Brief Reports

Brief Reports are short papers which report on completed research or are addenda to papers previously published in the Physical Review. A Brief Report may be no longer than 34 printed pages and must be accompanied by an abstract.

Yields of fission products produced by thermal-neutron fission of ²⁴³Cm

J. K. Dickens and J. W. McConnell Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (Received 23 April 1986)

On the basis of measured yields for 72 gamma rays and known nuclear data, cumulative fissionproduct yields were deduced for 69 fission products having half-lives between 36 seconds and 65 days representing 41 mass chains created during thermal-neutron fission of ²⁴³Cm.

As part of an ongoing program¹⁻³ we have measured yields for thermal-neutron fission of the rare isotope ²⁴³Cm. The sample used contained ~75 ng of curium isotopically enriched to >99% in the ²⁴³Cm isotope by a special isotope separator.⁴ Sample preparation and irradiation by thermal neutrons, gamma-ray detection, data accumulation, and data reduction followed the same procedures as detailed previously.^{2,5} The only substantive differences were (a) use of the Oak Ridge High Flux Isotope Reactor in addition to the Oak Ridge Research Reactor as the neutron source, (b) more recent⁶⁻¹⁵ nuclear data characterizing decay of several of the fission products, and (c) corrections to the experimental yields due to fissions of ²³⁹Pu in the sample at the time of the experiment.¹⁶

Five irradiations of different durations were used. The numbers of fissions, n_f , created during each irradiation were deduced with an overall uncertainty of $\pm 7.2\%$ from

FIG. 1. Mass-yield distribution for $n_{\text{thermal}} + {}^{243}\text{Cm}$ derived from the present measurements. Also shown is a smoothed curve representing the $n_{\text{thermal}} + {}^{245}\text{Cm}$ mass distribution.

the sample mass, from measured⁴ thermal fission cross section and resonant integral values, and from the known thermal-neutron fluence.

Deduced cumulative fission-product yields (CFY) for the sample, including total absolute uncertainties, are collected in Table I. These CFY were corrected for the contributions from fission of the ²³⁹Pu in the sample; the penultimate column of the table gives the ²³⁹Pu CFY from the current U.S. ENDF/B evaluation¹⁷ used for these corrections. The ²³⁹Pu in the sample accounted for 12% of the fission events. The final column of Table I gives the deduced CFY for thermal-neutron fission of ²⁴³Cm.

Deduction of total-mass (i.e., chain) yields (MY) from individual CFY requires knowledge of fractional cumulative yields (FCY). We adopted the FCY vs ($Z - Z_{UCD}$) relationships deduced² for ²⁴⁵Cm, but, however, computing Z_{UCD} values¹⁸ for ²⁴³Cm as the independent variable to determine the FCY for each fission product in Table I. Mass yields were deduced for 38 masses, and they are exhibited in Fig. 1 compared with a curve representing MY for ²⁴⁵Cm obtained from the evaluation.¹⁷ The comparison shown in the figure indicates that the absolute normalization of the ²⁴³Cm data appears to be accurate to within $\pm 7.2\%$ uncertainty associated with n_f . One may also observe that the mass distribution for ²⁴³Cm is quite similar to that for ²⁴⁵Cm. Indeed, evaluated¹⁷ mass distributions (for thermal-neutron fission) of the pairs ²³³U-²³⁵U, ²³⁹Pu-²⁴¹Pu, and ²⁴⁹Cf-²⁵¹Cf are also quite similar, much more so than distributions for fissioning systems of different total Z.

We express our appreciation to C. E. Bemis for providing our sample material suitably encapsulated, and to T. R. England (LANL) for providing an up-to-date version of the evaluation of Ref. 17. This research was sponsored by the Office of Basic Energy Sciences, U. S. Department of Energy, under Contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

TABLE I. Deduced cumulative fission-product yields for thermal-neutron fission of ²⁴³Cm.

		Gamma-ray	Cumulative fission-product yield		
Fission	E_{γ}	branching ratio $(\sigma_{1})^{a}$	Sampla	(%) 239 D b	²⁴³ Cm
	(KCV)	(70)	Sample	ru	Cm
⁸⁹ Rb	1031.9	58.0 ± 5.0	1.29 ± 0.17	$1.60 {\pm} 0.27$	1.24 ± 0.32
⁹¹ Sr	1024.3	33.5 ± 0.7	1.57 ± 0.12	2.49 ± 0.05	1.45 ± 0.14
⁹¹ Y ^m	555.6	95.1 ± 0.1	0.91 ± 0.07	1.43 ± 0.05	$0.84 {\pm} 0.08$
⁹² Sr	1383.9	90.0±9.9	1.63 ± 0.23	2.98 ± 0.12	1.45 ± 0.26
⁹³ Sr	590.2	$67.4 \pm 1.2^{\circ}$	1.98 ± 0.18	3.64 ± 0.22	1.76 ± 0.20
94Sr	1428.1	95.4±0.4	2.04 ± 0.19	3.26 ± 0.20	1.88 ± 0.22
⁹⁴ Y	918.2	49.0±5.0 ^a	2.57 ± 0.35	4.33 ± 0.17	2.34 ± 0.39
³⁵ Zr	756.7	54.6±0.5	2.61 ± 0.19	4.88 ± 0.10	2.31 ± 0.22
⁹³ Nb	765.8	99.8±0.1	3.05 ± 0.22	4.88 ± 0.10	2.81 ± 0.25
97) Zr	/43.4	$92.8 \pm 0.3^{\circ}$	3.94 ± 0.28	5.26 ± 0.15	3.77 ± 0.32
⁹⁸ Nb	657.9	98.3±0.1	3.91±0.28	5.34 ± 0.11	3.70 ± 0.32
²⁰ Nb ²⁰	787.2	93.2±0.2 ¹	0.33 ± 0.03	0.03 ± 0.02	0.37 ± 0.04
⁹⁹ 1c ^m	140.5	87.2±0.7 ^g	5.20 ± 0.65	5.43 ± 0.11	5.17±0.74
³³ Mo	140.5	90.7±0.6	4.81 ± 0.35	6.20 ± 0.13	4.64 ± 0.40
¹⁰¹ Mo	192.1	$19.2 \pm 1.1^{\circ}$	5.81 ± 0.73	5.99 ± 0.18	5.79 ± 0.83
¹⁰¹ I C	306.9	88.0±4.4"	6.47 ± 0.64	6.00 ± 0.17	6.53 ± 0.72
¹⁰² 1c ^m	475.1	85.0±2.0 ⁴	0.07 ± 0.04	0.32 ± 0.02^{1}	0.04 ± 0.04
¹⁰² I C	475.1	6.3 ± 1.0	6.52 ± 1.23	$6.05 \pm 0.49^{\circ}$	$6.58 \pm 1.39^{\circ}$
¹⁰³ 1C	136.0	$16.3 \pm 2.9^{*}$	5.58 ± 1.14	6.95 ± 0.28	5.40±1.29
105 Ru	497.1	90.9±0.7	6.18 ± 0.45	6.95 ± 0.14	6.08 ± 0.51
¹⁰⁴ I C	358.0	89.0±5.0	6.90±0.52	6.01±0.36	7.02 ± 0.59
105 D	143.3	$15.7 \pm 1.0^{\circ}$	5.54 ± 0.42	5.54±0.61	5.54±0.47
105 D	/24.3	48.0±1.0	6.31 ± 0.53	5.59 ± 0.16	6.41 ± 0.60
105 D L	409.4	1.80±0.07	6.07 ± 0.55	5.59 ± 0.16	6.13 ± 0.62
106Ta	318.9	19.2±0.2	6.41 ± 0.47	5.59 ± 0.11	6.52±0.54
107 D	270.1	56.0 ± 3.0	4.93 ± 0.52	3.58 ± 0.39	5.10 ± 0.59
107 D h	194.0	14.3 ± 3.4	5.73 ± 1.52	3.25 ± 0.78	6.06 ± 1.72
108 D	302.9	05.9±4.0	$5.8/\pm1.08$	3.26 ± 0.36	6.22 ± 1.22
109 D h	105.0	28.0 ± 7.0	3.93 ± 1.03	2.03 ± 0.33	4.18 ± 1.18
112 A g	520.5 617 A	62.0 ± 7.0	4.03 ± 0.38	1.09 ± 0.19	4.34 ± 0.66
115 mm	326.2	42.0 ± 5.0	1.89 ± 0.28	0.12 ± 0.05	$2.12 \pm 0.31^{\circ}$
¹²⁷ Sb	530.2 685 7	45.9±0.1	0.52 ± 0.15 0.62 ± 0.05	0.00 ± 0.01	0.35 ± 0.17
128 S n	182.7	50.0 ± 0.5	0.02 ± 0.03	0.30 ± 0.04	0.04 ± 0.00
¹²⁸ Sh ^m	754 0	99.8 ± 0.2	0.30 ± 0.07	0.57 ± 0.03	0.34 ± 0.08
¹²⁸ Sb	754.0	99.8 ± 0.2	0.33 ± 0.07 0.19±0.02	0.05 ± 0.04	0.38 ± 0.08
¹²⁹ Sb	812.8	45.0+4.5	1.15 ± 0.15	1.35 ± 0.08	0.21 ± 0.02
¹³⁰ Sn	779.8	$59.1 + 3.9^{n}$	0.34 ± 0.08	0.91 ± 0.07	0.26 ± 0.09
¹³⁰ Sb ^{m o}	793.4	$860+50^{f}$	1.08 ± 0.13	1.28 ± 0.10	1.05 ± 0.15
¹³⁰ Sb ^m	839.5	99.8 ± 0.1	0.93 ± 0.09	1.20 ± 0.10 1 28+0 10	0.89 ± 0.10
¹³⁰ Sb ^o	330.9	$77.8 \pm 3.9^{\rm f}$	0.90 ± 0.10	0.50 ± 0.02	0.05 ± 0.10
¹³⁰ Sb	793.4	99.8 ± 0.1^{f}	0.84 ± 0.08	0.50 ± 0.02	0.99 ± 0.09
¹³⁰ Sb	839.4	99.8+0.1	0.84 ± 0.08	0.50 ± 0.02	0.89 ± 0.09
¹³¹ Sb	943.6	44.0+4.4 ^p	1.70 ± 0.23	2.53 ± 0.15	1.59 ± 0.09
¹³¹ Te ^m	852.2	21 3+0 9	1.16±0.10	1.04+0.04	1.37 ± 0.20
¹³¹ Te	149.8	$68.9\pm0.9^{\circ}$	2.28 ± 0.26	1.04 ± 0.04	1.17 ± 0.11
¹³¹ I	364.5	82.5+0.4	341 ± 0.25	2.99 ± 0.08 3.87 ± 0.04	2.19 ± 0.30 3.35 ± 0.28
¹³² Sb ^m	973.9	99.9 ± 0.1	5.11 ± 0.25	5.07 ±0.04	5.55±0.28
¹³² Sb	973.9	99.9+0.1	1.00 ± 0.11	2.91 ± 0.23	0.74 ± 0.12
¹³² Te	228.3	88.2±0.2	4.57±0.36	5.16+0.10	4.50+0.41
¹³² I	667.8	98.7±0.1	4.47 ± 0.34	5.42 ± 0.08	4.34 ± 0.38
¹³³ I	529.9	87.3±0.2	5.38 ± 0.39	6.97 ± 0.14	5.17+0.44
¹³⁴ I ^m	271.9	79.0 ± 3.0	1.82 ± 0.17	1.16 ± 0.37	1.91+0.19
¹³⁵ I	1131.5	22.8 ± 0.5	4.13 ± 0.35	6.41 ± 0.18	3.83 ± 0.40
¹³⁵ I	1260.4	29.0±0.4	4.20 ± 0.35	6.41 ± 0.18	3.90 ± 0.40
¹³⁵ Xe ^m	526.6	81.0 ± 1.0	0.84 ± 0.07	1.71 ± 0.55	0.72 ± 0.06
¹³⁵ Xe	249.9	89.9±0.3°	6.14 ± 0.68	7.60 ± 0.11	5.95±0.76
¹³⁰ I ^m	381.4	99.8±5.5	0.90 ± 0.10	1.67 ± 0.13	0.80 ± 0.11

BRIEF REPORTS

		Gamma-ray branching ratio	Cumulative fission-product yield		
Fission	F		(%)		
product	(keV)	(%) ^a	Sample	²³⁹ Pu ^b	²⁴³ Cm
¹³⁶ I ^m	1313.0	99.9±0.1 ^f	0.93 ± 0.21	1.67±0.13	0.83 ± 0.24
¹³⁶ I	1313.0	68.0 ± 1.0	0.80 ± 0.19	1.74 ± 0.42	0.68 ± 0.21
¹³⁶ Cs	818.5	99.7±0.1°	0.39 ± 0.04	0.09 ± 0.01	0.43 ± 0.05
¹³⁶ Cs	1048.1	79.8±0.9	0.44 ± 0.04	0.09 ± 0.01	0.48 ± 0.05
¹³⁸ Xe	258.4	31.5 ± 1.3	3.54 ± 0.42	5.17 ± 0.07	3.32 ± 0.47
¹³⁸ Xe	1748.3	16.7 ± 0.7	3.75 ± 0.36	5.17 ± 0.07	3.56 ± 0.41
¹³⁹ Xe	218.8	50.0 ± 6.0	2.09 ± 0.32	3.01 ± 0.09	1.97 ± 0.36
¹³⁹ Cs	1283.2	7.3 ± 0.6^{f}	6.20 ± 0.78	5.28 ± 0.42	6.32 ± 0.88
¹³⁹ Ba	165.8	23.8±0.3 ^q	6.69 ± 1.85	5.53 ± 0.22	6.84 ± 2.10
¹⁴⁰ Cs	602.4	55.7 ± 3.5^{1}	2.85 ± 0.36	3.92 ± 0.32	2.71 ± 0.41
¹⁴⁰ Ba	537.6	24.2 ± 0.2	4.96 ± 0.36	5.37 ± 0.11	4.91 ± 0.41
¹⁴⁰ La	487.0	45.9±0.4 ^r	5.17 ± 0.45	5.38 ± 0.11	5.14 ± 0.51
¹⁴⁰ La	1596.6	95.4±0.1	4.99 ± 0.42	5.38 ± 0.11	4.94±0.47
¹⁴¹ Ba	190.3	46.0 ± 3.0	4.88 ± 0.63	5.21 ± 0.31	4.84 ± 0.71
¹⁴² Ba	1204.0 ^s	22.6 ± 3.1^{s}	2.78 ± 0.45	4.58 ± 0.37	2.54 ± 0.50
¹⁴³ Ce	293.3	43.4±2.0	3.98 ± 0.34	4.35 ± 0.06	3.93±0.39
¹⁴⁴ La	397.4	90.0±5.0	3.19 ± 0.34	3.62 ± 0.29	3.13±0.39
¹⁴⁵ Ce	724.3	63.9 ± 3.9^{t}	3.21 ± 0.37	2.99 ± 0.06	3.24 ± 0.42
¹⁴⁶ Ce	218.3	20.5 ± 3.2	2.28 ± 0.40	2.45 ± 0.10	2.26 ± 0.45
¹⁴⁷ Nd	531.0	13.1 ± 0.8	1.95 ± 0.19	2.03 ± 0.06	1.94 ± 0.21
¹⁵¹ Pm	340.1	22.3 ± 0.5	$1.16 {\pm} 0.09$	$0.75\!\pm\!0.02$	1.21 ± 0.10

TABLE I. (Continued).

^aValues taken from our previous evaluation, Table II of Ref. 2, unless otherwise noted.

^bValues taken from current ENDF/B evaluation, Ref. 17.

^cKocher, Ref. 6.

^dGlendenin et al., Ref. 7.

^eGamma ray due to decay of ⁹⁷Nb^m; branching ratio corrected for the fraction of ⁹⁷Zr decay populating ⁹⁷Nb^m. The branching ratio given in Ref. 2 is incorrect.

^fFrom Table of Isotopes, Ref. 8.

^gDickens and Love, Ref. 9.

^hHarmatz, Ref. 10.

ⁱReversed from yields given in Ref. 17 for these isomers.

^jDeduced yield of the parent ¹⁰²Mo.

^kDeduced from data reported by Niizeki et al., Ref. 11.

¹Table VI of Ref. 2.

^mDeduced yield of the parent ¹¹²Pd.

ⁿDeduced from level diagram given in Ref. 8; there is a discrepancy between the tabulated and graphical branching ratio in this reference.

 $^{\circ}T_{1/2}(^{130}\text{Sb}^m) = 6.5 \text{ min}; T_{1/2}(^{130}\text{Sb}) = 40 \text{ min}.$

^pTable II, Ref. 3.

^qGehrke, Ref. 12.

^rDebertin et al., Ref. 13.

^sSum data for nearly degenerate doublet. Relative branching ratios from Ref. 8, combined with absolute branching ratio for $E_{\gamma} = 255$ keV from Ref. 2.

^tBranching ratio deduced by Reus and Westmeier, Ref. 14. Uncertainty deduced from data of Yamamoto et al., Ref. 15.

- ¹J. K. Dickens and J. W. McConnell, Phys. Rev. C 24, 192 (1981); 27, 253 (1983); J. K. Dickens, J. W. McConnell, and K. J. Northcutt, Nucl. Sci. Eng. 77, 146 (1981); 80, 455 (1982).
- ²J. K. Dickens and J. W. McConnell, Phys. Rev. C 23, 331 (1981).
- ³J. K. Dickens and J. W. McConnell, Nucl. Sci. Eng. 73, 42 (1980).
- ⁴C. E. Bemis, Jr., J. H. Oliver, R. Eby, and J. Halperin, Nucl.

Sci. Eng. 63, 413 (1977).

- ⁵D. G. Breederland, Oak Ridge National Laboratory Report ORNL/TM-8168, 1982; L. D. Merriman, Oak Ridge National Laboratory Report ORNL/TM-9049, 1984. Preliminary results given in these reports are superceded by the data in Table I.
- ⁶D. C. Kocher, U.S. DOE Technical Information Center Report DOE/TIC-11026, 1981.
- ⁷L. Glendenin, J. Gindler, I. Ahmad, D. Henderson, and J.

Meadows, Phys. Rev. C 22, 152 (1980).

- ⁸Table of Isotopes, 7th ed., edited by C. M. Lederer and V. S. Shirley (Wiley, New York, 1978).
- ⁹J. K. Dickens and T. A. Love, Nucl. Instrum. Methods 175, 535 (1980).
- ¹⁰B. Harmatz, Nucl. Data Sheets 28, 343 (1979).
- ¹¹H. Niizeki, S. Kageyama, T. Tamura, and Z. Matumoto, J. Phys. Soc. Jpn. 47, 26 (1979).
- ¹²R. J. Gehrke, Int. J. Appl. Radiat. Isot. 31, 37 (1980).
- ¹³K. Debertin, U. Schötzig, and K. F. Walz, Nucl. Sci. Eng. 64, 784 (1977).
- ¹⁴U. Reus and W. Westmeier, At. Data Nucl. Data Tables 29, 193 (1983).

- ¹⁵H. Yamamoto, Y. Ikeda, K. Kawade, and T. Katoh, J. Inorg. Nucl. Chem. 42, 1539 (1980).
- ¹⁶Chemical purification and enrichment of the sample material preceded this experiment by 4.75 yr.
- ¹⁷B. F. Rider, General Electric Co. Report NEDO-12154-3(C), ENDF-322, 1981; T. R. England (private communication).
- ¹⁸This computation (Ref. 2) requires a value for the number of neutrons v, emitted during fission, a datum not known for thermal-neutron fission of ²⁴³Cm. v = 3.832 for thermal-neutron fission of ²⁴⁵Cm; A. H. Jaffey and J. L. Lerner, Nucl. Phys. A145, 1 (1970). We used v = 3.8 for ²⁴³Cm; calculations of most FCY are insensitive to the value of v.