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Geometry and time scales of self-consistent orbits in a modified SU(2) model
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%e investigate the tine-dependent Hartree-Fock Aovv pattern of a two-level many fermion system

interacting via a two-body interaction which does not preserve the parity symmetry of standard

SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are

analyzed and a phase instability is clearly recognized. The time evolution of one-body observables

along self-consistent and exact trajectories are examined together with the overlaps between both or-

bits. Typical time scales for the determinantal motion can be set and the validity of the time-

dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed.

I. INTRODUCTION

The time-dependent-Hartree-Fock (TDHF) method has
become popular in the nuclear physics literature due to its
microscopic characteristics and its moderately large
amount of computational requirements as long as simpli-
fied effective interactions are employed. ' Insofar as its
validity was shown to be restricted to short times or to
very large particle numbers, ' the method is related to an
asymptotic expansion. It appears clear that the major
confidence may be put on its ability to describe the large
amplitude collective motion of a heavy nucleus.

Physical interest and computation feasibility have
pushed TDHF calculations through the whole Periodic
Table, with particularly striking results, such as the ap-
pearance of a low angular momentum window for fusion
and the serious rotational symmetry breaking for light nu-

clides. ' These situations require that the nature and abil-
ities of the TDHF approach should be examined, keeping
in mind the possibilities of establishing rules and criteria
for a safe utilization of the approach. This kind of work
is partially supported by the study of solvable nontrivial
systems, which allow the comparison between approxi-
mate and exact dynamics. "

Among the consistency criteria sought for, the time of
validity of the TDHF approach in terms of the residual
interaction has been analyzed by Lichtner and Griffin.
Unfortunately, the evaluation of this parameter demands
a large amount of calculation, and it is not possible to
discriminate between the relative roles of excited and
unexcited configurations. In this way one can only expect
to get a lower limit of validity of the TDHF method.
Another criterion of consistency recently suggested ap-
peals to known features of the exact dynamics such as
symmetries' ' and a method has been proposed' ' that
overcomes one of the most important drawbacks of the
self-consistent dynamics, namely its restriction to short
times. In this approach —that we have called symmetry
conserving variational dynamics (SCVD)—one takes fun-
damental advantage of the existing symmetries in order to
propose, as a variational trial wave function, a superposi-
tion of Slater determinants selected so as to guarantee the

conservation of the group symmetry operator. It has been
shown'3 in the frame of the standard SU(2) model' that
such a wave function evolves in time according to a non-
linear equation of motion on the Grassmann manifold and
offers a much better resemblance to the exact one, over a
longer time interval than the single TDHF determinant.

Since the criteria resting on symmetry arguments may
establish necessary conditions controlling some specific
degrees of freedom, '" it seems interesting to investigate
systems which do not present symmetries (or the set of de-

grees of freedom not related to the existing symmetries) in
order to get a better understanding of the qualities and
abilities of the TDHF method when it is applied far from
its asymptotic zone of primary validity. For such systems
or coordinates, there is not any obvious key to the con-
struction of an improved variational wave function as in
the SCVD case. This situation suggests the convenience
of a detailed study of the TDHF orbits, looking for those
regularities of the mean field flow that might indicate
correlations whose explicit inclusion —like the conserved
observables in the SCVD approach —could make room to
a better representation of the exact wave function. For
this purpose, in this work we propose, among many other
possibilities that we defer to a future work, ' a particular
SU(2) model where the parity symmetry is missing, and
perform an analysis of the TDHF flow pattern that per-
mits to extract some systematic features of the figures
that may quantitatively indicate the good or poor quality
of the approach. For this sake, in Sec. II we present the
model and establish a method of construction of the
TDHF phase portrait that consists of projecting the ener-

gy surface on the Bloch sphere, while in Sec. III a com-
parison between TDHF and the exact dynamics is per-
formed through various kinds of estimates like overlaps
and mean values of one-body observables. The last sec-
tion (Sec. IV) is reserved for the conclusions.

II. GEOMETRY DF THE TDHF ENERGY SURFACES

The pattern of the TDHF dynamics of r-level systems
is very closely related to the geodesic flow on a sphere in a
(2 r —1 )-dimensional space, ' since the Slater deter-
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minants may be set into a one-to-one correspondence with
the coherent states of the SU(r) group. In particular, the
correspondence between two-level systems and quasispin
models has been widely utilized in the past. "

We are going to analyze the TDHF dynamics induced
by the one- and- two-body Hamiltonian,

rotation group.
The complex parameter w is related to real parameters

(8,y) that represent angles on the Bloch sphere or mani-
fold of the SU(2) coherent states, through the expression

0r = tan —exp( i—y),
2

(2.5)

H=eJ, +—(IJ+J,I+ I J Jz ))2

=eJ, +uI J J,I,
in a two-level system, where

(2.1)

and in terms of these variables the mean values of the
A A

one-body observables J„,J„,and J„namely the Cartesian
components of the quasispin J, with respect to the collec-
tive state

~
r), read

J,= —,
' g crap~ p

+
P, cr =+1

J+ = g ap~p ——(J )
P

(2.2a)

(2.2b)

(J„)=J sin8 cosy&,

( J„)=J sin8 sing,

(J, ) =Jcos8.

(2.6a)

(2.6b)

(2.6c)

are the components of the quasispin vector J expanding
the SU(2) Lie algebra, the symbol I ] is the usual an-
ticommutator and a a are the single-particle creation and
annihilation operators.

One should notice that opposite to the standard Lipkin
model, ' in which the two-body interaction scatters a pair
of particles from one level into the other, the Hamiltoniani'
(2.1) does not commute with the parity operator P =e
The latter property is due to the fact that the interaction
(2.1) allows odd numbers of particle-hole excitations to
couple to even-numbered ones. The structure of the
present Hamiltonian is more suitable for a rough model of
particle transfer between nuclei in a collision, as it is
schematically indicated in Fig. 1.

The set of Slater determinants which may be generated
out of the unperturbed ground state by operations of the
SU(2) group are of the form' ' '2'

Hereafter, we will utilize the notation 8= (r
~

8'
~
r) for

the expectation values of operators.
The TDHF dynamics is imposed upon the system by

resorting to Dirac's variational principle,

5 fdt(r N' —Hr =0, —
Bt

(2.7)

with ~r) lying on the manifold of determinants. The
Euler-Lagrange equations of motion are Hamiltoni-
an' ' ' and adopt the canonical form when written in
the representation q =y and p = —Jcos8, namely,

q=dP
~
Bp,

p= —BA (Bq,

(2.8a)

(2.8b)

the classical Hamiltonian being the expectation value on
the Grassmann manifold,

~
~) =Z(r)

~

—J,J),
where R (~) is the rotation operator,

(2.3)
~=(r ~H

~

~) .

For the quantal Hamiltonian (2.1), we obtain,

(2.9)

R(r) =(1+
i
r

i
) exp(rJt r'J ), — (2.4) 4 =eJ —cos8 ——sin28co~x

2
u(N —1)

X

and
~

—J,J) is the unperturbed ground state, where
J=Nl2 labels the fully symmetric representation of the

and the equations of motion (2.8) can be written as

(2.10)

( sin8 —X cosy cos28),
sin8

0=eg singe cosO .

(2.11a)

(2.11b)

FIG. 1. Schematic representation of a nucleus-nucleus col-
lision with particle transfer. The Fermi energy ez is proportion-
al to the average energy per particle in each nucleus and the pro-
jectile posesses an excess energy e. The quasispin projection I„ is

related to the transfer process, while J, simply provides
diagonal-like scattering.

dJ
dt

=VgA ~J, (2.12)

with X denoting vector or external product.
Equation (2.12) is the statement of Ehrenfest's theorem

when the state under consideration is a Slater deter-
minant, simply meaning that the velocity dJ/dt agrees

On the other hand, one can demonstrate that the dynam-
ics arising from (2.7)—that geometrically represents the
motion of the "tip" of the vector J on the Bloch sphere-
can be viewmi as a generalized goedesic flow with local
angular velocity co= VgA, namely,
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with the exact one whenever the exact state touches the
Bloch sphere. This equation also reflects the restriction of
the trajectory to lie on the Grassmann manifold, since the
external product operation forces the vector J—hereafter
to be named the "polarization" vector —to remain on the
Bloch sphere

~

J
~

=ere. On the other hand, Eq. (2.12) en-
sures energy conservation, the energy for each trajectory
being the expectation value (2.10). One can show that the
consistency of the dynamics with both manifold invari-
ance and energy conservation is valid in general, thus Eq.
(2.12) might be extended to systems with higher number
of levels. In any case, the intersection of a given energy
surface A =ere, 4 given by Eq. (2.9), with the
Grassmann or coherent state manifold for the group
under consideration, determines the submanifold where
the motion takes place.

In the situation here considered, restrictions
~

J
~

=ere
and A =etc together determine the path along which the
motion occurs. Indeed, being both invariant manifolds
two-dimensional surfaces, their intersection is a curve.
Moreover, as long as we restrict ourselves to quadratic
(two-body interaction} Hamiltonians, both the energy sur-
face and the Grassmann manifold are just quadrics in the
quasispin variables, namely

J.J=J

eJz Jx+ J
x

(2.13a}

(2.13b)

The latter represents a hyperbolic cylinder centered at
( —J/X, O, O) and with axial symmetry with respect to the
Jy axis.

The flow pattern changes with the interaction strength.
As P scales from zero to infinity the center of the hyper-
bolic cylinder (2.13b) moves from minus or plus infinity
to zero along the J, axis, reaching a critical point for
7=+1 when this central point enters the Bloch sphere.
This situation represents a qualitative change in the shape
of the orbits and in the case of the standard SU(2) model'
it has been referred to as a phase transition. ' It is
worthwhile noticing that in the present case a transition
of the phase flow from one to another morphology takes
place, rather than a ground-state phase transition as in the
well-known Lipkin model. ' ' ' In fact, a calculation of
the critical points of the energy surface (2.10) indicates
that the absolute minimum continuously moves upwards
from the south pole (7=0) to the point 8 = ir/4,
y=O (7~00), without any bifurcation appearing. It is
possible, however, a qualitative analysis of the evolution
of every critical point, by inspection of Fig. 2, where the
relative location of the maxima and minima of the energy
surface —i.e., the fixed points of the flow —is illustrated
for the whole range of interaction strengths. The above-
mentioned transition of the flow becomes then clearly
displayed and hereafter we will refer to it as a catastrophe
or structural instability, with the meaning of a
"transition-in-phase, " with the understanding that this is
not a thermodynamic phase transition.

In this figure, we can appreciate that for weak interac-
tions the energy surfaces are very close to planes in the re-
gion where the Bloch sphere lies. Then, most motions are

weak interactions strong interactions

Absolute maximum
O Absolute minimum

aa Relative maximum
m Relative minimum

~ Saddle point

——-—Bloch sphere for X=0,9
------- Bloch sphere for X=1.5

FIG. 2. The Aow pattern on the Bloch sphere for various in-
teraction strengths g. Orbits on the manifold of Slater deter-
minants are the intersections between the latter and the energy
hyperbolic cylinders P =etc.

pHF

q

(a)

FIG. 3. The flow pattern for +=0.9 (a) on the Bloch sphere
(b) on the HF phase space (pHF, qHF). The extrema are indicat-
ed with the symbols displayed in Fig. 2.

rotations with a nearly constant angular velocity. What-
ever the value of

~
X ~, there are two stationary points of

the energy surface, a maximum and a minimum located at
the north and south hemispheres, respectively. These
fixed points depart from the corresponding poles when the
interaction strength departs from zero and move towards
the equator along the p=O meridian as ~X

~

increases.
The z component of the local angular velocity is always
positive (negative) if P remains smaller than unity (larger
than -1},implying that there is a unique fiow direction on
the sphere. In addition, there is a one-to-one correspon-
dence between energies and trajectories and the time re-

quired to travel around the equator is finite:

e(1+X cosy)

Notice, however, that two separatrices appear for any
nonvanishing coupling strength; these are the two orbits
containing the poles with energies eJ, the plus (minus)
sign corresponding to the trajectory through the north
(south) pole. Each of these separates the region of closed
orbits around the local extremum from the region of rota-
tions covering most of the Bloch sphere. The flow pattern
for 7=0.9 is illustrated in Fig. 3.

The case of strong interactions (
~
X

~
& 1) substantially
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(b)

FIG. 4. Same as in Fig. 3, for an interaction strength +=1.5.
The asymptotic plane separates the ordinary zone (co, p0) on
the left half-space from the extraordinary one where co, g 0.

differs fram the situation with
~
X

~

&1. When the inter-
section parameter crosses the critical value

~
X,

~

=1 the
phase portrait presents two topologically distinct sets of
orbits, the one resembhng the weak-interaction pattern
with librations around the local extrema and rotations on
the rest of the sphere, the ather containing only librations,
symmetrically located with respect to the equator. A typ-
ical pattern for X= 1.5 is shown in Fig. 4.

By inspection of this figure we realize that the bifurca-
tion gives rise to a pair of relative maxima and minima ly-

ing on the meridian p=m while the absolute extrema
remain on the p=0 meridian. These relative extrema bi-
furcate from a saddle point on the equator that appears
when the asymptotic plane of the hyperbolae becomes
tangent to the sphere for ~g ~

=1. Indeed, the saddle
point suffers a fourfold bifurcation, since in addition to
the extrema that evolve along the meridian q =m, two new

saddle points depart and remain on the equatorial line (see
Fig. 4}. In the limit where X approaches infinity, both the
relative and the absolute extrema at a given
hemisphere coincide on the midparallel 8=m/4 or 3ir/4
(cf. Fig. 2). We observe that the intersection of the plane
J„=—J/X and the Bloch sphere is the separatrix between
the new sets of librations and the previously existing rota-
tions and librations. Hereafter, we will denote these in-
variant sets as the ordinary (or regular} and the extraordi-
nary (or exceptional) zones, the former containing the li-
brations amund the absolute extrema and the rotations,
the latter, the librations around the relative extrema. In
addition, one can verify that the z component of the angu-
lar velocity ai =VJP changes sign from one to the other
region. Furthermore, all energies in the interval between
the relative extrema are degenerate, since there exist orbits
with the same energy in the regular zone.

Finally, we point out that after the catastrophe has oc-
curred the equatorial orbit becomes a separatrix as well.
This is due to the appe. uance of two saddle points at
J„=—J/X, which assigns an infinite period ta the trajec-
tory containing them.

where
~

n) are the (2J+1) vectors of the Dicke basis,
and the TDHF evolution given by

3r +3j~f' —r /rJi —1

2(1+ /sf )

Equation (3.2) is the complex version of the real canonical
equations (2.11). This comparison can be done through a
set of indicators, such as the overlap between the exact
and the TDHF state vectors ~E) and

~
~}, respectively,

and the expectation values of the one-body observables in
both dynamics. In what follows, the situation is analyzed
in the framework of either weak or strong interactions,
founding the discussion on the characteristics of the ar-
bits.

A. %eak interactions

For ordinary librations close to either extremum we can
observe a high correlation between exact and approximate
polarization vectors as shown in Fig. 5 for a coupling
strength 7=0.9, as well as the values of the overlap
(E

~
r) remaining very close to the unity. In agreement

with the last observation we realize that the modulus of
the exact polarization JE mostly stays in a narrow shell
close to surface of the Bloch sphere.

When the initial conditions are selected on orbits lying
farther from the extrema, the exact polarization moves in
a wider region and penetrates deeper into the Bloch
sphere. This is clearly displayed in Fig. 5 for four dif-
ferent orbits, whose initial positions are 8=0.75m,
0.66m, 0.&r, and 0.52m along the go=0 meridian. These
initial conditions range from the critical point to the
equator covering the 8 interval where significant varia-
tions in the shape of the polarization curves can be ob-
served Value. s of 80 higher than 0.75m yield almost hor-
izontal curves; in other words, the exact polarization per-
forms very small amplitude excursions in the vicinity of
the critical point. When 80 equals the location of the
maximum 8iir ——0.84ir, the exact trajectory is practically
the fixed point. Accordingly, we have verified that the
overlap decreases in a significant fashion (even up to a
15% figure) as the exact polarization departs from the
surface of the sphere.

O. 75
0.66
0.60
0.52

III. NUMERICAL STUDY

%e are interested in comparing the exact dynamics
represented by the Schrodinger equation,

N

isa„= g (n ~H
~

n+Ja}„+ ,J0&n &N, (3.1)
j=0

)P 20 taly

FIG. 5. The modulus of the exact polarization vector I as a
function of time for %=6 and +=0.9. The numbers 80/m
denote the initial positions on the y=0 meridian and belong to
the ordinary zone of the HF phase space.
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In Fig. 5 we may as well notice that the vector JE ap-
proaches the surface of the sphere after an elapsed time of
about 14.M/e, with independence of the initial condi-
tions. The TDHF calculation makes evident that this en-
counter occurs at a point close to the same self-consistent
orbit where that motion started. On the other hand, we
have numerically computed the TDHF period of the
displayed orbits and found that they vary between 0.66
and 14.4 iil/e for the same initial conditions. Since the ap-
parent recursion times of the exact orbits in Fig. 5 do not
exhibit the important variations of the periods of the
TDHF ones, we can in principle disregard the hypothesis
of a high correlation between those different motions and
presume in this case that in the exact dynamics the
TDHF component is mostly decoupled from the com-
ponent driving the motion towards the interior of the
sphere.

B. Strong interactions
1. Ordinary zone

The investigation of the exact orbits in the neighbor-
hood of the absolute extrema leads to observations analo-

gous to those mentioned in the weak interaction case,
namely a good agreement between exact and approximate
paths. The polarization vectors are exhibited in Fig. 6 for
X=1.5, N =6, and the same initial conditions as in Fig.
5. One notices in this case a tendency towards periodicity
in the exact motion of Jz that appears more dramatic as
one departs from the immediate vicinity of the fixed
point. The characteristic times for this recurrence to-
wards the Bloch sphere are strikingly similar (close to
6.8A/e) while the TDHF period increases from zero to in-
finity (extremum and separatrix, respectively).

2. Extraordinary zone

As one investigates initial conditions in this region, one
can find evidences of the fact that discontinuities of the
TDHF flow pattern across separatrices may not, in gen-
eral, possess images in the exact dynamics. This is illus-
trated in Fig. 7, where we show the trajectories of the ex-
act polarization JE projected on the (J„J,) and (J,J~)
planes, for the initial conditions eo ——0.5n, 0.53m, 0 6', .
and 0.65m along the meridian p=m where the relative ex-
trema lie. These points cover the interval of 9 values be-

075

0.65

0.60

0.53

0.5Q

(J, , J„)plane (J„,3„)plane

FIG. 7. The projections of the exact polarization vector on
the (J„J„)and ( J„,J„)planes, respectively, for initial conditions
Oo/m along the meridian q =m.. The corresponding self-
consistent orbits belong to the extraordinary region of phase
space.

tween the equator and the fixed one on a given hemi-
sphere. We can see in this figure that the exact motion is
periodic and that the shape of the orbits is very similar for
the various initial conditions with the deformations occur-
ring in a continuous way. This continuity shows up, in
particular, when the initial conditions lie in a small neigh-
borhood of the equator, opposite to the TDHF case whose
orbits are definitively different on either side of the equa-
tor. The periodicity here exhibited is an unexpected out-
come of the numerical work and one can trace it to the
peculiar phase relations among the wave function com-
ponents as the motion starts both in the vicinity of the

y =a meridian and of the equator
The modulus

~
JE

~

of the exact polarization corre-
sponding to an initial condition coincident with (or near
to) a relative extremum does not stay in the vicinity of
this point, in contrast with the evolution near extrema in
the ordinary zone. However, one finds the same kind of
recurrence observed in the latter region, in other words,
the exact polarization approaches back the surface of the
sphere with a period T close to 10'/e, almost indepen-
dently of the initial condition (within the extraordinary
zone), while the TDHF period varies between zero and in-
finity across the region.

IV. SUMMARY AND CONCLUSIONS

1 0 ~ I I C I I I I 'I I I ~ i

5 lo 15 it/h

FIG. 6. Same as in Fig. 5, once the phase transition has tak-
en place (+=1.5).

In this work we have examined the TDHF dynamics of
a quasispin system where the parity invariance has been
suppressed by an appropriate selection of the intersection.
The kind of motion provided by the TDHF method has
been compared to the exact dynamics for low particle
number. In particular, the results here displayed corre-
spond to N =6 and the features encountered and dis-
cussed are common to all particle numbers up to a few
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tens, with increasing improvement of the TDHF descrip-
tion as compared to the exact one.

The major characteristics of the constant energy sur-
faces have been studied looking at the fiow pattern gen-
erated by a classical Hamiltonian obtained as the expecta-
tion value of the one-plus-two-body fermion Hamiltonian.
Each trajectory in the phase portrait is the intersection of
an energy surface with the Bloch sphere and it is seen that
a qualitative change or catastrophe, related to the well-
known phase transition of the standard SU(2) model,
takes place for interaction strengths

~
X

~

= 1. On the oth-
er hand, these trajectories are the integrals of the equa-
tions of motion of the one-body observables, namely the
components of the quasispin vector, when their expecta-
tion values are taken with respect to a Slater determinant
or coherent state. These equations are analogous to those
of an incompressible geodesic fiow, whose stream lines are
the trajectories on the Bloch sphere. According to this
image, one realizes that the velocity dJ/dt is larger in
those regions with a high density of stream lines.

The comparison between approximate and exact calcu-
lations yields the following main results. First, one con-
cludes that in order to clarify the characteristics of the
evolution, it is more important to specify the zone in
phase space where the initial condition lies than to point
at the particular orbit where that condition belongs. In
this sense, there is a kind of generic behavior inside each
invariant set (topologically distinct region) of phase space.
Second, the shape of the exact orbits varies in a continu-
ous fashion with respect to the initial conditions, with
characteristic recurrence times or periods almost indepen-

dent of the latter.
Third, near absolute extrema the exact orbits are very

localized; consequently they are very similar to the corre-
sponding TDHF ones. The trajectories become progres-
sively delocahzed as the initial condition approaches the
equator.

Finally, the present study illustrates the extent to which
TDHF and exact paths differ in the neighborhood of a
separatrix, since the latter is associated with a discontinu-
ous change of topology of the TDHF orbits and a con-
tinuous variation of the exact ones.

As a final remark, we must recall that due to the nature
of the original Hamiltonian, it is not possible to improve
the agreement between approximate and exact dynamics
or to extend the time during which the former holds,
resorting to symmetry restoration as in prior works. ' '
However, we can find that under given conditions, a prop-
er multideterminantal trial wave function is a much better
choice than a coherent state. This investigation is in pro-
gress and will be presented elsewhere.

ACKNOWLEDGMENTS

The authors are indebted to the Programa de Investiga-
ciones en Fisica del Plasma (PRIFIP) at their home insti-
tution for unlimited access to their computing facilities.
This work was performed under Grant No. 9413c/83
from Consejo National de Investigaciones Cientificas y
Tecnicas (CONICET) of Argentina. Two of us (E. S. H.
and H. G. S.) acknowledge the CONICET for financial
support.

'P. Bonche, S. E. Koonin, and J. %'. Negele, Phys. Rev, . C 13,
1226 {1976).

2H. Flocard, S. E. Koonin, and M. S. gneiss, Phys. Rev. C 17,
1681 (1978).

3H. Flocard, Nucl. Phys. A387, C283 {1982).
4K. T. R. Davies, K. R. S. Devi, S. E. Koonin, and M. R.

Strayer, Marmal Aid Report MAP-23, 1982 (unpublished).
5J. M. Irvine, Comput. Phys. Commun. 26, 433 (1982).
6J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).
7P. C. Lichtner and J. J. Griffin, Phys. Rev. Lett. 37, 1521

{1976).
Da Hsuan Feng and R. Gilmore, Phys. Lett. 908, 327 (1980).

9R. Gilmore, J. Math. Phys. 20, 891 (1979).
'OH. G. Solari and E. S. Hernindez, Z. Phys. A 321, 155 (1985).
~ ~S. J. Krieger, Nucl. Phys. A276, 12 (1977).

H. G. Solari and E. S. Hernandez, Phys. Rev. C 26, 2310
(1982).

'3H. G. Solari and E. S. Hernandez, Phys. Rev. C 28, 2472
(1983).

'4H. G. Solari and E. S. Hernindez, Phys. Rev. C 32, 462

{1985).
H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62,
188 (1965).

E. S. Hernindez and D. M. Jezek (unpublished}.
~7R. Gilmore and D. H. Feng {unpublished).
' K. K. Kan, P. C. Lichtner, M. Dworzecka, and J. J. Griffin,

Phys. Rev. C 21, 1098 (1980).
'9K. K. Kan, Phys. Rev. C 22, 2228 (1980).
OR. Gilmore and D. H. Feng, Nucl. Phys. A301, 189 (1978).
F. T. Arecchi, E, Courtens, R. Gilmore, and H. Thomas,
Phys. Rev. A 6, 2211 (1972).
R. Gilmore, Rev. Mex. Fis. 23, 143 (1974).
P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).

4D. J. Rowe, A. Ryman, and G. Rosensteel, Phys. Rev. A 22,
2362 (1980).

25K. K. Kan, J. G. Griffin, P. C. Lichtner, and M. Dworzecka,
Nucl. Phys. A332, 109 (1979}.
V. J. Arnold, Mathematical Methods of Classical Mechanics
(Springer, New York, 1978).


