PHYSICAL REVIEW C

VOLUME 34, NUMBER 1

Rapid Communications

The Rapid Communications section is intended for the accelerated publication of important new results. Manuscripts submitted to this section are given priority in handling in the editorial office and in production. A Rapid Communication may be no longer than 3½ printed pages and must be accompanied by an abstract. Page proofs are sent to authors, but, because of the rapid publication schedule, publication is not delayed for receipt of corrections unless requested by the author.

Systematics of spontaneous emission of intermediate mass fragments from heavy nuclei

S. W. Barwick and P. B. Price Department of Physics, University of California, Berkeley, California 94720

H. L. Ravn

CERN, Experimental Physics Division, CH-1211 Geneva 23, Switzerland

E. Hourani and M. Hussonnois Institut de Physique Nucleaire, 91406 Orsay Cedex, France (Received 28 April 1986)

We have used polycarbonate track-recording films to confirm the rare decay mode of ²²⁶Ra by ¹⁴C emission and to set stringent upper limits on ¹⁴C-emission rates of ²²¹Fr, ²²¹Ra, and ²²⁵Ac. The ¹⁴C-emission rate exhibits a pronounced odd-even effect. For Ra isotopes the hindrance factor for odd-even parents relative to even-even parents is at least 10 times higher for ¹⁴C emission than for α emission.

Impressive progress has been made in the two years since Rose and Jones¹ first reported the novel spontaneous decay mode ²²³Ra \rightarrow ¹⁴C+²⁰⁹Pb. Since then, the isotopes ²²²Ra and ²²⁴Ra were observed by Price *et al.*² to emit ¹⁴C, and Hourani *et al.*³ have recently reported the observation of four events consistent with ¹⁴C emission from ²²⁶Ra. This new phenomenon of spontaneous emission of nuclei intermediate in mass between alpha particles and fission fragments was shown to be quite general when Barwick *et al.*⁴ discovered ²⁴Ne emission from ²³²U. A Dubna group has presented evidence that three additional isotopes emit ²⁴Ne ions—²³¹Pa (Ref. 5), ²³³U (Ref. 6), and ²³⁰Th (Ref. 7).

Two theoretical models have been proposed which share the assumption that intermediate-mass spontaneous emission can be described by a barrier penetration process similar to spontaneous fission. The model of Sandulescu et al.⁸ was developed prior to the experimental discovery of Rose and Jones and was later modified^{9,10} to bring predicted intermediate-mass decay rates into closer agreement with experimental data. Sandulescu, Poenaru, Ivascu, and Greiner were able to show that their model, termed the analytic superasymmetric fission model, describes alpha decay systematics and intermediate-mass emission within a unified framework. Shi and Swiatecki^{11,12} have independently developed a barrier penetration model based on the proximity plus Coulomb potential and having the virtue of no adjustable parameters.

In this paper we report stringent new upper limits on the branching ratio for the emission of ${}^{14}C$ by ${}^{221}Ra$, ${}^{221}Fr$ and ${}^{225}Ac$ relative to α decay, along with a confirmation of ${}^{14}C$

emission from ²²⁶Ra with improved statistics. These new data on the ¹⁴C emission mode permit systematic analysis of isotopes predicted to have the most favorable branching ratios. Trends established by this analysis can be used to gain additional insight into the physical mechanisms involved in intermediate-mass emission. When the measured branching ratios for ¹⁴C emission and for ²⁴Ne emission are examined, it is seen that the analytic superasymmetric fission model in its present form underestimates intermediate-mass emission rates from parent nuclei with even numbers of protons and neutrons (even-even) and overestimates predicted rates from even-odd nuclei.

Three experiments were performed. In the first, the ISOLDE on-line isotope separator at CERN was used to produce combined beams of 60 keV ²²¹Fr and ²²¹Ra ions. In the second, combined beams of 60 keV ²²⁵Fr and ²²⁵Ra with half-lives of 3.9 min and 14.6 days, respectively, beta decayed to produce the ²²⁵Ac source. Radioisotope production techniques and the methods used to determine the number of atoms collected at ISOLDE were disucssed in Ref. 2. Our detector geometry differs from that described in Ref. 2. In the present work, nearly 4π steradian collection was obtained by surrounding a 0.9 μ m thick aluminum collector foil with a 15 cm diameter hollow sphere lined on the inside with Rodyne-P polycarbonate trackrecording plastic film. The beam of radioactive ions entered a hole in the front of the hollow sphere and stopped in the thin collector at the center of the sphere. Alpha particles and ¹⁴C ions subsequently emitted could escape from the collector in all directions with negligible energy loss except nearly in the plane of the collector foil.

In the third experiment, two Rodyne-P polycarbonate

foils of $\sim 100 \text{ cm}^2$ area were placed 10 cm from a 2.1 mCi source of 226 Ra and exposed for 1 day in moderate vacuum ($\sim 1 \text{ mm}$ of Hg) at the Institute of Nuclear Physics, Orsay.

All Rodyne detectors were etched for 8 h at 70 °C in a 6.25 normal solution of NaOH. Measurements of the dimensions of conical etchpits produced along the trajectories of the ¹⁴C ions were used to determine range and to make two independent measurements² of charge. Charge identification was based on calibrations of Tuffak polycarbonate detectors irradiated with ¹¹B, ¹²C, and ²⁰Ne ions produced at the Lawrence Berkeley Laboratory Superhilac.

From the ²²⁶Ra source, we identified tracks of 23 carbon nuclei for which the range, track-etch rate, and trajectory were consistent with the values expected for the emission of 26.5 MeV ¹⁴C ions. (A kinetic energy of 26.5 MeV corresponds to a O value of 28.21 MeV and a transition to the ground states of both ²¹²Pb and ¹⁴C.) Figure 1 compares the histogram of measured ranges with the spread of values calculated from a range-energy table, taking into account the thickness of the ²²⁶Ra source (1.77 mg/cm² thick, or $\sim 20\%$ of the expected ¹⁴C range) and the allowed angles of emission from the source. Carbon-14 ions originating near the surface of the source emerge with nearly full kinetic energy, whereas the ions originating near the bottom emerge with reduced energy. A consequence of the spread in measured ranges is that the mass number of the carbon ion cannot be as well determined as it was in the earlier experiments, which utilized much thinner sources.2,4

The observed 23 carbon events from ²²⁶Ra lead to a branching ratio with respect to alpha decay $B(\lambda_c/\lambda_a)$ = $(2.9 \pm 1.0) \times 10^{-11}$, in excellent agreement with the result of Hourani *et al.*³ based on four events. The error takes into account uncertainty of source strength as well as statistical error. The absence of observed carbon emission from ²²¹Ra, ²²¹Fr, and ²²⁵Ac leads to upper limits (90% C.L.) on branching ratios of 1.2×10^{-13} , 5×10^{-14} , and 4×10^{-13} , respectively. Table I gives further properties of the discussed decay modes.

Alpha decay rates for even-odd parent nuclei are known to be hindered by up to an order of magnitude with respect to the rate expected from neighboring even-even nuclei. Figure 2 shows the dependence of lifetime on kinetic energy for both alpha emission and ¹⁴C emission from Ra isotopes. The ¹⁴C decay lifetimes exhibit an even-odd hindrance much greater than is typical of alpha decay. For a given decay energy, the lifetimes for ¹⁴C emission from even-even nuclei are at least a factor 100 less than those observed from even-odd nuclei, based on one positive mea-

FIG. 1. Distribution of ranges of carbon fragments after emerging from the 1.77 mg/cm² RaSO₄ source. All 23 events are clustered within the range interval expected for ¹⁴C ions with initial kinetic energy given by the Q value for ²²⁶Ra \rightarrow ¹⁴C+²¹²Pb decay.

surement and one lower limit, whereas for α decay of Ra isotopes the average hindrance is only a factor ~ 10 .

An even more striking systematic behavior is seen when measured branching ratios from intermediate-mass particle emission are compared with theoretical predictions of the analytic superasymmetric fission model. The bold line in Fig. 3 traces the sawtooth behavior of the ratio of theoretical to experimental branching ratios. The sawtooth trend also occurs in the case of ²⁴Ne emitters but is less dramatic than for ¹⁴C emitters. This plot suggests that it might be beneficial to use different expressions for zero-point vibration energy E_v which distinguish between nuclei that have paired nucleons and nuclei that do not. Using the same functional form for E_v chosen in Ref. 9, we determined better values for the parameters in E_v by minimizing the root mean square of the difference between the known intermediate-mass branching ratios (or the measured upper limit) and the theoretical predictions.

The results of these calculations give E_v as

$$E_v = Q \left[0.060 + 0.035 \exp\left(\frac{4 - A_e}{2.5}\right) \right]; \ A_e \ge 4, \ e - e \ , \qquad (1)$$

$$E_v = Q \left[0.048 + 0.047 \exp\left(\frac{4 - A_e}{2.5}\right) \right]; \ A_e \ge 4, \ e - o \ , \qquad (2)$$

where A_e is the mass number of the light emitted fragment. The equations leave E_v unaltered for alpha decay.

The results obtained using Eqs. (1) and (2) with the analytic superasymmetric fission model have also been plotted in Fig. 3. The amplitude of the fluctuations has been diminished. The root-mean-square deviation σ can be de-

TABLE I. Properties of decay modes.

Z	A	Q	Atoms collected or source strength	$B = [\lambda(^{14}C)/\lambda(\alpha)]$	$\tau_{1/2}$ (sec)	Number of events
87	221	31.26	4.6×10 ¹³	$< 5.0 \times 10^{-14}$	> 6.3×10 ¹⁵	0
88	221	32.39	1.8×10^{13}	$< 1.2 \times 10^{-13}$	$> 2.4 \times 10^{14}$	0
88	226	28.21	2.1 mCi	$(2.9 \pm 1.0) \times 10^{-11}$	$(1.7 \pm 0.7) \times 10^{21}$	23
89	225	30.47	1.2×10^{13}	$< 4.0 \times 10^{-13}$	$> 2.5 \times 10^{18}$	0

BARWICK, PRICE, RAVN, HOURANI, AND HUSSONNOIS

FIG. 2. Dependence of lifetime on $E_n^{-1/2}$, where E_n is the Q value per nucleon, for α emission and ¹⁴C emission from radium isotopes. Hindrance factor for even-odd parents relative to even-even parents is ~ 100 for ¹⁴C emission compared with ~ 10 for α emission.

fined by

$$\log_{10}\sigma(B) \equiv \left(\frac{1}{N} \sum_{i=1}^{N} \left[\log_{10}(B^{i}) - \log_{10}(B^{i}_{\exp})\right]^{2}\right)^{1/2}, \quad (3)$$

where N is the number of nuclei for which intermediate mass decay modes have been measured and B is the

FIG. 3. Comparison of observed branching ratios for ¹⁴C emission relative to α emission with values calculated by Shi and Swiatecki (Ref. 11), by Poenaru et al. (Ref. 10), and by use of Eqs. (1) and (2) for E_v .

theoretically predicted branching ratio. We utilized branching ratio limits for those decays which have not been detected excluding those limits which are greater than the predicted values. The rms deviation is reduced from $\sigma(B) = 13.9$ to $\sigma(B_{e-0}) = 7.0$ if one uses Eqs. (1) and (2) for E_v instead of the expression found in Ref. 10.

The new expressions for E_v significantly decrease the predicted branching ratios for parent nuclei with an unpaired nucleon and the effect becomes more pronounced as the mass of the intermediate-mass decay fragment increases. Table II lists a comparison between theoretical branching ratios (including our modification of the analytic superasymmetric fission model) and experimental

	Theoretical predictions						
Decay	Q	$-\log_{10}(B)$ (Ref. 9)	$-\log_{10}(B)$ (Ref. 11)	-log ₁₀ (B _{e-0}) (this work)	$\frac{Measured}{-\log_{10}B}$		
$^{221}\mathrm{Fr} \rightarrow {}^{14}\mathrm{C} + {}^{207}\mathrm{Tl}$	31.26	12.5	11.1	13.2	> 13.1ª		
$^{221}Ra \rightarrow {}^{14}C + {}^{207}Pb$	32.39	11.9	11.1	13.3	> 12.9ª		
222 Ra \rightarrow 14 C $+$ 208 Pb	33.05	11.0	8.8	10.7	9.43 ^b		
223 Ra \rightarrow 14 C $+$ 209 Pb	31.85	8.5	8.2	9.4	9.21 ^b		
224 Ra \rightarrow 14 C $+$ 210 Pb	30.54	11.8	10.2	11.5	10.37 ^b		
$^{225}Ac \rightarrow {}^{14}C + {}^{211}Bi$	30.47	12.2	11.8	13.2	> 12.4ª		
226 Ra \rightarrow 14 C $+$ 212 Pb	28.21	11.7	10.5	11.4	10.5ª		
231 Pa \rightarrow 24 Ne $+$ 207 Tl	60.42	10.0	11.0	11.1	11.22°		
$^{232}U \rightarrow ^{24}Ne + ^{208}Pb$	62.31	10.9	10.3	10.5	11.7 ^d		
$^{233}U \rightarrow ^{24}Ne + ^{209}Pb$	60.50	10.3	10.4	11.5	12.12°		
240 Pu \rightarrow 34 Si+ 206 Hg	90.95	13.3	15.6	12.7			
$^{241}Am \rightarrow {}^{34}Si + {}^{207}Tl$	93.84	12.4	14.3	14.4	• • •		
^a This work.		°Reference 5.			°Reference 6.		

TABLE II. Comparison of theoretical branching ratios and experimental values.

^bReference 2.

365

values. The list includes two favorable candidates for ³⁴Si emission. The branching ratio for ³⁴Si emission from ²⁴¹Am as predicted by the superasymmetric fission model drops from 4×10^{-13} to 4×10^{-15} if Eqs. (1) and (2) are employed, rendering the experimental observation far more difficult. Because the second ³⁴Si candidate, ²⁴⁰Pu, is an even-even parent the branching ratio increases with the use of (1) for E_v . Searches for ³⁴Si emission from these two nuclides are in progress.

As Fig. 3 shows, the predictions made by Shi and Seiatecki are much less sensitive to nucleon pairing effects than are those of the superasymmetric fission model. However, the overall agreement with experimental branching ratios is not as good as in the superasymmetric fission model with our modified expressions for E_v . The Shi-Swiatecki model gives $\sigma(B_{ss}) = 15.1$.

To summarize, we confirm that ${}^{14}C$ is emitted from ${}^{226}Ra$ at a branching ratio which agrees with the previously published observation.³ This result, along with our upper limits on the branching ratios for ${}^{14}C$ emission from ${}^{221}Ra$, ${}^{221}Fr$, and ${}^{225}Ac$, indicates that there is a large systematic even-odd effect relative to the branching ratios predicted by the analytic superasymmetric model. A refinement of the expression for the zero-point vibration energy depresses the expected branching ratios for even-odd parent nuclei, especially those nuclei which are presumed to emit fragments heavier than neon, and leads to results in better agreement with experiment.

The work at Berkeley was supported in part by the U.S. Department of Energy.

- ¹H. J. Rose and G. A. Jones, Nature 307, 245 (1984).
- ²P. B. Price, J. D. Stevenson, S. W. Barwick, and H. L. Ravn, Phys. Rev. Lett. **54**, 297 (1985).
- ³E. Hourani, M. Hussonnois, L. Stab, L. Brillard, S. Gales, and J. P. Schapira, Phys. Lett. **160B**, 375 (1985).
- ⁴S. W. Barwick, P. B. Price, and J. D. Stevenson, Phys. Rev. C 31, 1984 (1985).
- ⁵A. Sandulescu, Yu. S. Zamyatnin, I. A. Lebedev, B. F. Myasoedov, S. P. Tretyakova, and D. Hasegan, JINR Rapid Commun. No. 5, 1984, p. 5.
- ⁶S. P. Tretyakova, A. Sandulescu, Yu. S. Zamyatnin, Yu. S. Kovotkin, and V. L. Mikheev, JINR Rapid Commun. No. 7, 1985, p. 23.
- ⁷S. P. Tretyakova, A. Sandulescu, V. L. Mikheev, D. Hasegan, I. A. Lebedev, Yu. S. Samyatnin, Yu. S. Kovotkin, and B. F. Myasoedov, JINR Rapid Commun. No. 13, 1985, p. 34.
- ⁸A. Sandulescu, D. N. Poenaru, and W. Greiner, Fiz. Elm. Chastits At. Yadra 11, 1334 (1980) [Sov. J. Part. Nucl. 11, 528 (1980)].
- ⁹D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, J. Phys. G 10, L183 (1984).
- ¹⁰D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, Phys. Rev. C 32, 572 (1985).
- ¹¹Yi-Jin Shi and W. J. Swiatecki, Nucl. Phys. A438, 450 (1985).
- ¹²Yi-Jin Shi and W. J. Swiatecki, Phys. Rev. Lett. **54**, 300 (1985).