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Resolution of the magnetic moment problem in relativistic theories
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A Landau-Migdal approach to relativistic mean field theory of nuclear matter is used to define

the single particle isoscalar current. By virtue of the near cancellation of scalar and vector poten-

tials, this current is very close to the standard nonrelativistic isoscalar current; and hence the single

particle isoscalar magnetic moment operator gives results in agreement with the nonrelativistic shell

model. Calculations of magnetic moments for closed shell plus (or minus) one nucleon using this ef-

fective current operator recover the Schmidt values, thus resolving a longstanding problem with rel-

ativistic models of nuclear structure.

A long-standing problem with relativistic approaches to
nuclear structure' has been their failure to predict mag-
netic moments. For closed shell plus or minus one nu-
cleon where the traditional isoscalar Schmidt values are in

agreement with the observed moments, this failure is par-
ticularly glaring given the elegant simplicity with which
the same relativistic model gives so many other static nu-
clear properties. (The isovector moments are strongly re-
norinalized by theoretically uncertain meson exchange ef-
fects, and are not in agreement with the Schmidt values.
The isovector moments represent an interesting and spe-
rial theoretical challenge in their own right, but will not
be considered further here. ) Miller has emphasized the
difficulties with relativistic models in fitting both the
spin-orbit splitting and the magnetic moment. Relativis-
tic models of nuclear structure are characterized by a
strong attractive I,orentz scalar potential and a repulsive
timelike vector potential. In Walecka's mean field ap-
proach, for example, these potentials are generated by the
mean scalar o and vector m meson densities. One can
understand how the binding energy and spin-orbit split-
ting arise from the scalar and vector potentials by recast-
ing the Dirac equation for the nucleon field in
Schrodinger form for the upper component. The resulting
Schrodinger-type central potential is given roughly by the
sum of the scalar and vector potentials while the spin-
orbit potential is proportional to the difference. Fitting
the binding energy and saturation density fixes the scalar
and vector potentials in a way consistent with the spin-
orbit splittings. Typically the scalar potential strength is
about —400 MeV while the vector strength is about
+350 MeV. The magnetic moment difficult can be

traced to the enhanced currents of the bound relativistic
Dirac four-spinors. Essentially the effective nucleon mass
is reduced by the strong attractive scalar potential,
m ~m'=0. 6m, thereby increasing the velocity and asso-
ciated current. The tensor anomalous moment is not sen-
sitive to the strong scalar-vector dynamics; so we need

consider only the isoscalar Dirac current. In addition to
the isoscalar magnetic moment there are other observables
which are sensitive to this enhancement, most notably the
transverse isoscalar electromagnetic response function,
certain inelastic proton induced transitions at intermediate
energy, and to a lesser extent weak interaction induced
processes. ' For relativistic models of nuclear structure
to be taken seriously the role of such strong (dynamical)
relativistic effects must be addressed in a way consistent
with the successful predictions of the nonrelativistic shell
model of the measured isoscalar magnetic moments.

In this note the Landau-Migdal quasiparticle approach
to relativistic nuclear matter is used to motivate an effec-
tive density-dependent isoscalar current operator which
incorporates the nontrivial response of the "spectators" to
the sin le quasiparticle motion, i.e., the so-called "back-
flow. "' The resulting current operator operator is signi-
ficantly suppressed from its traditionally enhanced value.
This suppression reduces part of the interparticle vector
interaction as shown by Matsui. Similar vector induced
suppression has recently been reported by Kurasawa and
Suzuki" in the context of a random-phase approximation
(RPA) approach. One can understand the need for such
backflow corrections from a consideration of the Ward
identity. ' In studying isoscalar magnetic moments here,
we focus on the transverse response function in the zero
momentum transfer limit. Isoscalar magnetic moment
calculations for single nucleon valence states based on this
new current operator agree well with the data and the
traditional Schmidt values without upsetting the spin-
orbit splitting. The method can be generalized to other
operators as well.

The approach taken is to examine the single particle
current in nuclear matter and apply the result to finite nu-
clei by using a local density approximation. We first re-
view the relativistic mean field theory of Walecka' and
the Landau treatment of Matsui. We use the conventions
of Bjorken and Drell. ' Walecka's simplest relativistic
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where V is the vector (co} field with mass rn„, 4 is the
scalar (cr} field with mass m, and 4 is the nucleon field
with mass m. Isospin indices are suppressed. For bulk
(long wavelength) properties and low-lying excitations it is
sufficient to average the meson source terms yielding the
following static mean fields:

c=, (Vq),
m~

(2)

model for nuclear matter consists of three fields, the nu-
cleon field 4 and two isoscalar meson fields o, a I.orentz
scalar, and m, a Lorentz vector. The Lagrangian density
is given by

w= ——,'(a„v„—a„v„)'+-,'m„'v„v~+-,'a„ea e
, m—~4+4(i y„P' m—}4+g~%44

teracting many body context? Landau and Migdal answer
these questions by calculating how the system as a whole
responds when one quasiparticle is removed. For exam-

ple, the single particle energy is defined by

58'
=Es +~ego

5n;
(10)

3a

in the nuclear rest frame. Despite the complicated density
dependences in N'(m, ja) the simplicity of this result fol-
lows from the stationary nature of 8' under variations in
m and ja. This definition implicitly assumes that the
system has time to rearrange itself to adjust to the
quasiparticles absence. This definition is only appropri-
ate, therefore, for energies near the Fermi surface. In
similar fashion we propose defining the single quasiparti-
cle current as the difference in the total baryon current
when the particle is removed:

where the brackets indicate the ground state expectation
value. The nucleon field equation then becomes the self-
consistent Dirac equation

[y„(iB" A„(—@y,"+)) —(m —A, (+4) )]ql =0, (4)

where k~=(g /I ) and A.„=(g„/m„) The m. ean-field
Dirac equation has the following quasiparticle solutions in
an arbitrary frame:

' 1/2E;+m'

ja=g ' « —~ ja» (12)

which, upon variation with respect to the single particle
density and evaluated in the nuclear rest fraine, yields the
effective single particle current

3a

This not only accounts for the missing particle but also
for the current due to the rest of the medium adjusting to
that particle, i.e., the backflow. Using the self-consistent

ja, Eq. (7},one finds

2E; 3i=
5n; i o

k; [—,'kj~+(m') ]
[kz+(~ «)&]i/& ~ J [k&+( +)&]3/&

where 7 is the Pauli two-spinor and

m'=m —A~(4%),

8'=(po, ja) = ('py"'p &,

E; =[(k;—A,„ja) +(m') ]'/
(7)

(8)

Note that this is in fact a self-consistency condition in
that the solution for 4 involves 4 itself. The energy den-

sity for a zero temperature Fermi liquid filled to Fermi
momentum kF is

(po+ ja ja )+ (m —m ') +g n; E;, (9)
2 2k

where n; =8(kF —
~
k;

~

).' Note that the energy density
is stationary under variations in m and jz, and po is
by normalization. Fixing the ratios, A, and A, , to the
binding energy per particle and saturation density yields
the large scalar and vector potentials quoted earlier which
are in turn consistent with the spin-orbit splitting in finite
nuclei.

We come now to the critical question: %hat is the sin-

gle particle current? Or more generally: How do we de-
fine any single particle property in this dense, strongly in-

1(j, );=—
2

—,kj +(m')
]+A,

[k +(I') ]

(14)

The backflow renormalizes only the isoscalar part of the
electromagnetic current because the model contains only

The first term is the usual relativistically enhanced
(m /m') current, but here we see that the self-consistency
condition yields a reduction factor first noted by Matsui
for the momentum-dependent part of the interparticle
vector interaction.

One can show that the isoscalar current, Eq. (13), is the
appropriate one to couple to an external magnetic field.
In fact the single quasiparticle electromagnetic spacelike
current in this model is

5J,
(j, );=

5n;

Evaluating this in the nuclear rest frame yields
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isoscalar mesons. Simply stated, the electromagnetic field
can interact with the quasiparticle either by coupling
directly to it or to the correlated backfiowing nuclear
matter which is inextricibly associated with the single par-
ticle current in this dense strongly interacting context.

In order to estimate the effect of our definition for the
single particle current, Eq. (13), we make a local density
approximation to the vector suppression term. The Fermi
sum can be done for the zero temperature case, yielding
the isoscalar current

[k +(m')']'
2A, kF

X 1+
3n [k'+ (m ')']'~'

where a degeneracy of 4 (2 spin and 2 isospin) is assumed.
Bentz et al. ' have argued that this result follows from a
consideration of the Ward identity. For a self-energy cal-
culated in Hartree (or mean field) the isoscalar (transverse)
vertex correction obtained from the Ward identity is just
the (transverse) polarization insertion obtained in random
phase approximation. The suppression factor in Eq. (15)
is the q~0 then qo-+0 limit of this transverse polariza-
tion insertion. '

From the rest frame solution for the nucleon field, Eq.
(5) with jii ——0, this current can be obtained from the ef-
fective density-dependent Dirac operator:

y(r) =yI I+&~Q[( —,
' il'po)' '+(m')'] '~'] ', (16)

where the local values for po and m" are now used. In
this q~0 limit y is transverse only. Table I displays iso-
scalar magnetic moment calculations based on this effec-
tive single particle operator compared with the standard
relativistically enhanced value and the Schmidt value.
The relativistic wave functions used in these calculations
were obtained from a relativistic Woods-Saxon well with
parameters adjusted to give the separation energy and
elastic electron scattering form factor (essentially identical
wave functions are obtained from relativistic Hartree cal-
culations). We see that the large Dirac current effect is
virtually eliminated when the effective current is used,
bringing the relativistic magnetic moment calculations

into agreement with the successful Schmidt values.
It is no numerical accident that the cancellation of the

scalar enhancement due to the sigma and the vector
suppression due to the omega is so complete. It is precise-
ly this high degree of cancellation which gives the rela-
tively shallow, 50 MeV, central well depth of the
Schrodinger equation form of the Dirac equation. In non-
relativistic Landau liquid theory one expects the velocity
corrections to be the order of the binding energy over rest
mass. Expanding the effective isoscalar current operator
in powers of k demonstrates this dependence explicitly
for the present relativistic example. By neglecting terms
of order k; and higher, terms proportional to (kz —k; )

and terms of order A,„~o,/m, from Eq. (15) we obtain

2

(q, ), ,=k, m+X~, —X~, +
2ltl

The familiar m" enhancement from the scalar potential is
now largely canceled by the vector potential. This cancel-
lation of vector and scalar potentials which here restores
the current to roughly its nonrelativistic form is the same
cancellation which has kept relativity hidden in low ener-

gy nuclear structure. %hen combined with the kinetic en-

ergy term, the potential terms give a small binding energy
correction and Eq. (17) can be written

I Eii I
k;

m

where Ez is the binding energy.
An examination of other observables believed to be sen-

sitive to the relativistic isoscalar current enhancement is
underway. For higher energy processes where the charac-
teristic interaction energy is larger than the Fermi energy,
this quasiparticle approach cannot be applied. For inter-
mediate energy proton scattering the successful free im-
pulse results apply. The importance of relativistic dynam-
ics in the transition region, for example quasifree
knockout where the struck nucleon is bound but the out-
going nucleon is fast, is still an open question. Finally we
note that so long as the energies are near the Fermi sur-
face the Landau-Migdal approach to defining single parti-
cle properties can be used. The generalization to opera-
tors which induce inelastic processes is underway.

TABLE I. Two relativistic isoscalar magnetic moment calculations of closed shell plus or minus one
nucleon are shown along with the experimental values and the Schmidt values. All theoretical values
include the anomalous moment without modification from its free space value. The y-labeled column
includes the traditional m enhancement to the current, the first term of Eq. (13). The y-labeled
column is based on the effective current operator of this work, Eq. (13). 6i is the difference between the

y result and Schmidt, while h2 is the difference the y result and Schmidt. The difference between the
relativistic calculations and the Schmidt values is substantially reduced by the backflow correction.

Mass no. Expt.
Isoscalar magnetic moments

Schmidt y

15
17
39
41

0.218
1.414
0.706
1.918

0.187
1.44
0.636
1.94

0.297
1.57
0.918
2.24

0.11
0.13
0.282
0.30

0.192
1.41
0.645
1.91

0.005
—0.03

0.009
—0.03
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In this note we have used the Landau-Migdal approach
to define an effective single particle isoscalar current in

the relativistic mean field model. In a self-consistent
treatment the vector interaction cancels the enhancement
due to the scalar, so that to leading order the current
operator reduces to the nonrelativistic form. Thus the
longstanding problem with the isoscalar magnetic mo-

ments in a single particle relativistic shell model is
resolved.
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