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We perform detailed theoretical and empirical investigations of the real part of the optical-model

potential for protons with energy 9 &E (12 MeV and targets with mass number 44(. A (72, in or-

der to clarify earlier claims that in this domain the potential depth presents a peculiar dependence

upon the target mass number A, asymmetry parameter a, and isospin T. We compile several radial

moments of the empirical potentials and compare them with those predicted by a nuclear matter ap-

proach based on Reid's hard core nucleon-nucleon interaction. We find that this theoretical model

is in good agreement with the empirica1 properties. In particular, the theoretical potential depends

upon T for fixed a. This is due to the dependence upon A of its isoscalar component. The calculat-

ed potential is found to have approximately a %'oods-Saxon shape with a fixed geometry, except in

the surface tail where the theoretical model is, in any case, unreliable.

I. INTRODUCTION

ro ——1.285 fm, a =0.65 fm,

U=40. 5+0.132 MeV .

(1.3)

(1.4)

Since we shall only deal with the real part of the optical-
model potential, we henceforth refer to V(r) as the optical
potential. Equation (1.4) implies that the empirical depths
approximately fall on a family of straight lines when plot-
ted versus the asymmetry parameter,

a=(N —Z)/A . (1.5)

Each of these straight lines is associated with a specific
value of the isospin,

T =(X—Z)/2 . (1.6)

These straight lines correspond to a linear decrease of U
with increasing a, for fixed T. This will be illustrated by
Fig. 17 below. As emphasized by Percy et aI. , ' this
finding is at variance with the "expected" isospin depen-
dence of the optical potential, according to which U
would increase linearly with increasing a, and would
furthermore be independent of T.

Percy et al. ' have analyzed the elastic scattering of 11
MeV protons by isotopes in the mass range 48& 3 &72.
They adopted a Woods-Saxon shape for the real part V(r)
of the optical potential,

V(r)=
—U (1.1)

1+exp[(r —R ) /a ]
'

(1.2)

They assumed that the geometry is "fixed, " i.e., that ro
and a are independent of A, and found that the potential
depth U is then a linear function of A. This will be ex-
hibited in Fig. 16 below. The empirical values found by
Percy et al. 2 are

The dependence of U upon T for fixed a has recently
been referred to as a "fine structure" by Hodgson, who
had previously emphasized that the fine structure invali-

dates the usual method of determining the symmetry
component of the real part of the optical potential, and
that its existence hinges upon the assumption that the po-
tential shape has a "fixed geometry. " A theoretical guide
is therefore needed for determining the radial shape of the
optical potential. Interest in this problem has recently
been renewed by the observation that theoretical investi-
gations of the radial shape of the optical potential make
one expect that it does not have a "fixed geometry. "
These investigations are based on a nuclear matter ap-
proach to the optical potential.

The main purpose of the present paper is threefold.
Firstly, we perform (Sec. II) an extended compilation of
the radial moments of the empirical proton optical poten-
tials in the domain 44& A &72. Secondly, we investigate
(Sec. III) to what extent the main features of these mo-
ments are accounted for by the nuclear matter approach.
Thirdly, we show (Sec. IV) that the calculated potentials
approximately have a Woods-Saxon shape with a fixed
geometry, which, however, significantly differs from that
of Percy et al.

II. MAIN PROPERTIES OF THE EMPIRICAL
OPTICAL POTENTIALS

Since the original measurements and analyses of Refs. 1

and 2, many other measurements and optical-model fits
have been performed in the same range of mass numbers,
for protons with energy close to 11 MeV. Here we use the
compilation of Ref. 6, from which we only retain the opti-
cal potentials which yield "very good, " "good," or "satis-
factory" fits to the experimental data, for protons with

energy 9(E&12 MeV and targets with mass number
44&3 (.72. Our compilation involves 83 optical poten-
tials, among which 18 are the potentials of the original
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analysis by Percy et al. So as not to blur the figures too
much, we plot the average of the empirical values associ-
ated with a given isotope, and represent the amount of
scatter of these empirical values by a vertical "error bar"
whose size is equal to 2 times the standard deviation from
the mean. In order to facilitate the comparison between
these averages and the values originally obtained in Refs.
1 and 2, the latter are also shown and represented by
crosses.

[r ]=J/A = — f V(r)r dr,
A

(2.1)

which is believed to be a quantity that the elastic scatter-
ing data can determine rather accurately. '

The empirical values of J/A are plotted versus A in
Fig. 1. In the domain 44 & A & 72, they are approximate-
ly independent of A (Ein MeV):

J(E =11)/A =497+10 MeVfmi . (2.2a)

In order to investigate whether this property also holds
in another energy domain for the range of values of A
considered here, we compiled the empirical values of J/A
for protons with energy 29.5 &E & 30.5 MeV. The results

560
PE 76 2

A. Volume integral per nucleon

The global attractiveness of the optical potential is usu-
ally characterized by its volume integral per nucleon,

are shown in Fig. 2. The data are much more sparse than
at E=11 MeV. They are compatible with the constant
value

J(E =30)/A =408+10 MeV fm (2.2b)

The observation that J/A is approximately independent
of A in the case of the proton optical potential is in keep-
ing with previous results concerning the domains
12&A &208, E=15 MeV (Ref. 10) and 45&A &80, E=5
MeV (Ref. 11); A=28,40,64,66,68,208 and E&80 MeV
(Ref. 12)

The approximate independence of J/A upon A is ex-
pected from the simplest version of the folding model,
according to which the optical potential is given by

f'(p;E)= f p(p')U(
i
r —r'

i
)dip', (2.3)

where p(r) denotes the nucleon density distribution, while

u( ~r —r'
~

) is an effective nucltxin-nucleon interaction,
averaged over spin and isospin. Equation (2.3) predicts
that the volume integral per nucleon is equal to the
volume integral of the effective interaction,

J/A = —f v(r)d r =W, (2.4)

and is thus independent of A.
In an improved version of the folding model'~ one takes

into account the fact that the strength of the effective in-
teraction U» between two protons is weaker than that of
the effective interaction U~„betwo:n a proton and a neu-

tron, and one writes

V(r;E) = f pz(r')U&z(
~

r —r'
~

)d r'

+ p i vp r r p 2 5

540— J LM x 1.02

KLNS x 1 095

5I2 o
T=

3 4

4 ~

where p (r) and p„(r) denote, respectively, the proton and
neutron distributions. Equation (2.5) yields

P) 520—

X
500—

J=ZP pp+NP p„,
where, e.g.,

(2.6)
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FIG. 1. Dependence upon the target mass number A of the
volume integral per nucleon of the optical potential for protons
with energy 9&E(12 MeV. The average of the empirical
values associated with a given target is represented by a solid
dot {T=2), an open circle (T=—, ), a triangle (T=3), or a

square ( T=4). The size of the vertical bars is equal to 2 times
the standard deviation from the average. The crosses show the
empirical values originally deduced by Percy et al. (Refs. 1 and
2). The solid curves represent theoretical values calculated from
the nuclear matter approach of Ref. 5, as described in Sec. III 8,
multiplied by a renormalization factor k~~M ——1.02. For T=2,
these values practically coincide with those calculated from the
parametrization of Ref. 9, provided the latter are multiplied by
A,KL~s ——1.095. With this renormalization, the values of J/A
calculated from the two approaches slightly differ for other
values of T, as illustrated by the short dashes in the case T=4.
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FIG. 2. Same as Fig. 1, for protons with energy
29.5 & E&30.5 MeV. A renormalization coefficient A,JLM

——0.98
is introduced in the case of Ref. 5. The results associated with

Ref. 9 are shown only for T=2 and 4.
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Up& r r.
Introducing

J(i/A = —,
'

(Wpp+ ~p„), Ji/A = —,(~p, —~p(, )

Eq. (2.6) yields

J/A =(Jo/A)+a(Ji/A) .

(2.8)

(2.9)

70—

60

This suggests that J/A should increase linearly with a.
However, this expectation is not confirmed by Fig. 3, in

which the empirical values of J/A exhibit no systematic

evidence for a dependence upon a.
l,o—

0.06 0.08 0.10 0.12

(zA =2T . (2.10)

B. Asymmetry parameter, mass number, and isospin

In most works it is considered that a specific depen-

dence upon A implies a specific dependence upon a, be-

cause on the average A and a are related along the stabili-

ty band, see, e.g., Ref. 10. We emphasize that this type of
relation can only indicate a global trend. It is not accu-

rate in the small domain of mass numbers considered

here, i.e., within the stability band. This is exhibited in

Fig. 4, where A is plotted versus a. Each dashed curve is

associated with a given value of T and is a portion of an

hyperbola, since

FIG. 4. Each dashed curve represents the dependence of the
mass number 3 upon the asymmetry parameter a for a given
value of the isospin T. The solid line corresponds to the average
increase of A with a around the stability line, as parametrized
by Eq. (2.11).

This relation is represented by the solid line in Fig. 4. It
is meaningful only in the range of mass numbers con-
sidered here and describes an auerage trend, as indicated
by the bar over a.

(z(A) =0.0029(A —26.3) . (2.11)

Occasionally we shall use the following hnear approxima-
tion:

110—

1 1

JLM ~ 0.975 (t = 1.5)

--"-JLM 0.950 (t =&,2)
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FIG. 3. Dependence upon the asymmetry parameter a of the
volume integral per nucleon of the optical potential for protons
with energy 9 & E & 12 MeV and targets with mass number
44&3 &72. The value of A is attached to each vertical bar.
The solid lines represent theoretical values calculated from Ref.
5 with the same renormalization coefficient A, JLM

——1.02 as in

Fig. 1. The long-dashed and dashed-dotted lines correspond to
theoretical values obtained from a Woods-Saxon (%'S) potential
adjusted to the theoretical potential calculated with t=1.5 and
1.2 fm, respectively. In the former case, the renorrnalization
coefficient is A,~s ——0.965, w'bile in the latter case, A,~s ——0.960.

FIG. 5. Dependence upon the asymmetry parameter a of the
quantity [r ] defined by Eq. (2.12). The notation is the same
as in Figs. 1 and 3. The short-dashed lines represent results cal-
culated from the nuclear matter approach of Ref. 5, after renor-
malization by a factor A,Ji M

——0.95, for a range parameter t=1.2
fm; the long-dashed lines are associated with the corresponding
Woods-Saxon fit {4.3), after renormalization by a factor
A,~s ——0.940. The results calculated in the case t=1.5 fm are
very close to those obtained in the case t=1.2 fm, if one adopts
the renorrnalization factor A.JLM

——0.975 for the nuclear rnatter
calculation (solid lines) and k~s ——0.965 for its Woods-Saxon fit
[Eq. (4.4), 1ong-dashed hnesj.
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C. Weighting factor r

It has recently been pointed out that the quantity 950

[r ]= — f V(r)r dr (2.12) 80

is more accurately determined than J/A by the experi-
mental data, in the case of Ca and Pb. ' '

The dependence of [r ] upon the asymmetry parame-
ter a is shown in Fig. 5, for the same empirical potentials
as those used in Figs. 1 and 3. The comparison between
Figs. 3 and 5 shows that in the present compilation the
empirical values of [r ] are at least as well determined
as those of J/A. This feature is not trivial in view of the
difference between the integrands which appear in the def-
initions (2.1) and (2.12) of these two quantities; this differ-
ence is exhibited in Fig. 6.

Figure 5 displays a fme structure for [r ], in the sense
that this quantity depends upon both a and T. However,
Fig. 7 shows that this fine structure merely reflects the
property that [r ] depends smoothly upon the target
mass number A. Indeed, Eq. (2.10) implies that any
quantity which is a function of A shows a "fine struc-

70

60
50 60 20

FIG. 7. Dependence upon the target mass number A of the
quantity [ r "] defined by Eq. (2.12). For the sake of clarity we
only show (crosses) the empirical values associated with the opti-
cal potentials found in the original analysis of Percy et al.
(Refs. 1 and 2). The curves correspond to the nuclear matter ap-
proach ( 1=1.2 fm), renormalized by a factor A,JI M

——0.95.
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ture" when plotted versus a (also see Fig. 4). The stronger
the dependence upon A, the more pronounced the fine
structure. While the simple folding model (2.3) suggests
that the volume integral J is proportional to A, no similar
property is expected for the integral on the right-hand
side of Eq. (2.12). Therefore, the dependence upon A, and
thus upon a, of the quantity [r ) is largely infiuenced by
the factor A which appears in its definition (2.12).

D. Weighting factor r

The radial moments
I

Sy

[r ]=— f V(r)r dr
A

(2.13)

C)
are of interest because they enter in the definition of the
root mean square radius. They are plotted in Fig. 8.

E. Ratios of radial moments

1.0

r {fm)
FIG. 6. Dependence upon the radial distance r of the quanti-

ties V(r)/V(0) {bottom) and (r/8)"V(r)/V(0) (top) for n=0.4
(short-dashed line), m=2 (long-dashed line), and n=4 (dashed-
dotted line), in the ease of the typical optical potential defined
by Eqs. (1.1)—(1.3) for A =58.

The quantity which is commonly used to characterize
the potential range is the root mean square radius,

( r2) i j2 ([r4]/[r2] )1/2 (2.14)

This quantity is plotted in Fig. 9.
Since the integrands which appear in the definitions of

[r ] and [r ] are peaked at different locations (Fig. 6),
the ratio [r2]/[r ] also contains information on the ra-
dial shape of the potential. This ratio is plotted in Fig.
10. Its usefulness stems from the fact that [r ] is more
accurately determined than [r ].
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FIG. 8. Dependence upon mass number of the radial moment [r ] of the proton optical potentials. The dots, circles, triangles, and
squares represent averages of the empirical values, and the vertical bars the associated standard deviations. The crosses correspond to
the potentials used by Percy et al. (Refs. 1 and 2). In the left-hand panel, the short-dashed lines have been calculated from the nu-
clear matter approach of Ref. 5, with a range parameter t=1.2 fm; the dashed-dotted curves are associated with the corresponding
%'oods-Saxon fit (4.3). In the right-hand panel, the solid lines correspond to t =1.5 fm, while the long-dashed lines are obtained with
the corresponding %'oods-Saxon fit (4.4). The renormalization factors are the same as for the volume integrals (see Fig. 3).

III. COMPARISON KITH THE NUCLEAR
MATTER APPROACH

A. Basic expressions

We briefly summarize the formulas of the nuclear
matter approach of Ref. 5. In the "local density approxi-

V(r;E)= Vo(r;E)+aV&(r;E)+bc(r;E) .

The isoscalar component is parametrized as follows:

3

Vo(r'E)= g a; [p(r)]'EJ

(3.l)

mation" (LDA) the optical potential is written in the form

——WS (I'o =11?3,a = 0.805)
5.5——-—WS (PE 68)

----- JLW (t =1.2)

——WS (ro=1.152.a = 0 890)
5.5———WS (PE 68)

JLM (t =1 5)

5.0-

tf
jP

4.0 "

50

A

60 70

A

60

FIG. 9. Dependence of the root mean square radius upon mass number. The points represent averages of the empirical values and
the vertical bars the associated standard deviations. The dashed —double-dotted curves correspond to the potentials used by Percy
et al. (Refs. 1 and 2}. The other curves represent calculated values, with the same notation as in Fig. 8; they do not involve any re-
normalization factor.
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FIG. 10. Dependence upon mass number of the ratio [ r ]l[r ] The nota. tion is the same as in Fig. 9.

The isovector component is given by +2.35+ —2.073 (3.5d)

Vi(r;E) = ' E(r;E),
Pl

with

3

N(r;E)= g bj[p(r)]'EJ

(3.3a)

(3.3b)

In the "improved local density approximation" (ILDA)
the optical potential is given by the folding formula,

V(r;E)=(tV m)
3 f V(r', E)

Xexp[ —( ir —r'i ) /t ]d r', (3.6)

3

m(r;E)/m =1—g c;,[p(r)]'E' (3.3c)

In Eqs. (3.2)—(3.3c), p(r) is the matter density, which is
approximated by'

1

p(r)=pa 1+exp (3.4a)

where'

b =0.54 fm,
(, =(0.97g+().0206/ )A fm,

pc —— (1+m b /C )
3A

4n C'

(3.4b)

(3.4c)

(3.4d)

Vo(r;E) Vc(r),d

L

where' ' (r in fm, Vc in MeV)

2

(3.5a)

The coefficients a,i, b,j, and c,j are listed in Tables I—III
of Ref. 5.

The Coulomb correction is given by

where the Gaussian accounts for the finite range of the ef-
fective nucleon-nucleon interaction. Below, we always use
the ILDA. We usually take the same value as in Ref. 5

for the range parameter t, namely

t =1.2 fm. (3.7)

B. Volume integral per nucleon

One should not expect a very detailed agreement be-

tween the calculated quantities and the empirical ones.
Indeed, the accuracy of the Bruekner-Hartree-Fock ap-
proximation in nuclear matter is about a few percent, and
the ILDA introduces additional uncertainties. In particu-
lar, the ILDA is not reliable in the surface tail. In order
to allow for some of these limitations, we shall multiply
the calculated V(r;E) by a renormalization factor AtLM

which wi11 be adjusted to improve the agreement with the
empirical values (JLM denotes Jeukenne-Lejeune-
Mahaux). ' ' The deviation of A,tLM from unity gives an
indication of the accuracy of the nuclear matter approach
of Ref. 5. Since we mainly want to investigate to what ex-
tent this approach accounts for the dependence of the
empirical potentials upon A, a, and T, we shall take the
same value of A.JLM for all nuclei.

Vc(r)= .
0.71918.g

' 3—

1.44Z/r for r ~Ac,

for r &Rc, (3.5b)

(3.5c)

In Ref. 5 it was stated that the volume integrals of V
and of V are approximately equal. In fact, these volume
integrals are identical. Equation (3.1) shows that one can
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divide the volume integral of the proton optical potential
into three components:

proximation reads (E in MeV)

Jo(E)/A =Jo(E)f(A), (3.11a)

J/A =Jo/A+aJi/A+Jc/A . (3.8) with

With our sign convention the quantities J, Jo, J&, and Jc
are all positive.

In the case of the neutron optical potential, the volume
integral per nucleon is given by

(3.9)

f (A) = 1+1.380A ' +0.516A —1.040A

Jo(E =35)=270 MeV fm

(3.11b)

(3.11c)

It is found empirically that J„/A decreases with increas-
ing A. ' '2 Since, on the average, a increases with A [see
Eq. (2.11)], the decrease of J„/A and the fact that in the
case of protons J/A is approximately independent of A

entail that Jo/A should decrease with increasing A. This
is in keeping with the behavior predicted by the nuclear
matter approach, as exhibited in Fig. 11 for the mass
numbers of interest here.

The fact that Jo/A depends upon A refiects the proper-
ty that in nuclear matter the isoscalar strength Vo is not
proportional to the density p; see Eq. (3.2). Otherwise,
one would have Vo(r;E) = —Wo(E)p(r) and the quantity
Jo/A would be equal to

Jo(E)/A =1 o(E), (3.10)

and would be independent of A. The dependence of Jo/A
upon A is thus a consequence of the density dependence
of the isoscalar component of the effective interaction.
This statement holds true in the LDA as well as in the
ILDA, and is independent of the radial shape adopted for
the density distribution p(r)

Srivastava et al. have derived for Jo/A a parametric
form which approximates the results of the nuclear matter
approach of Ref. 5 at the energy E=35 MeV. This ap-
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FIG. 11. The solid curve in the dra~ing on the left-hand side
represents the dependence upon the mass number A of the
volume integral per nucleon of the isoscalar component of the
optical potential at 11 MeV, as calculated from the nuclear
matter approach of Ref. 5 {left-hand ordinate scale). The
short-dashed 1ine represents the values (Ref. 9) given by Eq.
{3.11a) ~ith Jo{E=11MeV)=305 MeVfm' {right-hand ordi-
nate scale). The right-hand panel represents the corresponding
dependence of Jo/A upon the average asymmetry parameter a
defined by Eq. {2.11).

The parametrization (3.11a) and (3.11b) has recently been
used by Kwan et a/. in order to study the dependence of
the volume integrals per nucleon of the neutron and pro-
ton optical potentials for nuclei with mass number
12 & A & 208. These authors considered empirical data at
various energies; they adopted the following expression
for the coefficient Jo(E) in Eq. (3.1la):

Jo(E)=325 —1.82E . (3.12)

This yields Jo(E=35)=261 MeVfm, which is close to
the value of Srivastava et al.

Two remarks are in order. (i) The algebraic parametriz-
ation (3.11b) has been derived for E=35 MeV and is like-

ly to become less accurate for other values of E since the
calculated density dependence of Vo depends upon ener-

gy. (ii) Expression (3.11b) rests on a density distribution
different from (3.4a)—(3.4d); in particular, Srivastava
et al. assumed that the density at the nuclear center is
independent of A instead of being given by Eq. (3.4d).

Despite these minor remarks, the work of Kwan et al.
is of interest in the present context since it encompasses a
wider range of nuclei and shows that the main features of
the empirical dependence of the neutron and proton opti-
cal potentials upon the asymmetry parameter a are close
to the prediction of an approximate form of the nuclear
matter approach. It is therefore useful to compare the
dependence upon A of the nuclear matter approach of
Ref. 5 with the algebraic approximation adopted in Ref.
9. The quantity Jo/A given by Eqs. (3.11a), (3.11b), and

(3.12) is represented by the short dashes in Fig. 11, for
E= 1 1 MeV. The dependence of Jo/A upon A is seen to
be approximately the same as in the original nuclear
matter approach, but the normalization is approximately
5% smaller.

We recall that the quantity a which appears in the
abscissa of the right-hand panel of Fig. 11 only gives a
rough indication of the asymmetry parameter associated
with a given mass number A. For the mass numbers con-
sidered here, it is more accurate to use the exact values of
a(A, T). The dependence of Jo/A upon the asymmetry
parameter a is represented in Fig. 12, which derives from
Fig. 4 and from the left-hand panel of Fig. 11. As expect-
ed from Sec. II B the smooth dependence of Jo/A upon A

gives rise to a "fine structure" when Jo/A is plotted
versus a.

The solid curves in Fig. 13 represent the dependence
upon A and a of the volume integral per nucleon of the
isovector component, as calculated from the nuclear
matter approach, Eqs. (3.3a)—(3.3c). The dashed lines
show the parametric expression adopted by Kwan et al.
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FIG. 12. Dependence upon the asymmetry parameter a of
the volume integral per nucleon of the isoscalar component of
the optical potential as calculated from the nuclear matter ap-

proach of Ref. 5 (solid curve, left-hand ordinate scale), and from

the algebraic approximation used by Kwan et aI. (Ref. 9)
{short-dashed lines, right-hand ordinate scale).

FIG. 14. Dependence upon the asymmetry parameter a of
the volume integral per nucleon of the Coulomb correction. The
solid lines are associated with the nuclear matter approach of
Ref. 5; see Eqs. (3.5a)—(3.5d). The short-dashed lines corre-

spond to a Woods-Saxon potential whose depth is equal to
0.4ZA ' ' MeV, and whose geometry is fixed (ro ——1.17 fm,
a=0.75 fm) (Ref. 13).

These authors assumed that the dependence of J, /A upon
A is the same as that of Jp/A,

Ji/A =J'Lf(A), (3.13)
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FIG. 13. Same as Fig. 11, for the volume integral per nucleon
of the isovector component of the optical potential.

and that J'& ——104 MeVfm is independent of energy.
This numerical value had been determined from a fit to
the main features of the empirical dependence upon a of
the proton optical potential for mass numbers
12&3 &208.

We finally turn to the volume integral per nucleon
Jc/A of the Coulomb correction. The solid curves in Fig.
14 represent the values calculated from the nuclear matter
approach of Ref. 5. The short dashes are associated with
a standard estimate, based on a Woods-Saxon shape with
a depth equal to 0.4Z/A '~ MeV and with the "global"
geometry of Becchetti et al. ' The nuclear matter ap-
proach is seen to lead to values of Jc /A which are larger
than those assumed in most empirical analyses. '

The integral per nucleon of the full optical potential is

given by Eq. (3.8). Its dependence upon A as calculated
from Ref. 5 is represented by the solid curves in Fig. 1,
while its dependence upon a is shown by the solid curves
in Fig. 3. These calculated values have been multiplied by
a renormalization coefficient A tLM

——1.02. The agreement
with the empirical values is quite satisfactory. The de-
crease of Jp/A with increasing A is, in part, compensated
for by the increase of aJ~/A with increasing A, thus re-

sulting in a quantity J/A whose dependence upon A is
weak. This dependence is, however, slightly more pro-
nounced than that of the empirical values. This is due to
the fact that the calculated dependence of Jp/A upon A is
somewhat too strong, presumably reflecting an overly
strong d'ensity dependence of the effective interaction.

The values of J/A can also be calculated from the sem-
imicroscopic values adopted by Kwan et al. 9 We as-
sumed that these authors used the Coulomb correction
Jc/A represented by the short dashes in Fig. 14. If the
results of Kwan et a!. are renormalized by a factor
A, KLNs ——1.095 (KLNS denotes Kwan-Lam-Neilson-
Sherif), the resulting values of J/A for E= 1 1 MeV and
T=2 practically coincide with the solid curve in Fig. 1.
However, the values of J/A for T=4 are larger in the
case of Ref. 9 (short dashes in Fig. 1) than in the case of
Ref. 5 (solid curve in Fig. 1). This reflects the fact that
the values of J~ /A adopted in Ref. 9 are larger than those
calculated in Ref. 5.

C. %'eighting factors r .
, r, and ratios

of radial moments

The theoretical values of the quantity [rp 4] defined by
Eq. (2.12) can be calculated from the nuclear matter ap-
proach of Ref. 5. In contrast to the volume integral per
nucleon, they depend upon the choice of the range param-
eter t which appears in Eq. (3.6).

%'e first consider the results associated with the value
t=1.2 fm originally adopted in Ref. 5. The correspond-
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ing quantity [r ] is represented by the short dashes in

Fig. 5, after renormalization by a factor A,JLM ——0.95. A
5% change in the normalization appears to be in keeping
with the overall accuracy expected for the nuclear matter
approach. However, it is not satisfactory that the renor-
malization coefficient (A,JLM

——0.95) which must be intro-
duced in the case of [r ] differs from that (AJ„M ——1.02)
which had been adopted in the case of J/A. This differ-
ence is reflected by the fact that in the case t= 1.2 fm the
calculated values of the ratio [r ]/[r ] are too small; see
Fig. 10. This indicates that the radial shape of the calcu-
lated potential is not in detailed agreement with the
eIIlpiB.cal shapes,

Another way of exhibiting this defect of the theoretical
calculation consists of comparing the empirical root mean
square radii with those calculated from the nuclear matter
approach. This is performed in Fig. 9, which shows that
in the case t=1.2 fm the nuclear matter approach yields
overly small root mean square radii. One could try to im-

prove the agreement by changing the value of the range
parameter t. The solid curve in Fig. 9 shows that the
value of t =1.5 fm leads to a good agreement between the
calculated and empirical values of the root mean square
radii. However, the solid curve in Fig. 10 shows that the
corresponding ratio [r ]/[r '

] remains too small. This is
reflected in Fig. 5, where the solid curves correspond to
t=1.5 fm with a renormalization factor A,JLM —0.975.
The latter value is still smaller than that (1.02) needed in
the case of the volume integral.

IV. POTENTIAL SHAPE

The short dashes and solid curve in Fig. 15 show the
shape of the optical potential of Zn, as calculated from

U =2V(R),

+ =(&p 1
—&p 9)/4. 39;

(4.1)

(4.2)

here, V(r) is the calculated potential, while rq is defined
by V (r~ ) =q U. Since U is slightly different from
V(r =0), the parameters rp and a must be determined by
iteration. We obtained the following values,

rp 1.173 ——fm, a =0.805 fm, (4.3)

in the case of the potential calculated with the range pa-
rarneter r=1.2 fm, and

r p ——1.152 fm, a =0.890 fm (4.4)

in the case t=1.5 fm. These parameters are practically
the same for all the nuclei considered here. In contrast,
the depth U of the Woods-Saxon fit is not the same for all
nuclei. This is illustrated by the dashed-dotted curve in

the nuclear matter approach for the range parameters
t=1.2 and 1.5 fm, respectively. We saw in the preceding
section that these calculated shapes are not in very good
agreement with the empirical evidence, since there exists a
difference between the renormalization factors A,JLM
which had to be introduced for J /3 (A J„M=1.02) on one
hand, and for [ r ) (A JLM ——0.95 for r = 1.2 fm,
A,ELM

——0.975 for t=1.5 fm) on the other.
One plausible explanation for this difference lies in the

fact that the ILDA is not reliable in the surface tail, while
this region influences the value of J/A. It is therefore of
interest to construct a Woods-Saxon potential which
closely fits the calculated potential, except in the surface
tail. We proceed as follows. We request the parameters
U, &p, and a in Eq. (1.1) to have the following properties:

l I l I l l l l

NS ra=1173 a =0805}
—-—es {PE68)

1

----- JLM {t- I 2)

1,25—

1.00

l l I l l l 1 l——N S {ro = 1.152, a = 0.890 )

—-—NS {PE68}
J LM ( t =1.5)

0.75—)

0.50— 0.50—

66~ „
0 25 30 0.25—

8

r {fm)

FIG. 15. Radial shape of V(r)/V(0) in the example of Zn. The notation is the same as in Fig. 9.
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Fig. 16. The increase of U with A essentially refiects the
increase of po with A [see Eq. (3.4d) and the right-hand
panel of Fig. 16].

Figure 15 shows that the Woods-Saxon shape closely
fits that of the calculated potentials, except in the surface
tail, where the nuclear matter approach is unreliable and
where the extrapolation of a Woods-Saxon shape is physi-
cally quite reasonable. From the values of ro, a, and U
one can calculate the quantities [r ]=J/A, [r ], [r ],'

(r )'~2, and [r ]/[r ]. The results are represented in
Figs. 3, 5, 8, 9, and 10. The renormalization factors re-
quested to fit the empirical values of [r ] and [ro ] only
differ by about 2% in the case of the Woods-Saxon fit to
the nuclear matter results associated with t=1.2 fm.
Moreover, it is remarkable that the empirical values of
[r ], and correspondingly of (r ), are also closely repro-
duced by this Woods-Saxon fit.

We can thus conclude that the nuclear matter approach
of Ref. 5 (t=1.2 fm) is in quite good agreement with the
empirical optical potentials, provided one adopts a physi-
cally reasonable extrapolation in the surface tail. Three
remarks are in order. (i) No parameter was adjusted
except for an overall renormalization factor ){,~LM
=0.95+0.01. The deviation of this factor from unity is
in keeping with the fact that in nuclear matter the
Bruekner-Hartree-Fock approximation overestimates the
magnitude of the potential energy by a few percent. (ii)
The geometrical parameters (4.3) and (4.4) of the Woods-
Saxon fits to the calculated potentials are quite different
from those, (1.3), adopted by Percy et a/. in their original
analysis. (iii) The range parameter t=1.2 fm is the same
as that adopted in the original theoretical model. The
Woods-Saxon fit associated with the larger value t=1.5
fm yields overly large root mean square radii„as shown by
the long dashes in the right-hand panel of Fig. 9.

V. DISCUSSION

The analyses of elastic scattering data do not enable one
to accurately determine the detailed shape of the optical
potential, but only its global properties. The latter can be
characterized by the volume integral per nucleon,
[& ]=J/A [Eq. (2.1)], and by the moments [r ] and
[r ], Eqs. (2.12) and (2.13). The moment [r ] is usually
combined with [ r ] to yield the mean square radius ( r ),
which is one of the characteristics of the potential shape,
another characteristic being the ratio [r ]/[r ]. We
have performed extended compilations of the empirical
values of [r ], [r ' ], [r ], (r )'~, and [r ]/[r ).
These quantities are found to be smooth functions of the
target mass number A in the case of 11 MeV protons and
of targets with mass number 44 & A & 72. This is exhibit-
ed by Figs. 1 and 7—10.

If the potential is assumed to have a Woods-Saxon
shape [Eq. (1.1)], its volume integral is given by

J Ug3 1
2

3 g 2
(5.1)

In their original analysis, Percy et al. ' assumed that the
potential has a Woods-Saxon shape, with a and
ro ——RA '~ independent of A. Then, the observation
that J/A is approximately independent of A (Fig. 1) com-
bined with Eq. (5.1) implies that the potential depth U in-
creases with increasing values of A (Fig. 16). This entails
that the empirical values of the depth U presents a fine
structure, i.e., fall on a set of distinct curves when plotted
versus a, each curve being labeled by the isospin T.
Indeed, the relation A =2T/a implies that a quantity
which is a smooth function of A is represented by a fami-
ly of curves when plotted versus a, each curve being
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characterized by a given value of T. This "fine structure"
is exhibited in Fig. 17.

One should not expect a very detailed agreement be-
tween the empirical fine structure and the results of the
nuclear matter approach. Indeed, the latter involves
several approximations which limit its accuracy to a few
percent, which is the magnitude of the empirical fine
structure. Among these approximations, we recall the lo-
cal density approximation, the assumed shape of the
matter density distribution, the possible existence of a
neutron-rich surface skin, and the existence of polariza-
tion corrections. The latter may affect the shape of the
potential, particularly at the nuclear surface. 4 However,
the polarization corrections are unlikely to be mainly re-
sponsible for the fine structure. Indeed, it has recently

FIG. 17. Dependence upon the asymmetry parameter of opti-
cal potential depths which yield specific values of [ro j and are

associated with a %'oods-Saxon shape with the fixed geometry

specified by Eq. (1.3). The crosses are associated with the

empirical values given by Percy et al. (Ref. 2). The
dashed —double-dotted lines have been drawn by eye through

these empirical values. The solid curves and the short-dashed
lines correspond to the calculated values of [r ]l represented by

the solid curves and the short-dashed lines shown in Fig. 5.

been observed that the fine structure also appears when
the Fermi energy is plotted versus n, while the polariza-
tion corrections are negligible at the Fermi energy. The
present study shows that the main origin of the fine struc-
ture lies in the A dependence of the isoscalar contribution,
which, in turn, reflects the density dependence of the ef-
fective nucleon-nucleon interaction. The fine structure is
therefore expected to emerge from a Hartree-Fock calcu-
lation based on a density-dependent effective interaction,
but not from one based on a density-independent interac-
tion.

The fine structure appears within the stability band.
When a wide range of mass numbers is considered, the
auerage value a of the asymmetry parameter increases
with 3; see Eq. (2.11). In the case of protons, the volume
integral per nucleon, J/A, is approximately independent
of A and of the average asymmetry parameter a because
the increase with A of the isovector contribution aJi /A is
almost compensated for by the decrease of the isoscalar
contribution Jo/A.

The local density approximation is unreliable in the sur-
face tail. Therefore it appears preferable not to use the
calculated potential in this domain. This is why we have
constructed a Woods-Saxon potential which closely repro-
duces the calculated shape except in the tail. This poten-
tial turns out to have a fixed geometry [Eq. (4.3)] in the
mass region 44&3 (72 studied here. It leads to a very
good agreement with the radial moments of the empirical
potentials, provided that a renormalization factor
(A JLM —0.95+0.01 ) is introduced. The fact that this fac-
tor is slightly smaller than unity agrees with the expecta-
tion that the 8ruekner-Hartree-Fock approximation
overestimates the strength of the optical potential in nu-
clear rnatter.

We suggest that in future comparisons between experi-
mental data and the nuclear matter approach (see, e.g. ,
Refs. 19—21), the latter should be modified to take into
account its inaccuracy in the surface tail, for instance, by
using the procedure described in Sec. IV.

The surface tail significantly influences the calculated
values of the volume integral J and of the mean square ra-
dius ( r ) . Caution must therefore be exercised if one
wants to derive theoretical information on the geometrical
properties of the optical potential from calculated values
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