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Elastic collisions between light nuclei are investigated at medium energies using Glauber theory.
It is shown that a phase variation of the nucleon-nucleon elastic scattering amplitude leads to large
increases in the calculated differential cross sections, even away from the minima that ~ould occur
if there were no phase variation. The relatively small number of minima that occur with no phase
variation is explained in terms of the relative lack of strong destructive interference among multiple
scattering amplitudes due to their relatively slow decrease with increasing momentum transfer. The
introduction of a phase variation leads to even fewer minima. Calculations with no phase variation
are in marked disagreement with a He, a'He, a H and o 'H data at 7 GeV/c and a He data at
5.07 and 4.32 GeV/c. The presence of a phase variation leads to a substantial improvement.

I. INTRODUCTION

Glauber theory has been quite successful during the
past 20 years in describing hadron-nucleus elastic scatter-
ing at energies of approximately 500 MeV and higher.
The usefulness of the theory in describing nucleus-nucleus
("heavy-ion") elastic scattering at corresponding energies
of approximately 500 MeV/nucleon and higher has not
been demonstrated in detail so clearly. This is, in part,
due to the relative paucity of such medium-energy and
high-energy nucleus-nucleus elastic scattering measure-
ments. In addition, the extension of the theory to col-
lisions between composite systems is significantly more
complex and the computations are sufficiently more diffi-
cult and lengthy so that much fewer of these types of cal-
culations exist. '

Recently, a comprehensive set of measurements of elas-
tic scattering of a particles by four very light nuclei ( He,
He, H, and 'H) was made at an incident a-particle

momentum of 7 GeV/c over a range of squared
momentum-transfer values 0.07 (

~

t
~

&4 (GeV/c) . The
measured cross sections fell from the barn to the
nanobarn level over this range of t. Such data, in which
several different systems of nuclei are involved, with in-
tensities varying by so many orders of magnitude and over
such a large range of momentum transfers, are extremely
useful because they put enormous constraints on any
theory. It no longer suffices to show that a theory de-
scribes measurements of collisions between just one pair
of nuclei. Now it must describe measurements of col-
lisions between each of the four different pairs of nuclei,
and it must do so consistently. Whatever nucleon-nucleon
(NN) elastic-scattering amplitude is used for collisions be-
tween one pair of nuclei should be used for collisions be-
tween the other pairs as well. In addition, since these
measurements have gone out to rather large momentum
transfers, the calculated intensities will be much more sen-
sitive to the dynainical content of any theory.

The measurements for elastic scattering of a particles
by the four light nuclei were accompanied by theoretical

analyses for the a- H, a- He, and a- He cross sections.
These analyses were both by means of the so-called
"rigid-projectile approximation" and by means of the con-
ventional Glauber theory, with Gaussian densities for the
nuclear ground states. The rigid-projectile approximation
failed even qualitatively, except at very small momentum
transfers. In the Glauber-theory calculations presented,
the broad qualitative trends of the data were to some ex-
tent roughly described. Quantitatively, however, the re-
sults were in strong disagreement with the data, often be-
ing as much as an order of magnitude too low.

In the present analysis we calculate elastic scattering of
light nuclei by light nuclei in Glauber theory. We evalu-
ate the full multiple-scattering series (through sixteenth-
order multiple collisions for a- He scattering, for exam-
ple). Traditionally, calculations of nuclear scattering by
means of Glauber theory generally employ parametriza-
tions of the basic complex two-body hadron-nucleon (hN)
elastic scattering amplitudes that have a phase which has
a weak energy dependence but which is independent of the
scattering angle (or momentum transfer). The value of
the phase is taken to be —,

' ~—tan 'p= —,
' ~—p, where p is

the ratio of the real part to the imaginary part of the hN
forward elastic scattering amplitude. The actual phase of
the hN elastic scattering amplitude cannot generally be
determined from hN scattering measurements, except very
close to the forward direction where the Coulomb effects
are appreciable and result in interference between the
Coulomb and the strong-interaction hN amplitudes.
Away from the forward direction, however, hN measure-
ments determine the scattering amplitude (or amplitudes)
at best only to within an overall phase factor.

As we shall see, the variation of the phase of the hN
elastic scattering amplitude affects hadron-nucleus
scattering, and the variation of the phase of the NN elas-
tic scattering amplitude also effects nucleus-nucleus
scattering. Thus it may be possible to learn something
about the phase variation of basic hN amplitudes by
studying hadron-nucleus or nucleus-nucleus scattering.
As we will see, a phase variation in the NN scattering am-
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II. GLAUBER MULTIPLE-SCATTERING SERIES
FOR NUCLEUS-NUCLEUS COLLISIONS

The formal generalization of Glauber theory to
nucleus-nucleus collisions has been known for some
time. ' Significant difficulties occur, however, in the ap-
plication of the theory to specific nuclear systems. For
medium-weight or heavy nuclear systems, say for projec-
tile and target mass numbers greater than approximately
10, the full Glauber multiple scattering series is rather
unwieldy and contains too many terms to be of practical
use. For such cases the Glauber scattering amplitude can
be approximated by means of an optical phase shift func-
tion approach. Fourth-order calculations of the optical
phase shift function have led to accurate and useful re-
sults for describing such heavy-ion collisions.

If both the projectile and target are very light nuclei,
then it may be useful to employ the full Glauber multiple
scattering series to describe the collision. The scattering
amplitude operator for collisions between two nuclei (A
and B) with mass numbers A and B can be written as

A B
x 1 —ff + [1—r,,(b+s, —s,')], ,

i =1j=1

(2.1)

where k is the wave number of the incident nucleus, Aq is
the momentum transfer, and [s; J and (sj J are the projec-
tions of the bound nucleon coordinates of nuclei A and B
onto the plane of the impact parameter vector b. The
profile functions I,J(b) are related to the NN elastic
scattering amplitudes fJ(q) by

I,. (b)= f d qe 'q'~f~j(q),
2mik~

(2.2)

plitude brings Glauber theory into good agreement with

the nucleus-nucleus elastic scattering data previously men-

tioned, ' as well as with earlier aa data at the somewhat
lower incident inomenta of 4.31 and 5.07 GeV/c.

In Sec. II we describe the Glauber multiple-scattering
series for nucleus-nucleus collisions and present explicit
analytical expressions for the amplitudes for the case of
Gaussian NN amplitudes and nuclear ground state densi-
ties. In Sec. II we describe the features of the differential
cross sections for hadron-nucleus and nucleus-nucleus col-
lisions, both with and without a phase variation of the
NN amplitude. In Sec. IV we present applications to elas-
tic scattering of a particles by 4He, 3He, H, and 'H at
medium energies. In the Appendix we present the orbits„
lengths, and b, matrices (described in Sec. II) for A =4,
B =3 (a He scattering, for example), and A =B=4 (aa
scattering, for example).

where f„,1t e are the ground state wave functions of the
two nuclei. It is clear from Eqs. (2.1)—(2.3) that the
scattering amplitude will be a sum of 2" —1 terms, each
term containing between one and AB factors of I',J corre-
sponding to single scattering through AB-tuple scattering,

To secure estimates for the nucleus-nucleus scattering
amplitude, we need to know both the NN scattering am-
plitudes and the nuclear ground state wave functions. We
shall assume, for simplicity, that all NN amplitudes are
equal. This is approximately true at high energies. (This,
however, is a matter of convenience and not of necessity.
The generalization of our results to the case f~~&f„~ is
straightforward when the higher order corrections due to
noncommutativity are ignored, and leads to very small ef-
fects. The calculation of the higher order corrections due
to noncommutativity is much more tedious but is unlikely
to yield major differences in the results. ) We shall, fur-
ther, neglect spin effects and use the conventional high-
energy parametrization of fJ (q),

kg@
f;, (q) = (i +p)e (2.4)

a =P+iy, (2.5)

thereby introducing a simple phase variation of the NN
amplitude, linear in q (or in t = fi q ). The par—ameters
a, p, and P can all be obtained from NN scattering mea-
surements. The parameter y leads simply to an overall

2/2
phase factor e 're ~ which cannot be obtained directly
froin NN scattering measurements. It will be treated as a
free NN parameter; it will be fixed at any given velocity
of the incident nucleus and hence will be independent of
the nuclei involved in the collision, provided that the ki-
netic energies per nucleon are the same in all cases. Thus
the same value of y will be used in describing all nucleus-
nucleus measurements at a given kinetic energy per nu-
cleon.

One of us (V.F.) used such a phase variation many
years ago to describe hadron-deuteron scattering and also
suggested this phase variation for quark-quark amplitudes
in early hadron-hadron multiple-scattering analyses using
quark models. This parametrization does not affect the
NN differential cross section and P is still the measured
NN slope parameter.

With the NN scattering amplitude given by Eq. (2.4),
the NN profile function of Eq. (2.2) can be written as

where o is the NN total cross section, and p is the ratio of
the real part to the imaginary part of the NN forward
scattering amplitude.

Typically, a is taken to be purely real and therefore
equal to the slope parameter of the NN elastic scattering
differential cross section do/dt Howeve. r, we will allow
a to be complex, writing

where kz is the wave number of the incident nucleons.
The nucleus-nucleus elastic scattering amplitude is

given by the expectation value of the scattering amplitude
operator in the ground states of the two nuclei, i.e.,

(2.3)

I "(b)=ge &'/za

with

0g= (1 ip) . —
4+a

(2.6)

(2.7)
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A. Elastic scattering amplitudes for collisions
of projectiles and targets with mass numbers

greater than 2 ( A,S ~ 2)

with a corresponding expression for
~ gs( Is,' j )

~

. Here,
N„ is the normalization factor

For nuclei with mass numbers greater than 2, we shall,
for simplicity, consider ground state wave functions satis-
fying

2
1

A
(2.8a)

A A

I @~(Is j) I
'=&~5 —g s; (2.8) with a similar expression for Ns. Thus Eq. (2.3) for the

elastic scattering amplitude Fzs(q) becomes

F„,(q) =X„X,f Id s, j Id s,' j5 —g s; 5 —g sj exp —a„ps; as —g sj" F(q; I s; j, [sj j ) .
j l j

(2.9)

The effect of the 5 functions is to refer the coordinates Is; j and Isj j to the nuclear centers of mass. Consequently, these
coordinates are internal coordinates. (Note that the longitudinal, or z, coordinates have been integrated over and F is in-
dependent of these coordinates. }

To evaluate the multi-dimensional [2( A +8)-dimensional] integral in Eq. (2.9), it is useful to first evaluate the follow-
ing auxiliary integral:

Wzz(q) =M—z~ f I da; j I daj j exp —a& g a,' —as g aj' F(q; Iz; j, I sj j },
l j

(2.10)

where
'A '

2
'8

CKA Qg
~As = (2.11)

The integral P zs differs from F„s only in the normalization constant and in the absence of the 5 functions. But this
absence is significant, for now the coordinates Is; j, I&j j are no longer internal coordinates referred to the nuclear centers
of mass. They are, in fact, independent. But Eq. (2.10) is easier to evaluate directly than Eq. (2.9). Furthermore, the two
sets of coordinates Is; j, I sj j and Ia; j, Iej j are related by

I I
S;=8;—RA, Sj =8j—Rg,

where

R„=—g~;, Rs= —g~j .
1 1

(2.12)

(2.13)

It then follows that

F(q'I& j I&'j)=e

With the transformation of variables given by Eq. (2.12), we obtain, for P „s(q), the expression

P gs(q)=~ps f dRgdRsexp( —Aa/R/ iq R„——BasZs+iq Rs)

(2.14)

X Sl- Sj —
Sl Sj

l j

XF(q, Is; j, Is' j }exp —a„gs —as' gsj 2 (2.15)

1
=%A Ngexp —q 2+

43aA 49~~ f Ids; j tdsj j5 —g s, 5 —g s,
'1

j

l
2 F~a(q)

Xexp —a„gs; —as gs' F(q; js,. j, Is'. j )

j
(2.16)

(2.17)
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Therefore, we obtain the result

1 1
Fz//(q)=exp q 2 +

4A aA 48aB
(2.18)

which allo~s us to obtain the scattering amplitude I'AB by
evaluating P AB instead.

The complete expansion of F„// (or a „3) is exceedingly
lengthy in general, there being 2" —1 terms. Of course,
not all terms are different, so the classification of the vari-
ous terms becomes important. These terms can be
grouped into "orbits. " An orbit is a set of terms in which
each term gives an equal contribution to the scattering

I

amplitude. It characterizes the particular corresponding
multiple collision. The "length" of an orbit is the number
of terms contained in that orbit. With the aid of permuta-
tion group theory these orbits and their lengths can be
found and the scattering amplitude can be obtained
analytically. '

Each orbit belongs to a particular order of multiple
scattering, p, which ranges from 1 to AB. Let A,z be an
index used to number the orbits of a given order p. Then
the orbits will be denoted by the order p and the index 1(,&,
with the notation (p, A,„). The length of an orbit (i.e., the
number of expansion terms in the orbit) will be denoted by
T(jj„,A,„). The elastic scattering amplitude F„// is then
gIven by

Fz//(q)= ——,1k exp q 2 +], 2 1 1

4aa', 4aaB2

A [b,(j/, ,Aq)]
M"q// g g ( g)"T(1—/, , l&)

"
expI q /4S—[b(j/, , A,&)]I,S b(p, 1L,„)

(2.19)

P

B
T, = 2a 2aa'„+—g 6,jj=l

cj(8)=—2a// (2.20a)

A A

ajj(B)=a//+ g—6;j/2a —Q T~h; (2.20b)

A

ajk(8) = g 2T;5/&b„k(j~k) . . (2.20c)

Then,

where A, S, and b(j/„A,„) are now to be described. Each
orbit (1/, , A,„) is represented by an A &&8 b, matrix,
6(j/, A&}, whose ljth element is either 0 or 1 depending on
whether or not I,j appears in the expansion term corre-
sponding to the orbit ()u, A&). [In fact, there are T(1/, A,„)
such b, matrices for each orbit, all related by the permuta-
tion operators of SzS//. Their contributions to the
scattering amplitudes are all equal. ] The 1th nucleon of
the incident nucleus collides with the jth nucleon of the
target nucleus if 6;j=1; if 5;/=0, there is no such col-
lision. To obtain A and S, we make the following defini-
tions:

B. Elastic scattering amplitude for nucleus-proton
and nucleus-deuteron collisions

For the case 8 =1 the procedure described in Sec. II
leads to the well-known" result

(2.23)

where

2aAa2 2

6= g, W=
2aAa + 1 2aAa + 1

(2.24)

p 2

Sd(q)= ga e (2.25)

The amplitude contains A terms, each corresponding to a
particular order of multiple collision.

For the case 8 =2 (the deuteron) we shall use a wave
function that leads to a form factor given by a sum of
Gaussians,

c/ (1)
S[~]=Baa—g

//

(2.21a)

(2.21b)

The scattering amplitude for deuteron-nucleus elastic
scattering can be written in a somewhat different way, '

ik I d'b e"'&/1/d/1/g
~

I d (b s Is'I )
~ lpdf ), '

(2.26}

where the ajk's and cj's are obtained by the recurrence re-
lations

ajk (1 1) ajar(1)+( 2 4 5j/& )aj/(1)ap/(1)/a//(1)

where

I, (b;s; [ s; j ) = 1 —P [ I —I'(b+ —,
'

s —s, ) —I (b——,
' s —s, )

j=l

cj(1—1)=cj (1)+a//(1)c/(1)/2a//(1) .

(2.22a)

(2.22b)

+ I (b+ —,s —sj )I (b ——,
'

s —sj )] .

In the Appendix we present the orbits, lengths, and 5
matrices for the cases (A =4, 8 =3) and (A =4, 8 =4),
corresponding, for example, to a He and aa scattering.

(2.27}

After substituting Eq. (2.27) into Eq. (2.26) for Fdz, we
obtain
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2,. 0 . 0 k 0 i!j!k!(A i——j—k)!

1+4Pmh2
X

2 exp —g
tn hi +4prnhlh2 penh 3 4(hi+4p~hih2 p—

~hi�)

(2.28)

where

cr(1 i—p) [rr(1 ip—)] i 1

2n(2a+R ) 16' a(a+R ) a„
(2.29a)

h i(i,j,k) =(A i)t—+(A i —j——k)(1 R it—)/R, ,

(2.29b)

hi(i J k) = —,[(3 i)t +—(3 i —j——k)(1+R it)/R, ],
(2.29c)

hg(i j,k)= —(3 i —2j )t+(—A i —j——k)(1 R t )/R—, ,

(2.29d)

with

l
, R, =2a+R' —R'g.

2a+R 2 (2.30)

III. FEATURES OF DIFFERENTIAL
CROSS SECTIONS

What are some features that can be expected for the
differential cross section. The simplest case, of course, is
8 =1, corresponding to nucleus-hydrogen scattering or,
equivalently, hadron-nucleus scattering. For real a
(y =0) the features are well known, although explanations
given are not all quite correct. As can be seen from Eq.
(2.23), there are A orders of multiple scattering, each with
only one orbit (indicating there is only one type of pth-
order scattering, the solitary nucleon colliding with p nu-
clear nucleons). Typically, in the forward direction the
magnitudes of the multiple-scattering terms decrease rap-
idly with increasing order (p, ), but the rates of decrease of
the inagnitudes, with respect to q, de:rease with increas-
ing order. Since typically

~ p ~
&& I, successive amplitudes

are almost 180' out of phase with each other and these
phase differences between successive amplitudes are equal
and constant (independent of q). These conditions are
conducive to strong destructive interference and lead to a
diffraction pattern exhibiting many minima, A —1 mini-
ma when p=O. The standard lore has been that the ap-
pearance of the nth minimum is the results of the destruc-
tive interference between the p=n and the p=n +1 or-
bits, i.e., between the multiple scattering amplitudes of or-
ders n and n+1. This not quite the case when A ~~ j.

and typical NN parameters are used. For example, for
A =16 and typical medium energy NN values for o, a,
and p, in general, near the minima, there are a number of
important amplitudes. Near the first minimum, for ex-
ample, four amplitudes are comparable, with the double-
and triple-scattering amplitudes being the largest, and the

single- and quadruple-scattering amplitudes being impor-
tant as well. Only at extremely large momentum transfers
[typically, —t &30 (GeV/c) ] are the number of impor-
tant amplitudes as few as 2, for in this region the highest-
order (A) amplitude dominates and all amplitudes of or-
der lower than A —1 are comparatively small.

What would be the effect of allowing a in Eq. (2.4) to
have an imaginary part? The NN amplitude would then
have a q-dependent phase. This leads to a smaller
modulus for all orders of scattering amplitudes, except for
the single-scattering amplitude whose modulus is unaf-
fected. The reason for this is that the pth-order multiple
scattering amplitude (p, &2) essentially arises from p, —1

convolutions of NN amplitudes. If the phases of these
amplitudes vary, the convolutions will be smaller. Fur-
thermore, since the higher order multiple scattering am-
plitudes arise from more convolutions of NN amplitudes,
the decrease of the moduli due to the phase variation will
be larger the greater the order (p) of multiple scattering.
This is easily seen explicitly in the special case 8=1
where, from Eq. (2.23), we observe that the p, th order am-
plitude will now be multiplied by an additional factor
whose modulus is

I 1+[ /(P+ ~ -2)]2I —(P —i) /2

which is less than unity for p) 2 and decreases with in-

creasing p.
In addition, the resulting phase for the pth order

scattering amplitude itself will now vary as
exp( i yq /2p )—Conseque. ntly, successive amplitudes
will no longer be so nearly 180' out of phase with each
other. Furthermore, the phase differences between succes-
sive amplitudes will no longer be equal or constant (in-
dependent of q). These conditions are not so conducive to
the extremely strong destructive interference necessary to
produce minima.

The two effects of the phase variation of the NN ampli-
tudes, namely the smaller moduli of the individual multi-
ple scattering amplitudes and changes in their phases, are
essentially competing effects. In the region where in-
terference is important, i.e., where several amplitudes are
comparable, the latter effect is more significant. This is,
by far, the most interesting and experimentally accessible
region. In this region, the sharp minima which occur
when there is no phase variation now become less sharp or
vanish completely, often leaving, at most, only shoulders
as vestiges of the original minima at the larger momen-
tum transfers. In addition, since the strong destructive in-
terference that appeared throughout this region when y
was zero is now greatly weakened, the cross section is
larger throughout this region (even though the individual
multiple scattering amplitudes are smaller in modulus). It
is only at extremely large momentum transfers, past the
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(A —1)th order minimum, where only the Ath order am-

plitude is important, that the decrease in the moduli of
the multiple scattering amplitudes is more significant,
since there the first A —1 amplitudes are too small to in-
terfere with the Ath order amplitude. In that region the
intensity is now smaller than for the case y=0. From a
practical point of view, however, in that region the
momentum transfer may be unphysically large or the
cross sections may be too small to be measured.

The situation for nucleus-nucleus (A,B &2) scattering
is significantly more complex, even for light nuclei.
There are very many orbits, in general, many more than
the highest order of multiple collision, p=AB. (For aa
collisions, for example, AB = 16, but there are 19I orbits ).
There are new kinds of multiple collisions, not present in
hadron-nucleus scattering. For example, a double col-
lision can now involve two nucleons in nucleus A and two
nucleons in nucleus 8, each nucleon in A interacting with
a single different nucleon in B. This is quite different
from a double collision in which, for example, one nu-

cleon in A interacts with two nucleons in 8, as would
occur in hadron-nucleus collisions (with A =1). These
new kinds of multiple collisions were first described for
deuteron-deuteron collisions ' and for n ~ scattering in
the quark model. ' In general, they and their generaliza-
tions when A, B &2 are much more important than the
original type of multiple collisions, and they lead to dif-
ferential cross sections with much different angular
dependence, much greater intensities, and much slower
rates of decrease with increasing q.

As a consequence of the resulting slower decrease of the
individual multiple scattering amplitudes, very many of
these multiple scattering amplitudes will be important at
momentum transfers away from the forward direction,
and for each multiple scattering amplitude several orbits
can be important. If typical NN scattering amplitudes are
used, such a plethora of significant orbits leads to
nucleus-nucleus angular distributions with only a few
minima, as it now becomes more difficult to achieve the
extremely delicate cancellations among the complex am-
plitudes that are necessary for the appearance of the mini-
ma. (That is not to say that there is not any destructive
interference. There is, but it is not complete enough to re-
sult in minima. ) However, if the NN slope parameter (P)
used in the calculation is larger (as it, in fact, is at very
high energies), then the NN amplitude decreases more
rapidly with q, and this leads to a more rapid decrease
for each orbit. As a result, at any given momentum
transfer there will not be as many important orbits (con-
tributions) as when the slope parameter was smaller. Con-
sequently, the possibility of complete destructive interfer-
ence will be greatly enhanced and many more minima will

appear. For example, in aa scattering with o.=44 mb
and p =y =0, we find that with a slope parameter P= 1

(GeV/c) (which is much smaller than the slope in typi-
cal NN measurements), the calculated differential cross
section do/dt exhibits only one minimum [occurring be-

tween t =0 and —0. 1 (GeV/e) ]. But for 2&P&10
(GeV/c) it exhibits three mimima [occurring at
—t &1.2 (GeV/c) ], and for P=15 (GeV/c) or 20
(GeV/c) it exhibits nine minima [occurring at

0 & —t & 22 (GeV/c) ]. In fact, if P is made large enough

[P)70 (GeV/c) ], fifteen (i.e., AB —1) minima appear
[occurring at 0& t &—23 (GeV/c) ]. Thus the number of
minima in nucleus-nucleus elastic scattering depends sig-
nificantly on the NN slope parameter, whereas the num-

ber of minima in hadron-nucleus elastic scattering does
not.

We may ask why there are no more than AB —1 (e.g. ,
15 for aa collisions) minima, since there are so many
more (e.g., 191 for aa collisions) orbits, each with its own
modulus and phase. The main reason is that when P (the
slope parameter) is relatively small, there are many impor-
tant orbits and complete destructive interference is diffi-
cult to achieve, so that there are even fewer than AB —1

minima. But when P is large, the moduli of the various
orbit terms decrease so rapidly that, away from the for-
ward direction, for each order of multiple scattering only
one or two orbits are significant and we have a situation
akin to hadron-nucleus scattering.

Of course, at presently accessible energies, the NN am-

plitudes do not increase so rapidly. In addition, if they
did the nucleus-nucleus cross sections would be too small
to measure past the first few minima. And also, the
momentum transfer for some of the higher order minima
would be unphysically large if the incident energies were
not very high.

Our analysis with y=0 indicates that at medium ener-

gies [where 2&P(10 (GeV/c) ], the differential cross
section for aa collisions will exhibit na more than three
minima for —t & 5 (GeV/c), all occurring at —t & 1—2
(GeV/c) .

What happens when we introduce a phase variation
(y&0). To some extent, the effects are similar to the case
B =1 (hadron-nucleus collisions). The minima become
shallower or barely visible or only a shoulder is present or
there is only a very small or even no vestige of some of
the higher-order minima. However, because of the greatly
increased complexity of the phase relations among the
various orbits, it is possible for a new kind of minimum at
much larger momentum transfers, say —t & 5 (GeV/c)2,
to appear. In addition, the absence or weakening of the
destructive interference when y&0 again leads to larger
cross sections. These increases in the cross section can be

extremely large, at times as much as an order of magni-
tude. Eventually, however, the decrease of the individual
multiple scattering contributions due to y&0 becomes the
dominant effect and at very large momentum transfers
the cross sation becomes smaller than for the case y =0.
This affect is much greater than for hadron-nucleus col-
lisions (B= 1) and can be very large, capable of decreasing
the cross section by orders of magnitude at extremely large
momentum transfers. Again, however, from a practical
point of view, in that region the momentum transfers may
be unphysically large or the cross sections may be too
small to be measured.

IV. APPLICATIONS

In this section we present our results for a He, a He,
a H, and a'H elastic scattering for an incident a particle
momentum of 7 GeV/c and for a He elastic scattering at
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TABLE I. Compilation of nucleon-nucleon parameters used in this analysis.

~]ab
(GeV/c)

1.75
1.27
1.08

44.0
39.9
32.3

Refs.

15
15,20—24

15,20, 23, 24, 29

(GeV/c) '

5.6
2.92
1.86

Refs.

16, 17
25—28

25, 27, 28

—0.23
—0.20
—0.02

Refs.

18, 19
18, 19

19, 30, 31
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~ 1 I I

1
f ~ ~ I

I
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0
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-1 (GeV/c)

FIG. 1. Differential cross sections for elastic scattering of a
particles by ~He, 'He, 2H, and 'H, at 7 GeV/c [data of Satta
et al. (Ref 2)]. The d.ashed curve is the constant phase result
(y=0). The dotted and solid curves are calculated with phase
variations in the NN amplitude [y=10 and —15 (GeV/c}
respectively, in Eq. (2.5)].

incident momenta of 4.32 and 5.07 GeV/c. The NN in-

put data are taken to be the mean values of the corre-
sponding pp and pn data and are given in Table I along
with the references' ' from which they were obtained.
For the deuteron ground state we have used a three-term
form factor given by Eq. (2.25} with the parameters
given by (ai, a2, a3)=(0.34,0.58,0.08) and (Pi,Pz P3)
=(141.5,26. 1, 15.5) (GeV/c), with q in GeV/c. For
the ground states of He and He we use Eq. (2.8) with

a3 —0.3261 fm z and a4 ——0.5541 fm, which corre-
spond to He and He rms radii of 1.960 and 1.675 fm
after corrections for center-of-mass recoil and finite-
proton-size effects (we have usedi (r~ ) =0.7754 fm2}.

In Fig. 1 we compare our results for a He, a He, a H,
and a'H elastic scattering at 7 GeV/c with the data of
Satta et al.2 The results with no phase variation (y=0,
dashed curves) exhibit three (two for a'H scattering) rath-
er well-defined minima. The data, however, do not seem
to indicate that many minima. Furthermore, the data

points generally are much higher than the theoretical re-
sults, often by an order of magnitude or more. When a
phase variation is introduced (y&0, solid and dotted
curves), the minima became shallower or completely
disappear and the cross sections are substantially in-
creased. If p were identically zero, replacing y by —y
would not alter the cross section. For small nonzero
values of p, two values of y, one greater than p and one
less than p, lead to somewhat similar angular distribu-
tions. We see that the values y =10 and —15 (GeV/c)
lead to cross sections which are very much improved com-
pared with the case, y =0, of no phase variation. We see
the two fold effect of the phase variation, namely making
the minima shallow or eliminating them and significantly
increasing the cross section, sometimes by more than an
order of magnitude, even far from any minima.

In discussing the minima in ad scattering one may ask
whether the deuteron D state is important, as it is in the
case of pd scattering. In pd scattering, the minimum (or
shoulder) occurs near t =0.32—(GeV/c), where single
and double scattering amplitudes are comparable. The
single scattering amplitude depends on the form factors at
—t/4=0. 08 (GeV/c) . There the quadrupole form fac-
tor S2 is comparable to the isotropic component $0 (to
within about a factor of 2), and so the D state is impor-
tant in the region of the minimum. In the case of ad
scattering, the first minimum (or shoulder) occurs near
—t =0.13 (GeV/c), so —t/4=0. 03 (GeV/c) . At such
a small value of —t the quadrupole form factor Si is
much smaller than So and hence has no effect on the
minimum. At the other niinima (or shoulders) in ad col-
lisions, the single scattering amplitude is negligibly small
and hence the deuteron D state is of no significance.

In Fig. 2 we compare our results for aa elastic scatter-
ing at 4.32 and 5.07 GeV/c with the data of Berger et al.
Again, the phase variation leads to very much improved
results. At 5.07 GeV/c the values of y are 7.5 and —13.0
(GeV/c) and at 4.32 GeV/c the values are 11.5 and
—12.0 (GeV/c) . The negative values are not very dif-
ferent from what would be obtained from phase shift
analysis. For example, the spin- and isospin-averaged NN
amplitude at 1.11 GeV/c (corresponding to an a-particle
momentum of 4.44 GeV/c) yields for y a value of
—13.2 (GeV/c)

We have not, in any quantitative manner, addressed the
question of what effect intermediate b, isobar states have
on the differential cross sections, particularly near the
minima or shoulders. Calculations exist for nucleon-
nucleus collisions. Unfortunately, different parameteriza-
tions for the input needed in such calculations lead to
rather different results. At very high energies the effect
is sometimes significant and sometimes very small. At
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FIG. 2. Differential cross sections for elastic scattering of a
particles by "He, at 5.07, and 4.32 GeV/c [data of Berger et al.
(Ref. 4)]. The dashed curve is the constant phase result (y =0).
The dotted anbd solid curves are calculated with phase varia-
tions in the NN amplitude [y=7.5 and —13 (GeV/c) i at 5.07
GeV/c and y = 11.5 and —12 (GeV/c) ' at 4.32 GeV/c].

lower energies, such as for 0.8—1.0 GeV incident nu-
cleons, the effect on the differential cross section appears
to be quite small, except near deep minima, which be-
come somewhat less deep. Such an effect would improve
our ap results for negative y (see our Fig. 1), which are
presently too low at the first minimum and at the next
shoulder.

The question of intermediate b, isobar states in ad,
a He, and a He (and, in general, AB) collisions is more
complex. The new kinds of multiple colhsions possible in
nucleus-nucleus collisions, described earlier, do not allow
contributions from inelastic intermediate states since no
nucleon is involved more than once in such collisions.
Since these kinds of multiple collisions are often more im-
portant than the original type of multiple collisions, it is
perhaps not unlikely that the effects of &5, isobar states are
not so significant in nucleus-nucleus elastic scattering as
they appear to be in nucleon-nucleus elastic scattering.
(As an example of the relative importance of the new kind
of multiple collisions, in aa scattering at 7 GeV/c, near
the first minimum [—t=0 1(GeV/c) ]., the modulus of
the amplitude for the new kind of double collision is 50%
larger than that for the original kind of double collision. )
In addition, the first minimum in nucleus-nucleus col-
lisions will occur at a smaller momentum transfer than in
nucleon-nucleus collisions. This will tend to suppress the
excitation to inelastic intermediate states. [For example,
the first minimum in ap collisions occurs near —t =0.24
(GeV/c), whereas in a He and a He collisions they occur
near —t=0.10 (GeV/c) and in ad collisions it occurs

near —t =0.13 (GeV/c) .] Nevertheless, the effect of in-

elastic intermediate states in nucleus-nucleus collisions is
an open question and a reliable study of this question is
needed.

Although the dependence of the phase of the NN am-
plitude on q may not, in fact, be as simple as that as-
sumed (i.e., linear) in Eqs. (2.4) and (2.5), the marked im-

provement in these light-ion results strongly indicates the
presence of some significant phase variation. Further-
more, while it is also true that the NN phase we obtain
varies by a few cycles between the forward direction and
—t =4 (GeV/c), the modulus of the NN amplitude given

by Eq. (2.4) varies by as much as 5 orders of magnitude
over the same range of momentum transfer. With such a
large modulus variation it is not unreasonable to expect a
large phase variation. In addition, at values of t where
nth orde-r multiple scattering dominates, the intensity
often depends on the NN amplitude at t/n . For exam-

ple, in ap collisions near —t = 1.8 (GeV/c) the dominant
amplitude is the quadruple-scattering amplitude which
depends mainly on the NN amplitudes at the much small-
er value —t=0 1(Ge.V/c) [where the phase has changed
by less than ,'n for y—=—15 (GeV/c) ].

We have seen that by allowing the NN elastic scattering
amplitude to have a phase which varies with momentum
transfer, the resulting calculated differential cross sections
for elastic scattering of a particles by light nuclei at medi-
um energies are markedly improved. Furthermore, even if
there is no phase variation the large number (A —1) of
minima possible in hadron-nucleus elastic scattering is not
generalized to AB —1 in nucleus-nucleus elastic scattering
at medium energies, even though the nucleus-nucleus am-
plitude contains AB multiple scattering amplitudes. For
example, with typical NN values for o and P we find only
three (not 15) minima for aa scattering (and even fewer
when y&0; however, when P becomes very large, the
number of minima does increase to AB —1).

The effect of the phase variation is to eliininate minima
or to make them shallower and to generally increase cross
sections significantly even at momentum transfers where
no minima originally occurred. At extremely large
momentum transfers, physically realizable only at very
high energies, the phase variation can cause the cross sec-
tions to decrease much below their values with no phase
variation.
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APPENDIX

In Table II we present the orbits, lengths, and 6 ma-
trices for A =4, B =3. In the first two columns we give

p (the order of multiple scattering) and A& (the index used
to number the orbit of order p). The third column is
T(p, A,„), the length of the orbit. The 12-digit binary
number in the fourth column gives the &5 matrix, the first



VICTOR FRANCO AND YICHUN YIN 34

TABLE II. Orbits, lengths, and 6 matrices for A =4, 8 =3 scattering.

kp

1

1

2
3
1

2
3
4
5

6
1

2
3

5

6
7
8

9
10
11

1

2
3

5

12
18
12
36
12
72
72
4

24
36

3
24
72
18
18
72
36
36
36

144
36
24
72
72
72
72

3(p, A,„)
I 00000000
11 N00000000
10001000000D
100001000000
111 OOOD0000

110000100000
11001000COOO

100010001000
100001000010
100010000100
1111000C0000
111000010000
111010000000
110000110000
110011000000
110010100000
110010000100
110010001000
110000100001
110010000010
011010001000
I I 11100000CO
111010010000
111011000000
111010000100
111010000001

At@

6

8

9
10
11
12
13

1

2
3

5

6
7
8

9
10
11
12
13
14
15
16
17

12
36

144
36
36
72
72
72
36
36
12
72

144
72
72

144
24
72
72
18
6

24
12
36
72

h(p, A,„)
011110001000
111010001000
110010100100
110011000010
110011001000
110010101000
110010100001
110010000011
111111000000
111011010000
111011100000
111011000010
111010010100
111011000001
111010010001
11101100lmm
110010100110
110011001010
110010100101
1100)1000011
110011001100
110010101001
111110001000
111110000100
111010011000

TABLE III. Orbits, 1engths, and b, matrices for A =8 =4 scattering.

p A,~ T

1 1 16
2 1 48
2 2 72
3 1 32
3 2 144
3 3 288
3 4 96
4 1 8
4 2 288
4 3 36
4 4 96
4 5 288
4 6 72
4 7 576
4 8 144
4 9 288
4 10 24
5 1 96
5 2 288
S 3 288

4 144
5 5 576
5 6 576
5 7 96
5 8 144
5 9 576
5 10 576
5 11 576

5(P,Aq)

1

11
1000001 00000000111~
11001 00000000
1100001 00000COO

1000010000100000
1111 00000000
11101 00000000
I ICO I I 00000000
I 11OOOD I00000000
IIODIDI CODCDNO

I 10000110000COOO

1100100000100000
1100001000100000
1100001000010000
1000010000100001
11111 00000000
111011 00000000
I I I0 I OD IDDDC0000

1110100010000000
1110001000010000
1110100001000000
1110000100010000
1100110000100000
1100011000100000
1100011000010000
1100001100100000

p A,~ T h(p, A&)

6 8 576 1110110000010000
6 9 1152 1110100101000000
6 10 576 11101001100000CO
6 11 576 1110100100010000
6 12 144 1110100010000001
6 13 192 1110100001000010
6 14 576 1110100001000001
6 15 288 1110100000010001
6 16 16 0 j 11100010001000
6 17 144 1100110000100010
6 18 72 1100110000100001
6 19 576 1100101001000010
6 20 576 1100101001000001
6 21 288 1100101000010001
6 22 288 1100100000110010
6 23 96 1100101001100000
7 I 86 111111100000000
7 2 576 1111110000100000
7 3 576 111111001000000D
7 4 192 llll100001000010
7 5 16 1111100010001000
7 6 288 1111100010000100
7 7 288 1110111010000000
7 8 576 1110110110000000
7 9 S76 1110110100100000
7 10 576 1110100010010001
7 11 96 1110111000010000
7 12 288 1110101011000000

T h(p, A,„)
22 576 1110100110000100
23 144 Q111110010001000
24 144 1100110000110010
25 576 1100101001010010
26 96 1100101001100001

I 12 1111111100000000
2 576 11111110100000CO
3 192 lllll110000)0000
4 144 1111110011000000
5 144 1111110000110000
6 576 1111110010100000
7 288 1111110010000100
8 144 1111110010001000
9 1152 1111110010000010

10 288 1111110000100001
11 288 1111110000100010
12 144 1110111011000000
13 288 1110110111000000
14 11S2 1110110110010000
15 288 1110110100110000
16 288 lll0111010010000
17 288 1110111010000001
18 48 1110111000010001
19 144 1110110110000100
20 288 lQ00111001110001
21 1152 1110110110000010
22 288 1110110100010001
23 S76 1110110000110001
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b{p,A,„)

TABLE III. (Continued)

h(p, k„} b (p, A.„)
12
13

1

2
3

5

6
7

144
288
144
96

288
48

144
576
576

1100001000100001
1100100000100001
111111 000000CO
1 11110001C000000
1111100001000000
1110111 10000000
1 110110100000000
1 110110010000000
1110110000100000

13
14
15
16
17
18
19
20
21

1152 1110110010010000
576 1110110000110000
576 1110100101010000
288 1110100110010000
576 1110110000100001
288 1110110000010001
576 1110100101000010

1152 0111110010000010
576 1110110010000001

8 24
8 25
8 26
8 27
8 28
8 29
8 30
8 31
8 32

288 1110110010100001
1152 1110110010010001
576 1110110010010010
576 1110100110000110
288 0111110010101000
576 1110100010010011
576 0111110010100001

72 1100101001010011
18 1100110000110011

four digits being the elements b&J, j=1,2, 3,4, the next
four being b2J, and the last four being b,3J. The sequence

p, A&, T, and b, (p, A&) is repeated in the next four
columns.

The b, matrix b, (AB, I) is b„~=1. The orbits, lengths,
and 5 matrices for p ~ AB/2 can be obtained from those
of lower orders by symmetry. To obtain the results for
der )u&AB/2, we use the results for order p'=AB —tu

and interchange the 0's and 1's of b, (p, ', A.„). [The indices
A,„and A,„are the same, and the lengths T(p, A,„) and
T(p, ', A,„)are equal. ]

In Table III we present the orbits, lengths, and 5 ma-
trices for A =B=4.

Although these results can be obtained "by hand, " i.e.,
by enumerating and investigating all the possible corn-
binations of collisions, such a procedure is extremely tedi-
ous and the possibility of making an error in the counting
is not insignificant. A quicker and more reliable pro-
cedure is to program a computer to do the counting,
which is the procedure we have used. As can be seen,
there are 86 different orbits for the case A =4, B =3, and
there are 191 different orbits for the case A =4, B =4.
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