powers obtained with the potentials we have
used, keeping all other parts of the calculation Axed. In
the k=D limit results should be the same since then they
depend only on on-shell amphtudes which, for the cases
we considered, fit the elastic data equally well and so are
essentially the same. It turns out, however, that the po-
tentials we considered have similar off-shell behavior as
well, which in retrospect could possibly have been guessed

FIG. 11. Half-off-shell extension functions, as in Fig. 10, for
the 'P~ state.

since they both are parametrized in terms of Yukawa po-
tentials.

Figures 10 and 11 show this similarity by comparing
the half-off-shell extension functions for the extended
Reid soft-core and Paris potentials in the 'Sc and I'~
states, respectively. The two potentials have qualitatively
similar extension functions. These extension functions are
constrained to pass through unity at the on-shell point
and differ from each other by small amounts over the
range of off-shell momenta to which the calculation is
sensitive. Furthermore, for a fixed off-shell momentum,
the extension function obtained from the Paris potential is
higher than that obtained from the Reid potential for
some partial waves and lower for others. Hence there is
some cancellation of the differences in the final result.
With such similar off-shell behaviors for the various po-
tentials, it is not surprising that the ppy results are also
similar for these N-N potentials. This does not mean that
ppy is insensitive to off-shell effects, just that the poten-
tials we considered are similar both on and off shell.

We are currently extending this calculation, in colla-
boration with R. Machleidt, so as to use the Bonn poten-
tial. Somewhat different technical considerations are
necessary. Preliminary indications are that the Bonn po-
tential results are again very similar to those for the other
potentials.
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