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A new method of computing the ground state energy of a Fermi fluid is developed and applied to
the hard-sphere Fermi fluids of two and four components. We find the results to be highly accurate
for low densities. In this paper we compute and report the perturbation series for the ground state
energy for the soft, repulsive, square-well problem at a number of densities for a four-component
Fermi system as well as the ladder approximation energies for a hard-sphere potential at the same
densities.

I. INTRODUCTION AND SUMMARY

In a recent series of papers' ' a constructive method
for the computation of the ground-state energy of various
quantum fluids has been developed. The underlying idea
can perhaps be traced back to van der Waals. It is very
simply put: Instead of taking an ideal gas of point parti-
cles as the basic system to which corrections are to be
made, one should take a gas of repulsive cores as basic
and add to it, as a correction, the attractive interactions.
The rationale for this idea is suggested by computer simu-
lations for both classical and quantum systems which
show that the hard-sphere pair distribution functions are
qualitatively similar to those of Lennard-Jones liquid.
This idea has lead to a very successful theory' of classical
fluids.

In the course of work on our constructive methods for
the ground-state energy it has become clear that the first
and most important step is to develop a good representa-
tion of the hard-sphere ground-state energy. With this
key piece of information, coupled with other known re-
sults, the methods permit accurate and fairly straightfor-
ward computation of the energy in most cases tried. In
this paper we introduce a new method which we call the
L expansion and apply it to the calculation of the
ground-state energy of the simplest of repulsive cores, the
hard sphere.

In Sec. II we introduce the L expansion. It differs from
the well-known E-matrix expansion' in the following
way. The E-matrix expansion is basically a rearrange-
ment of the Rayleigh-Schrodinger perturbation series in
which infinite sums of diagrams replace the interaction
vertices, and the remaining class of diagrams to be com-
puted and summed is correspondingly reduced. In the I.
expansion, instead, the E-matrix energy itself is expanded
and so too is the complete ground state energy; both are
expanded in terms of a strength parameter. The E-matrix
(or ladder approximation) series is reverted and substitut-
ed back into the complete series. The K-matrix corre-
sponding to a hard-sphere system is computed by the
solution of the appropriate integral equation and used as

the point at which to evaluate the L expansion.
In Sec. III we briefly describe the standard methods for

the solution of the K-matrix equation and tabulate our re-
sults for the hard-sphere potential for v=two- and four-
component Fermi fluids.

In order to compute the L expansion it is necessary to
expand the complete energy at various fixed densities in
powers of the strength parameter for the repulsive
square-barrier problem. This we do in Sec. IV. We sum-
marize' existing data for v=2 through fourth order, and
we report the results of our computations for v=4
through third order. These results were obtained by
means of Monte Carlo evaluation of integrals. We also
add an additional density through third order for the v=2
case. These results, together with v=1 results for the
third-order ring diagram, suffice to compute the series for
the complete energy in powers of the repulsive strength
through third order for any value of v.

In Sec. V we combine the results of the preceding sec-
tions to compute the I. expansion. We judge that the
low-density results are very accurate and, in their region
of validity, should serve as a standard against which other
methods should be compared. The results extend the
region of reliable information beyond that we had from
our low-density expansions reported previously. ' '
Nevertheless, a full solution of the ground-state energy
problem for fermion fluids requires (as was available for
boson fluids) information from other sources at still
higher densities.

II. THE L EXPANSION

As pointed out by Baker, ' the summability of the po-
tential perturbation series with purely repulsive two-body
interactions for the ground-state energy of a many-
fermion system is under good theoretical control, even
though this series is almost surely divergent. For practi-
cal purposes, however, some rearrangement has been con-
sidered desirable. Brueckner' had the idea of rearranging
into a single term all of the ladder diagrams. This pro-
cedure is sufficient for repulsive forces and avoids the
added complexity of the R matrix' ' expansion re-
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quired when attractive forces are also present. The dia-
grams are illustrated in Fig. 1 using the notation of
Hugenholtz diagrams. The right-pointing arrows are
holes in the Fermi sea and the left arrows are excitations.
After grouping the ladder diagrams into a sum,
Brueckner's next step was to replace each vertex in the
remaining diagrams by such a sum, thus constituting the
"K-matrix rearrangement. " The advantage of this new
series is tllat its flii'st term ls exact lil the low-deilslty limit.
The practical difficulty with this procedure is that the K
matrices required depend not only on the momentum
transfer at the vertex, as do the potentials in ordinary per-
turbation theory, but also on the exchanged momentum
transfer, the total momentum, and the excitation energy
of the Fermi sea. These additional dependences add con-
siderably to the length of the computation.

We propose an alternate way to sum the perturbation
series. It has the same basic advantages as the K-matrix
rearrangement but is computationally simpler. In this pa-
per we are ultimately concerned with the hard-core fluid.
For this case the value of the ladder approximation to the
energy shift M (here we mean the difference between the
ground state energy and the noninteracting Fermi sea
ground-state energy) is finite. It will, of course, be non-
negative for a purely repulsive potential and will corre-
spond to no binding. Binding necessarily implies a nega-
tive binding energy. Thus if we have a central pair poten-
tial,

V(r) =u@(r)(fit/Mc ), (2.1)

where M is the fermion mass, iii is Planck's constant over
2m, and c is a length, then for the hard-core case

P

1, 0&r&c
4(r)= '()

(2.2)
V~ Og

we may write the ground-state energy series as

AEMc =kiu+kiu +kobu +k&u +, (2.3}2 3 4

N
where the k; are functions of the density. We may also
write the ladder approximation to the ground-state energy
as

&Ri Mc 2
2 3 4=-m, u+miu +miu +m~u +

N
(2.4)

where the m; are also explicit functions of density. It is a
straightforward matter, as m i&0, to revert the series (2 4)

FIG. 1. The ladder diagrams for the ground-state energy
represented by the solution of the E-matrix equation. The
right-pointing arrows are holes in the Fermi sea and the left-
pointing arrows are filled states above the Fermi sea.

to give

v =n, L, +n2I. '+n31. 3+n4I. 4+ ~ ~ ~, (2.5)

where the n; are explicit functions of the m; and so expli-
cit functions of density. The direct substitution of (2.5)
into (2.3) yields what we call the L expansion,

b EMc =I iL+I»L'+I iL'+I ~L'+ (2.6)

where the p; are explicit functions of the density, and of
course 4(r), as are the k;, m;, and n; as well.

To use the L expansion for our computation of the
ground-state energy of the hard-sphere Fermi fluid, we
first compute the corresponding value of L by the solu-
tion of the K-matrix equations as described in the next
section. Then we sum the expansion (2.6} for that value
of L and so deduce the energy. Since L is exact in the
limit of zero density, the higher order coefficients in (2.6)
vanish in this limit and we expect (2.6) to be particularly
useful for dilute systems and to be a definite improvement
over the simple ladder approximation.

We remark that the arguments of Baker' (see Sec. III C
of that reference} applied to the L expansion indicate that
it is likely to be an asymptotic expansion, but that at least
we can bound

Ip, I &M, (M, }J!, (2.7}

where Mi and Mi are positive constants independent of j.
It is possible, however, ' that although still an asymptotic
series, the rate of divergence may not be as fast as allowed
by (2.7).

III. K-MATRIX COMPUTATIONS

The general n-vertex term in the ladder sum of the
ground-state energy diagrams (Fig. 1) is given by' (see
Sec. IV A of that reference)

n —1

III'(Ik ——k
I

} I:4(lko —k.- I
}—4(lko+k. —

I
}/ I—3( —u)"v j=1

dv
Sm.kF n —1

ff (kj' —ko')
j=1

(3.1}

where the region of integration is that allowed by the Pauli exclusion principle. The excitation lines have been labeled
( —,'p+kJ) for j=1, ,n —1 and the two hole lines ( —,'p+ko). The function p is the Fourier transform of 4(r). We
denote by v the number of spin and isospin states available to each fermion, namely v=(2S+ l)(2I + 1), where S and I
are the spin and isotopic spins, respectively. The identity
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( —,p+ &;)'+ ( —,p —It, )' —( —,
' p+ Q)' —( —,

'
p —Q)'= 2(k,'—k,') (3.2}

has been used to reexpress the denominator in (3.1). The formal sum of the ladder terms can be given in terms of the K
matrix which in turn is the solution of the integral equations

dlt"'p(
i

k' —k'"
i
)K(k"',k",p, ko)

J~i" +(in)P)&k„;~i" —(in)P~ ~k k- 2
(3.3)

where the p dependence of K comes from the Pauli principle and the ko dependence from the energy denominator. The
ladder approxiination to the ground-state energy per fermion is

bEL M
lim

NA

3
3 p V+ 0»p~ 0 + s sf~ 0 s + 2P + Fs 2p +kF

fT F
(3.4)

We have performed the computations by the methods
of Brueckner and Masterson' as implemented by Baker
et al. All the numerical approximations, parameters,
etc. used are described in Refs. 15 and 20. We mention
here only that v is chosen as 10 (instead of infinity) and c
is the core radius. For the reader's convenience we also
recall the formula

vkF3

P=6 2
(3.5)

which gives the Fermi momentum (the top of the Fermi
sea in the noninteracting gas of point particles) in terms of
the particle number per unit volume, p.

Our numerical results are given in Table I, and tabulat-
ed against the dimensionless density parameter x =kFc.
The errors due to the numerical solution of the K-matrix
equation are believed to range from order 10 at
kFc=0.25 to 10 at kFc=1.50. At kFc=2 we believe
the accuracy to be a few tenths of a percent and a few per-
cent at kFc= 3. For the effect of total momentum averag-
ing and the Pauli principle averaging the reader is referred
to Baker, Ref. 15, and the references therein.

(2.4) as a function of density. The first three orders are il-
lustrated in Figs. 2 and 3. The corresponding equations
are (see Baker, Ref. 15, Sec. IV C)

81= f dmdn[vg(0) —P( ~m —n~ )],3

(4.1)

which can be evaluated analytically for the potential (2.2)
to give

( kFc)81=
9m

72 3, [y Si(y) —4—3y 2

3'

+(4+y )cosy+4y siny], (4.2)

p(q) =4m [sin(qkFc) qkFc cos(qk—Fc))/q (4.3)

where y=2kFc, Si(y} is the sine integral, and we use the
result,

IV. PERTURBATION SERIES COEFFICIENTS

In order to carry out the I. expansion in Sec. II, it is
necessary to supply the expansion coefficients in (2.3) and

for the Fourier transform of the potential (2.2) with q the
momentum in units of kF.

The remaining expressions are

TABLE I. Ladder approximation to the ground-state energy
shift of a hard sphere Fermi fluid.

0.00
0.25
0.50
0.75
1.00
1.25
1.50
2.00
3.00

0.0
2.033 148 X 10-'
2.155 82 g 10-'
9.899 29' 10-'
0.322 295
0.865 559
2.05079
9.028 99

97.2263

0.0
5.96101~10-'
6.067 78 ~ 10-'
0.268483
0.849 344
2.234 35
5.21771

22.5266
234.997

(b)

FIG. 2. The first, 8 1 (a), and second, 82 (b), order perturba-
tion expansion terms. The line labels denote the momenta of the
lines and refer to Eqs. (4.1) and (4.4).
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g2=, , ",fdmdndq
2 m (kpc)

(4.4)

3v
212 10(k c)4 f

I
dmdndqdqi4(e)4(

I q —qi I
) 4(qi) ——(('(

I
m —n+qi I

)

[e'+q (m —n)]lei+qi (m —n)]
(4.5)

H3= 2"n"(k c)4 ~

1
dmdndqdqik(e)4(ei) 4( I q —qi I

) ——(((
I q+qi+m —n

I
)

V

t&'+q (m —»](9'—0 i+(q —qi) (m —»]
(4.6)

3v 1 1R3= m n q q& q —— m+q —
q& q —— n —q~

2"~io(k,c)4 V V

1
X P(q) ——((( [ n —m —q ~

) —(v ' —v ')(t (
~

n —m —q ~
)

X4( 1m+q —qi I
)(t( ln —qi I

) [~'+q (m —n)]fe'+q (m —ql)]

—3v
211~10(k c)4 f

dmdndqdqiP(q) iI)(q) ——P(
~

n —m —q ~
)

1

V

le'+q (m —n)]' lk( I q+m+qi I
) —(t (

I m+qi I )] (4.8)

(0) (b)

(c)

FIG. 3. The third-order perturbation expansion terms. (a) is
the ladder graph 83, Eq. (4.5); (h) is the hole-hole scattering
graph H3, Eq. (4.6); (c) is the ring diagram R 3, Eq. (4.7); and

(d) is the difference of diagrams with the first self-energy correc-
tion to a filled-state line and to a hole state line, F3, Eq. (4.8).

where the region of integration includes all values of the
momenta allowed by the Pauli exclusion principle. Thus,
for example, all hole-line states are integrated over

~
m

~

& 1 and all filled state momenta above the Fermi sea

t

are integrated over
~
m+ q ~

& 1. The line labels are given
in Figs. 2 and 3.

We have performed these integrations by means of
Monte Carlo evaluations. We select the momenta so that
every point we choose makes a roughly equal contribu-
tion. For example, the independent momenta in the Fer-
mi sea are chosen, as m 3=r

i with r i distributed uniform-

ly on the unit interval 0 to 1. For a filled-state momen-
tum which can be infinite we choose, say

~
m+q

~

=rz
where r2 is distributed as was r&. The parameter E is
chosen so the integrand (with respect to dr2) goes to a
constant as rz~0. Further details are given in Baker
et a/. We have used 1 & 10 Monte Carlo repetitions for
B2 and 8 3 and 5 X 10 for H 3, R 3, and I' 3.

Our results for v=4 are listed in Table II for the mo-
menta kFc=0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 2.00, and
3.00, together with the observed standard deviations. We
have gathered the corresponding results for v=2 together
in Table III from Baker' for the convenience of the
reader. The column for kFc=1.25, is new with this
work. We remark in passing that in Baker (Ref. 15) the
following two misprints were noted for kFc =1.5: I-A.2
has the value —4.56 X 10 and II.8 has the value
—6.32&(10 instead of the values —4.56X 10 and
—6.23)&10 given therein. The rows in Tables II and
III marked X3, h3, X4, and h4 are the complete sum
third order, the sum of all third order diagrams except the
ladder diagram 83, the complete sum fourth order, and
the complete sum of all fourth order diagrams except the
ladder diagram I.1, respectively.

Since all the diagrams except 8 3 are linear functions of
v we can, for general v, compute
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TABLE II. Monte Carlo calculations, v=4.

Diagram
kFc=0.25

Value Deviation
krc =0.50

Value Deviation
krc=0.75

Value Deviation
krc= 1.00

Value Deviation

81
82
83
R3
03
F3
X3
h3

1.661993x10 '
—5.85 x 10-'

2.13x10-'
2.20X 10
5.26 X 10-'
1.17x 10-'
2.16X 10-4

2.84x10-'

3.7x 10-'
2.2X 10-'
1.3 x 10-'
6.4x 10-'
6.6x10-'
2.2X10 6

1.6X10-'

1.339 353 x 10-'
—4.01x 10-'

1.234x 10-'
4.82 x 10-'
1.324X 10-'
6.23 x 10-'
1.302 x 10-'
6.77x 10-'

1.1X 10
4.8x 10-'
2.1X10-'
5.6x 10-'
8 3x 10-'
4.8x 10-'
2.3x 10-'

4.573 553 x 10-'
—1.124x 10

2.915x 10-'
2.49X 10
7.70x 10-'
5.63 x 10-'
3.297 x 10-'
3.82 x 10-4

2.1X10
8.6X 10-'
1.2x10-'
3.7x 10-'
4.4x 10-'
8.7x10 6

1.3 X10-'

0.1100973
—2.163X10 '

4.58x10 '
7.34x 10-4
2.37x 10-4
2.32 x 10-4
5.79x 10-'
1.208 x 10-'

3.5 X10-'
1.4x 10-'
4.5X10 '
1.1X10-'
1.4x10-'
1.4X 10-4

4.8x10-'

B2(v) = —,
' [(v—2)B2(v=4) —(v —4)B2(v=2)], (4.9)

for example. For R 3 we have added the value for v= 1 in
Table IV. We obtain for general v the extrapolation for-
mula

R3(v) = —,
' (v —2)(v —4)R 3(v= 1)

—
2 (v —1)(v—4)R 3(v=2)

+ —,
' (v—1)(v—2)R 3(v=4) . (4.10)

V. ANALYSIS OF THE L EXPANSION

In order to analyze the L expansion, we must first pro-
duce it. To this end we use the data in Tables II and III
which directly give the expansion coefficients k; and m;
of equations (2.3} and (2.4), respectively. Since B 1 and
B2 are the only diagrams in first and second order in U, it
follows directly that ki ——m i and k2 ——mi. Thus we may
write (2.6} as

AEMc2AEMc ~ ~3 ~4

since pi ——1 and p2 ——0 identically. We list in Table V the
coefficients pi and p4. The large relative errors for p4 are
caused by the cancellation of the component terms.

In order to display the results af these expansions we

note, as in our previous work, that we expect hE to
diverge like (kz —kFii) as the Fermi momentum ap-
proaches some quantum, random, close-packing value.
The Fermi momentum kF ~ is associated with the Bernal
density of a hard sphere system. This is not ta say that
the true equation of state may not exhibit some sort of
order-disorder phase transition at smaller kF than kF +
rendering kF q a reflection of a spinodal point. However,
our remark is meant to motivate looking at

LN(kpc) fi
Q(L) =

I.H b,EMc

=Co[1—&pi ——,'p4L'+O(L )] (5 2)

instead of (5.1) directly. Here LH is (2.4) for the case of
the hard sphere systems. The values of LH are those list-
ed in Table I and qo = [(kFc) /LH ]'~2 which, for the con-
venience of the reader, we list in Table VI. The values for
kFc =0 are obtained from the low density expansion' and
not fram the solution of the K-matrix equation. Q(LH)
is expected to tend to zero near k~ ii more or less linearly.

The development of the ground-state energy of quan-
tum fluids as an expansion in the attractive part of the po-
tential about the hard-sphere fiuid as the unperturbed
basis system has been presented in a series of papers. '

Clearly a key step in this approach is an accurate repre-

TABLE III. Monte Carlo calculations, v=2.

Dia-
gram

ac =0.25
Value Deviation

kpc=0.50
Value Deviation

kFc =0.75
Value Deviation

kFc = 1.00
Value Deviation

81
82
83
R3
03
F3
X3
b3

5.567499x 10-4
—1.960x 10-4

7.003 x 10-'
1.75 x 10-'

—8.60x 10-'
3.95 x 10-'
6.939x10-'

—6.46 x 10-'

1.2x 10-'
5.7x10-'
1.6X 10-'
6.8 X10-'
2.3 x 10
5.7x10-'
7.0X10-'

4.551 588 x 10-'
—1.346x 10-'

4.146x 10-'
4.45 x 10-'

—2.14x 10-'
2.10x 10-'
4.00X 10-'

—1.48 x 10-'

2.4X 10-'
1.7X10-'
4.3x10-'
1.6x10-'
5.0x10-'
1.7x10-'
1.7x10-'

1.589 397x 10-'
—3.827 x 10-'

9.742 x 10-4
2.57x 10-'

—1.175x10 '
1.89x 10-'
9.013x 10-4

—7.28 x 10-'

4.6x 10-'
3.1x10-'
2.0x 10
6.4x10-'
2.5 x 10-'
3.2x 10-'
7.2x 10-'

3.936 174x 10-'
—7.495 x 10-'

1.538x 10-'
7.87x 10-'

—3.30x 10-4
8.08x 10-'
1.368x 10

—1.70x 10-'

1.9X10-'
5.0X 10
5.6x10 '
1.7X10-'
8.3 x10-'
5.3x10-'
2.0x10-'

I.1

X4
h4

—2.506x 10
—2.438 x 10-'

6.75 x 10-'

1.9x 10-' —1.288 x 10-4
1.9x 10-' —1.152x 10-4
7.0X 10-' 1.359X10-'

4.4x 10-' —2.571x10-'
5.5x10 ' —2.000X10 4

3.3x 10-' 5.71x 10-'

1.1 x 10 —3.347x 10
1.4X 10-' —2.24X 10-'
8.7 x 10-' 1.105x 10-'

2.1X 10-'
2.9X10-'
2.0x10-'



34 GROUND STATE ENERGY OF A HARD-SPHERE FERMI FLUID 683

TABLE II. (Continued).

kFc = 1.25
Value Deviation

kFc= 1.SO

Value Deviation
kFc=2.00

Value Deviation
kFc= 3.00

Value Deviation

0.2190174
—3.373X10 '

5.67 X 10-'
1.68 X 10-'
5.04 X 10-4
6.55 X 10-4
8.51X10-'
2.84X10-'

5.4X 10-'
2.0X 10-'
1.2X 10
2.3 X10-'
3.5X 10-'
4.2X10-'
3.7X10-'

0.386 249 5
—4.606 X 10-'

6.06 X 10-'
3.35 X 10-'
8.42 X 10-4
1.377 X 10-'
1.163X 10-'
5.57 X 10-'

7.8 X 10
2.6X10-'
2.8X 10-'
4.0X10-'
7.0X10-'
3.9X10-'
2.9X10-'

0.955 985 4
—6.88 X 10

5.76 X 10-'
1.009 X 10
1.459 X 10
3.69X 10-'
2.100X 10-'
1.524x 10-'

1.5 X10-4
4.3 X10-'
9.8 X 10-'
9.5 X 10-'
2.0X 10-'
1.1X10-'
9.8X10-'

3.484 560
—0.1069

5.247 X 10-'
3.40 X 10-'
1.92 X 10
8.98X10 '
9.74X10 '
4.49 X 10-'

3.5X 10-'
9.6X10-'
5.1X10-4
3.0X10-'
8.2X 10
5.3 X 10-4
5.2x 10-'

sentation of the hard-sphere fiuid ground-state energy.
That approach was to sum judiciously the known ap-
propriate low-density expansions to estimate this energy.
For v=2, the energy is known to order (kFc) and for

v=4 to order (kFc ) lnkFc. Such logarithmic terms do not
appear at this order for v=2 because of the Pauli princi-
ple. In Ref. 5 the following results were presented: For
v=2 the total energy is given by

EMc 1+0.699 968(kFc)

Nfi 1+0.523 153(kFc)—0. 169644(kFc ) —0. 188 781(kFc )
(5.3)

which has a second order pole at kFc =1.939, the predicted quantum random close packing or Bernal density for this
system. This form was obtained by forming Pade approximants ' to the square root of the reciprocal of
e'p(kFc ) = 10EM/(3Nf&F) in order to ensure a second order pole in E as suggested by the uncertainty principle.

For v=4, a generalized version of the Pade approximant is used to accommodate the logarithmic term. The represen-
tation

2EMc
10 Fc

1+4.03606(kFc )

1+3 505 54(kFc) —1.997 33(kFc) 0 7042—99.(krc) ln(kFc)
(5.4)

was adopted in Ref. 5, which again has a positive, real,
second-order pole as does (5.3). It is placed at
pqlpo ——0.173 where po

——V 2/c is the regular, classical,
close packed face-centered-cubic density. This value is
very close to p~/po ——0.174 found from (5.3) for the v=2
case, and is less than pz/po ——0.355 found' for a hard-
sphere Bose fluid which in turn is less than the empirical
classical value of pz/p0=0. 86.

The representation (5.4) agrees, as it should, with the
low density expansion for v=4

EMc
2

———„(kFc) [1+1.061 033(kFc }+0.556 610(kFc )~

+ 1.300620(kFc)

—1.408598(kFc) ln(kFc}+. . . ]

(5.5)

through the order (kFc) ln(kFc). It is not unique but was
selected as detailed in Ref. 5.

TABLE III. {Continued).

kFc= 1.25
Value Deviation

k~c= 1.50
Value Deviation

krc =2.00
Value Deviation

kFc =3.00
Value Deviation

8.086206 X 10-'
—1.200X 10-'

1.968 X 10-'
—6.11X 10

1.686 X 10-4
2.32 X 10-4
1.758 X 10-'

—2.10X 10-'

2.2X 10-'
7.9X10-'
2.3 X10-'
7.8X 10-'
1.3 X10-'
8.4X10-'
2.8X 10-'

1.475 170X10-'
—1.715X 10-'

2.190X 10
2.81 X 10

—7.98 X 10-4
5.05 X 10-'
2.178X10 '

—1.2X10-'

4.8X10-'
1.1X10-'
2.2X10-'
7.7X 10-'
4.6X10-'
1.4X10-
9.2X 10-'

3.901006X 10-'
—2.868 X 10-'

2.44X10 '
4.99X10-'

—2.61X 10-4
1.51 X 10-'
4.19X 10-'
1.51 X 10-'

5.9X10-'
2.0X 10-'
5.7X10 '
1.3 X10-'
1.5 X10-'
2.9X10-'
2.1X 10-'

1.574696
—5.367 X 10-'

2.73 X 10-'
8.21 X 10
4.75 X 10
4.4S X 10-'
1.275 X 10-'
1.002 X 10-'

3.4X10-'
1.2X10 4

2.1X10-'
2.0X10-4
6.6X 10
2.4X10-'
2.1X10-4

—3.01 X 10-4
—3.20 X 10-'
—1.8X10-'

4.7 X 10-' —2.25 X 10-4
8.2 X 10-' —1.111X 10-'
6.7X 10-' —8.86X 10-'

9.4X 10-' —1.09X 10-'
2.8 X 10-' —5.83 X 10-'
2.6X 10-' —5.72X10-'

2.8X 10
2.6X10-4
2.6X10-4
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kFc

TABLE IV. Monte Carlo calculations, v= l.

Deviation

0.25
0.50
0.75
1.00
1.25
1.50
2.00
3.00
3.00

—8.2X 10-"
—1.7 x10-'
—3.8x 10-'
—3.48 x10-'
—1.79 X 10
—6.23 x 10-'
—3.34x 10-'
—8.9X10-4
—8.8 X 10

4.1x 10-"
1.8X10-'
1.4x10-'
6.9x10-'
2.4X10-'
6.5 X 10-'
3.5 x10-'
3.2X10-'
3.2x10-'

TABLE V. I.-expansion coefficients.

kFc

0.25
0.50
0.75
1.00
1.25
1.50
2.00
3.00

p3

6.19X10'+3.5
2.818x 10'+9.6x 10-'
3.99+1.4x 10-'
9.05 x 10-'+3.6X10-'
2.70x10 '+3.5X10
1.43X10 '+2. 8x10
1.74x 10 +1.1 x 10
1.06x 10-'+1.2 x 10-'

P3

—3.74 x 10'k4. 1 x 10'
—1.57X10 +1.8
—1.82x 10'+1.8X 10
—2.80+3.3 X 10-'
—3.97x 10-'+5.3x 10-'
—3.7x10 '+2.9X10 '

2.95 x 10 +3.5 x 10
2.57x10 '+5.4X10-'

p4

—7.2 x 104+1.1 x 10'
9.7x 10~g8.5 x 10'
6.9x 10'+1.6x 10'
5.5+9.6x 10-'

—4.8x 10-'%1.6x 10-'
—2.2 x 10-'+1.1 x 10-'
—7.6x10-'+4.2x10-'

TABLE VI. Values of the initial coefficient qo in Eq. (5.2).

kFc

0.00
0.25
0.50
0.75
1.00
1.25
1.50
2.00
3.00

3.069 98
2.772 21
2.407 96
2.064 38
1.761 46
1.31163
1.282 85
0.941 29
0.526 97

v=4

1.772 45
1.61901
1.435 29
1.253 53
1.085 07
0.93495
0.804 26
0.595 93
0.338 96

TABLE VII. Q(LH) for v=2.

kFc

0.00
0.25
0.50
0.75
1.00
1.25
1.50

I. expansion

3.069 98
2.794+6x 10-'
2.49+1x 10
2.19+2x 10—2

1.86s5 x 10-'
1.5+2 x 10
1.3+2 X 10

Eq. (5.3)

3.069 98
2.802 91
2.461 77
2.095 33
1.71729
1.323 70
0.900 64

[I/3]

3.069 98
2.80442
2.479 65
2.16197
1.876 36
1.627 80
1.41429

TABLE VIII. Q(LH) for v=4.

kFc

0.00
0.25
0.50
0.75
1.00
1.25

I. expansion

1.77245
1.601+3x 10-'
1.36+3x10-'
1.08+1.5 x 10-'
0.5+0.5

Eq. (5.4)

1.772 45
1.639 88
1.494 58
1.31046
1.048 62
0.666 92

Eq. (5.5)

1.772 45
1.593 95
1.365 94
1.183 19
1.068 75
1.024 61
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We have summed directly the values of the series (5.2).
In addition, we have used the method of Pade approxi-
mants2' to sum this series. Since the series (5.2), as well as
(2.6), is most likely an asymptotic one, as a further refine-
ment, we have also tried the Fade-Borel method ' which
is adapted to this type of series. We found the Pade-Borel
method to be no more efficient than the standard Pade
method, probably because our series is rather short.

We summarize our conclusions for v=2 in Table VII.
From a review of the results of Table VII we see that

the I. expansion is quite accurate for small values of kFc
and deteriorates as kFc increases. If we choose c =0.4 F
and M to be the nucleon mass, then the error in the
ground-state energy given by the I. expansion would be
about +0.04 MeV at kt;c=0.50, about +0.4 MeV at
kFc=0.75, and about +4 MeV at kFc=1.00. Since
kFc=0.69 for neutron matter at the same density as nu-

clear matter, this accuracy should be sufficient to deal
with that problem. The accuracy of the I. expansion ap-
pears to us to be sufficient to reliably compute the
ground-state energy of hard-sphere fiuid systems which
are quite dilute compared to the Bernal density. In the
neutron matter problem, compared with the estimate of
the Bernal density quoted above, the density is less then
five percent of the Bernal density.

Some further conclusions can be drawn from Table VII.
The [1/3] Pade representations to e '/2 instead of the
[3/1] representation used in (5.3) gives a much better rep-
resentation over the whole range of values given in that
table and is our best summary of the low density data for
the v=2 hard-sphere fermion fluid. This representation
does not, however, predict a random close-packing densi-

ty. For a truly accurate representation of systems with

higher density, such as liquid H, more information from
other methods, e.g., the quantum Green's function Monte
Carlo (GFMC), will be required. Failing this information,
we conclude that the [1/3] approximant is the best sum-

mary currently available. The addition of high-density
GFMC data was quite successful for hard-sphere boson
fluids. ' '

We summarize our conclusions for v=4 in Table VIII.
From a review of the results of Table VIII we see that

the I. expansion is quite accurate for small values of kFc.
It has an error which increases to around 1 MeV for
kFc =0.50. Since kFc =0.54 for nuclear matter, this ac-
curacy should be just sufficient for that rather dilute
problem.

Some further conclusions are possible from the results
reported in Table VIII. The truncated series Eq. (5.5)
gives a much better representation in the low-density re-
gion than does that of (5.4), and is our best summary for
the low-density (kFc &0.6) region. Unfortunately this
representation does not predict a random close-packing
density and, in fact, is thermodynamically unstable for
kzc &1.27. As is evident from Table VIII, in order to
carry these results to higher densities, exact high-density
results, such as presumably could be obtained by GFMC
methods, for example, are required. In the absence of fur-
ther such information, we conclude that (5.5) is the best
available summary of the low-density energy of the v=4
hard-sphere fermion fiuid.
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