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An isospin-invariant optical-potential framework is used to make a coordinated analysis of low-

energy pion elastic and single- and double-charge-exchange scattering to isobaric analog states. The
form of the potential studied here is motivated by the work of Stricker, McManus, and Carr, who
emphasized the importance of isoscalar absorption-dispersive and correlation effects for low-energy
pion elastic scattering. In this paper we examine the influence of the corresponding isovector and
isotensor nuclear correlations on low-energy charge exchange. Comparison of our results to 50 MeV
data supports the existence of the isovector correlation terms, but shows a need for an additional iso-
tensor effect. A distorted-wave Born approximation analysis confirms that distortions are weak (the
mean density of interaction is roughly 50% of the central value), but demonstrates that distortions
of the pion waves by the nuclear medium cannot be neglected in describing charge exchange.

I. INTRODUCTION

New opportunities for learning about pion-nucleus
dynamics have become available with the acquisition of
recent low-energy pion-nucleus single charge-exchange'
and double charge-exchange data. The new data comple-
ment the elastic scattering measurements at those energies
that were taken in the recent past. Interest in low-energy
scattering stems from the fact that the pion-nucleon in-
teraction is relatively weak. Consequently, the pion is
able to penetrate deeper into the nucleus than at higher
energies, where the interaction is much stronger due to the
633 resonance. One may, therefore, hope to learn from
measurements both about the distribution of matter at the
center of the nucleus and about pion dynamics in high-
density nuclear matter.

Low energy pion-nucleus studies have experienced a
long history of development. The earliest theoretical
work was that of Ericson and Ericson, followed by more
specific studies of pionic atoms. Already at this time it
was clear that the effective pion-nucleon interaction inside
the nucleus is modified by the presence of other nucleons.
The physics of short-range and Pauli correlations, and the
genuine (or true) absorption of a pion by two nucleons
were identified as two of the relevant issues.

With the availability of low-energy elastic scattering
data at the new generation of meson factories, interest in
the subject was renewed. The theory was extended in a
series of papers beginning with Thies and culminating in
the work of Stricker, McManus, and Carr at Michigan
State University (MSU). (We shall refer to their work as
the MSU potential. ) The MSU results confirm the earlier
conclusions that modifications of the pion-nucleon in-
teraction are needed in order to increase the isoscalar s-
wave repulsion and decrease the isoscalar p-wave attrac-
tion. In the MSU analysis, these effects are essentially at-

tributed to nuclear correlations.
Because of the many different types of physics that

enter into the theoretical description of low-energy
scattering, it is very useful to find new ways to test these
ideas. The low-energy measurements of pion single
charge-exchange (SCX) (Ref. 1) and double charge-
exchange (DCX) (Ref. 2) scattering to isobaric analog
states appear to provide the needed data. The results have
distinctive features that could help resolve some of the
controversial aspects of the role of correlations in the
existing theory and that have raised new issues, such as
whether quark degrees of freedom' in nuclei can be
detected directly. The remarkable features of the data are
(1) the strong cancellation between s and p waves that
leads to a forward-angle minimum in the free pion-
nucleon SCX cross section appears to be preserved when
the pion scatters from a nucleus, ""and (2) DCX cross
sections are large near 50 MeV compared to those at reso-
nance.

The recent charge-exchange data have generated a num-
ber of new lines of theoretical investigations, in the frame-
work of the isobar-hole model' and the "three-body" ap-
proach to pion scattering. '4 In the present work, we ex-
amine low-energy pion elastic, SCX, and DCX data in an
isospin-invariant optical-potential framework' ' that has
been successfully applied at resonance energy. ' In this
approach, the isospin-related processes of elastic, SCX,
and DCX scattering (collectively referred to as isoelastic
scattering) are unified. Because the theory permits simul-
taneous calculation of all three isoelastic reactions, and is
identical in form to the MSU theory for elastic scattering,
we believe it is suitable for looking at low-energy charge
exchange. The nuclear-medium modifications in the elas-
tic and charge exchange channels enter through coeffi-
cients in a density expansion. It was shown ip a previous
paper' how these coefficients could be related to the
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underlying dynamics for resonance energy scattering. For
this case, the coefficients themselves had only weak N, Z,
and A dependence, permitting a relatively simple charac-
terization of large numbers of pion-nucleus cross sections
and separation of the dependence of the theory on nuclear
structure and reaction dynamics. A subsidiary issue in
the current work is whether a simple representation is also
possible at low energy. It is conceivable that the increased
penetrability of the pion and the nonlocalities intrinsic to
low-energy scattering would reduce the accuracies of the
approximations. However, we find the MSU model, ex-
tended according to the theory of Ref. 16, can successfully
describe isoelastic scattering at low energy without modi-
fication of its form.

Because the density-dependence of the pion-nucleus in-
teraction is central to this work, we also look at the phys-
ics by making a distorted wave Born approximation
(DWBA) for low-energy charge exchange. We find this
an excellent approximation to the isospin invariant
coupled-channel model, and it gives us a clear picture of
where in the nucleus the interactions are likely to occur.
The DWBA also enables us to make Coulomb corrections
and to study explicitly the crucial interplay between the
distortions of the initial and final pion waves and the
medium modifications to the transition operator.

The outline of the paper is as follows: In Sec. II, we
discuss the formulation of the isospin-invariant optical-
model approach. This section is divided into two subsec-
tions. In the first, we present the general content of the
isospin-invariant approach, which does not depend on any
specific choice of optical potential. In the second, we
focus on the details of the specific optical potential chosen
for study in this paper. Because the inclusion of p-wave
correlations in low-energy optical potentials has been
somewhat controversial, we devote Sec. III exclusively to
the discussion of our model for these effects. In Sec. IV,
we present numerical results of our isospin-invariant
model for 50 MeV pion-nucleus isoelastic scattering. We
introduce, in Sec. V, a DWBA for charge exchange, and
we study in detail the separate effects of distortions and
nuclear-medium modifications to the reaction mechanism
for SCX. In Sec. VI, we summarize our findings and
draw our conclusions. A synopsis of the main points ad-
dressed in each section appears in the first few paragraphs
of that section, and some of the necessary but tedious ma-
nipulations appear in the appendices.

is also important for the charge-exchange reactions be-
cause it essentially determines the distortions that are
needed to evaluate correctly pion SCX and DCX. Thus,
the central issue for low-energy charge exchange is the
study of the corresponding isovector and isotensor poten-
tials. We establish the calculational foundation for such a
study in this section.

Our presentation is divided into two subsections. In
subsection A, we discuss in general terms the content of
the isospin invariant calculational framework and we em-
phasize certain aspects of this approach that are of partic-
ular significance for low energies. Some of the main
points discussed in this subsection are the following: (1)
The isovector potential, which is fixed by SCX, makes an
important contribution to DCX by means of sequential
single-charge-exchange transitions via the single isobaric
analog state (IAS). We define this as the analog route to
DCX. (2) Direct coupling of the ground state (g.s.) to the
double isobaric analog state (DIAS), for example by
means of nonanalog routes, can be incorporated through
the addition of the isotensor potential. (3) Although the
Coulomb potential violates our assumption of isospin in-
variance, we are able to include it in our elastic scattering
calculations where it is needed.

In subsection 8, we present the specific optical potential
we use for our low-energy calculations. The main features
of the potential are the following: (1) The first-order
terms of the potential (those that are linear in the nuclear
density) are explicitly separated from the higher-order
terms. These first-order terms are completely determined
from the free pion-nucleon phase shifts. (2) The impor-
tant higher-order terms of the potential are further divid-
ed into two pieces: one associated with pion true absorp-
tion and dispersive effects, and the other associated with
correlations. The correlation terms will be determined by
a specific theoretical model. (3) The form of the
absorption-dispersive terms is theoretically motivated
from general considerations' of the pion-two-nucleon in-
teraction. At the present time, however, the parameters
characterizing the absorption-dispersive terms are not
available from theory. To account for these effects, we
introduce phenomenological isovector and isotensor
absorption-dispersive parameters that are to be deter-
mined by the SCX and DCX data. The values of these
parameters become the target for future theoretical inves-
tigations.

II. ISOSPIN INVARIANT FORMULATION
FOR LOVf ENERGY

The isospin-invariant formulation of pion-nucleus
scattering is an optical-model approach that explicitly
couples the nuclear ground state to the isobaric analog
states. The main ingredients of this coupled-channel
model are the three isospin components of the optical po-
tential: the isoscalar, isovector, and isotensor potentials.
Because pion elastic scattering is most sensitive to the iso-
scalar potential, and because low-energy elastic scattering
has been well studied, we adopt the attitude that the iso-
scalar component is known. Fixing the isoscalar potential

A. General formulation

U = Uo+ (y T)U, +(y.T)'Ui, (2.1)

where P is the pion isospin operator and T is the nuclear

The theoretical framework we adopt is one that was
successfully used in the resonance region to calculate
pion-nucleus isoelastic scattering. ' ' This approach is
based upon two assumptions: (1) the pion-nucleus interac-
tion is isospin invariant, and (2) the isobaric analog states
together with the nuclear ground state are degenerate
members of the same isotopic multiplet. Within this
framework the general isospin operator dependence of the
optical potential may be expressed as
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isospin operator. Implicit in this definition is that U pro-
jects the complete nuclear space onto a subspace that con-
sists of the g.s., IAS, and DIAS. The nuclear density
dependence and all of the pion-nucleus dynamics are
described by the isoscalar, isovector, and isotensor poten-
tials Uo, U&, and U2. In principle, these potentials can be
calculated microscopically by making a density expansion,

U U(&)+ U(2)+. . . (2.2)

where the superscript indicates the number of active nu-

cleons, and i =0, l, or 2. The lowest-order contributions
to the isoscalar and isovector potentials arise from the
single-nucleon terms Uo" and U'i", whereas the lowest-
order contribution to the isotensor potential arises from
the two-nucleon term Ui '. [Of course, the two-nucleon
(2N) term also contributes to the isoscalar and isovector
potentials (i.e., U(0 ' and UP' ).]

A tacit assumption in the work of Refs. 15—17 is that
the physics of pion-nucleus scattering is dominated by the
first two terms of Eq. (2.2). In the (3,3) resonance region,
this assumption is expected to be valid because the pion-
nucleus interaction is surface dominated, occurring at
densities on the order of 10% or less of the central densi-

ty. At low energies, pion-nucleus reactions take place at
higher densities. To account approximately for third- and
higher-order terms in the series of Eq. (2.2), density-
dependent renormalizations are incorporated into some of
the terms. It is plausible that this procedure is conver-
gent because of the small value of the pion-nucleon cross
section.

The calculation of various terms in the density expan-
sion requires adopting a specific model for the underlying
dynamics. There is, however, a general feature of the
isospin-invariant formulation that is independent of the
specific dynamical model assumed. Because we deal ex-

plicitly with nuclear states that are analogs of one anoth-
er, predictions for Uo, Ui, and Ui can be obtained con-
veniently from elastic matrix elements of U by using an
inversion procedure. ' Thus, the isospin-invariant formu-
lation has the virtue that the full power of any theory of
elastic scattering can be used to calculate SCX and DCX
provided the isospin dependence of the theory is explicitly
displayed.

Once an optical potential is defined, the procedure for
obtaining the physical pion-nucleus transition amplitudes
is to solve the appropriate one-body equation of motion,
which we take as the Klein-Gordon equation. Formally,
the pion optical potential is the proper self-energy of the
pion Green's function and therefore enters the Klein-
Gordon equation linearly. The general relation between
the optical potential (2.1) and the resulting transition am-

plitudes is concisely displayed through the operator equa-
tion

F=U+ UGF, (2.3}

where F is the transition operator and G is the free pion-
nucleus Klein-Gordon propagator, which is diagonal on
the nuclear space. Thus, the only intermediate nuclear
states that can occur explicitly in the UGE term are the
g.s., IAS, and DIAS. In analogy with Eq. (2.1), the iso-

F(AR) U GF +(U 2U )GF(AR) (2.6)

We refer to this particular situation as the analog route to
DCX; hence the label (AR). To explore the structure of
the analog route further, consider the Born series expan-
sion of Eq. (2.6),

F2 ' ——U&GU&+ U)GU&GUo+ U] GUoGU&

+ UoGUi GU (2.7)

The few terms explicitly displayed here are not meant as
an approximation to the complete series, but are shown

only to make the following point: the analog route to
DCX involves, by definition, at least two actions of the
isovector potential connected by at least one action of G.
Recall that the propagator G is diagonal on the nuclear
space and the potentials implicitly project onto the g.s.,
IAS, or DIAS. Therefore, DCX transitions via purely
nonanalog intermediate states cannot occur in G and can-
not be built out of iterations of Uo and U]. To account
for nonanalog intermediate states in DCX requires the ad-
dition of a U2, and all such direct transition effects must
be embedded within it. Examples of direct processes that
contribute to U2 include correlated sequential scattering,
pion true absorption and dispersion, pion;exchange-
current interactions, and six-quark cluster effects. It is
also clear that to prevent double counting, care must be
taken when constructing models for U2 so that no analog
route process is contained within it.

spin operator dependence of the transition operator may
be expressed as

F=FO+(Q.T)F(+((Il T) Fi . (2.4)

The SCX and DCX transition amplitudes can be obtained
from this expression by taking the corresponding isospin
matrix elements, '

(m, —To+1 i
F

i
m+, —To) =+To(F( —TOFi), (2.5a)

, —To+2
~

F
~

fr+, —To ) = /To(2To —1 )F2, (2.5b)

where —To is the z component of the nuclear isospin

To ——(N —Z)/2.
To calculate charge-exchange transition amplitudes

from the isospin-channel potentials, we relate the F, 's to
the U s by inserting the expressions for U and F given by
Eqs. (2.1) and (2.4} into Eq. (2.3). This results in a set of
coupled equations. (For completeness, this set of equa-
tions along with some details concerning the derivation
are given in Appendix A.} Because the resulting set of
equations for the F,"s are coupled, we refer to this ap-
proach as the isospin-invariant coupled-channel (IICC}
approach. Some general remarks concerning the content
of charge-exchange calculations that result from the IICC
approach and, in particular, the role of the isotensor po-
tential foHow.

Because the relations for Fo, F„and F2 are coupled,
they exhibit the property that, for a particular channel, F;
need not vanish when U;=0. An important example of
this situation is for the case when Uq ——0. In this case, the
operator equation for the isotensor transition amplitude
becomes [see Eq. (A4)]
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Before discussing our specific optical potential, we

make one final comment concerning the numerical pro-
cedure we adopt to obtain IICC solutions for charge ex-

change. Instead of directly solving the coupled channel

problem [as it appears in Eqs. (A4)], we project U and F
onto channels of total (nuclear plus pion) isospin,

U=gnlUI and F"=gnlFI, (2.8)

where the 0's are the projectars onto the total isospin
channels I = Ta + 1 Tp To —1. The main advantage of
going to channels of total isospin is that the resulting
equations for Fq are diagonal in terms of the channel in-

dices. From the definitions of the 0's (which appear in

Appendix A), we obtain the components UI on this basis

from the isoscalar, isovector, and isotensor components
U; (i=0,1,2). This amounts to a unitary transformation
from the one basis (indexed by i} to another (indexed by
I). Our numerical procedure is to construct the UI's
from model U~'s, solve the diagonal equations for the
Fl's, and then construct the F s by using the inverse
transformation. This procedure is much easier to solve
numerically than the original coupled equations. Physi-
cally, however, it is more natural to discuss the potential
in terms of isoscalar, isovector, and isotensor components,
and throughout this paper we shall continue to do so.

The above IICC procedure for calculating charge ex-

change cannot be used for elastic scattering because the
Coulomb interaction is important and violates isospin in-

variance. %e calculate elastic scattering by adding the
Coulomb potential to the full optical potential given in

Eq. (2.1}and by solving for the elastic amplitudes directly.
This procedure does not allow intermediate IAQ or DIAS
charge exchange; however, we have determined that the
influence of these coupled-channel effects is negligible for
elastic scattering. The influence of the Coulomb interac-
tian is also expected to be of some importance for low-

energy SCX (unlike the situation at higher energies). '

%e show in Sec. V that, to a good approximation,
Coulomb distortion effects can be ignored for 50-MeV
SCX on light nuclei, but for nuclei with Z &20, these ef-
fects can be significant.

(2.9)

where g, and gp are, respectively, the s- and p-wave pion-
nucleon contributions to the lowest-order potential; b,g,
and b,gp refer, similarly, to the higher-order contributions.
Each of these higher-order terms is further divided into
two pieces, hg=bg' '+X, where hg' ' is associated with
m.-2N absorption and dispersion, and X is associated with

B. Specific optical potential

The specific form of the optical potential we adopt in
this paper is the one used by Stricker, McManus, and Carr
to describe low-energy elastic scattering. If we explicitly
separate the terms linear in the densities from the higher-
order terms, the optical potential that results from the
strong interactions can be written as'

4. =40+(4 T4 ( and kp=kpo+(()1'Tep(

where for the isoscalar terms

(,0=A,'0'p(r) and gpo, Ap('zp(r), ——
and for the isovector terms

(2.10a}

(2.10b)

Eg(() -P(")
bs1 sl

0

(1) kp(r)
aild (p i A,p i

0
(2.10c)

The densities p and bp are, respectively, the nuclear
ground-state density and the excess neutron density. The
A,"'s are the first-order coupling coefficients (our notation
is that without subscripts all the channels designated by

correlations. The quantity k is the pion's wave number in
the pion-nucleus center of momentum, and the quantities

p( and p2 are kinematical factors that result from the
frame transformation from the pion-nucleon (m-N) to the
pion-nucleus (ir-A) center of momentum. These are taken
to be p( ——(1+@)/(1+@/A) and @2=(1+@/2)/(1+@/A},
where e=(k +m )' /mN and mN(m ) is the nucleon's
(pion's) mass (in units of i(I=c= 1).

The issue of higher-order contributions to the optical
potential is an especially important one at low energies.
In the absence of such modifications, the n-A interaction
becomes very strong at low energy due to the presence of
a phenomenon that has become known as the Kisslinger
catastrophe. Nuclear-medium modifications to the p-
wave terms in the optical potential tend to regulate this
singular behavior. Two types of effects that have been
identified as significant in regulating the interaction are
comelations2i and self-consistent dispersive com~tions. 22

Correlations in pion-nucleus scattering has received much
attention, and we adapt specific theoretical models for
these (X) terms.

Many of the higher-order effects are model dependent
and difficult to calculate. This includes pion true absorp-
tion and dispersion resulting from pion and nucleon in-

teractions with the nuclear medium internal to the m-N

scattering amplitude. Other such effects that may contri-
bute significantly to the second-order optical potential in-

clude exchange currents and six-quark cluster com-
ponents to the 2N wave function. ' To incorporate these
relatively poorly known aspects of pion physics, we follow
the usual procedure of introducing phenomenological pa-
rameters. We shall refer to these poorly known terms col-
lectively as absorption-dispersive corrections (bg( '). Al-

though we discuss these terms phenomenologically below,
it is worth mentioning here that we find that the charge
exchange data taken around 50 MeV can be described
reasonably well with only two adjustable parameters.

Because we are interested in calculating charge ex-

change as well as elastic scattering, we intend to express
the above potential in the form of Eq. (2.1). Thus, we will

be paying particular attention to the isospin components
of the various terms in Eq. (2.9). The terms that contri-
bute to the first-order potential U"' are the so-called
single-scattering terms (the Ps}, and as mentioned in the
previous section, they contribute to the isoscalar and iso-
vector potentials. Their explicit isospin and density
dependences can be written as
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where the complex parameter A,,'0' describes isoscalar s-
wave pion absorption on and dispersion from two nu-
cleons. The constant density po ——0.16 fm i is introduced
so that the first-order and second-order parameters (A,"'
and A,

' ') have the same units. We take the strength of
this parameter from Table IV, set C of the elastic scatter-
ing analysis of Stricker, Carr, and McManus. This value
corresponds to the strength (in MSU notation) of
80——( —0.02+0. 14i) fm .

The correlation part (X,o) of bg, o is taken to represent
Pauli correlation effects only, and the specific form
adopted by Ref. 6 results from nuclear matter considera-
tions that actually render it linear in p. We write this s-
wave isoscalar correlation part as

Xso(P)= —
z km[(Aso) + z(k i) ]p(") (212)

8~~7&

where kf ——1.4 fm ' is taken to be a constant for all nu-

clei. By substantially increasing the isoscalar s-wave
repulsion, this term plays an important role in the descrip-
tion of low-energy elastic scattering.

In addition to the isoscalar second-order s-wave term
given above, we include a corresponding isoueetor second-
order s-wave term, Lg, i. For the absorption-dispersive
part of this isovector term we write

ggz) g(z) ~ P(r) W(r)
Po 2To

L

where the complex parameter A,,'~' describes isovector s-
wave m-2N absorption and dispersion. The density depen-

(2.13)

the omitted subscripts are implied). The A,"'s are
energy-dependent, complex quantities that we determine
from the free n-N phase shifts of Amdt's analysis. z The
specific relationships of the A,"'s to the phase shifts are
given in Appendix B. As in the MSU potential, the imag-
inary parts of the A,"'s are Pauli blocked according to the
nuclear matter prescription of Landau and McMillan.
We use a blocking factor of 0.3, which is associated with
50 MeV pions and a Fermi wave number kf ——1.4 fm
With the phase shifts that we take, no adjustment of the
parameters in the lowest-order potential is needed. Also
in Appendix 8 the connections between our parameters
and those of the MSU potential are given.

We next discuss the higher-order (rg} terms of Eq.
(2.9). As mentioned above, the contributions to these
terms are divided into absorption-dispersive parts (bg' '}
and correlation parts (X). Because these terms result
from the pion interacting with two or more nucleons, they
should contribute to the isoscalar, isovector, and isotensor
potentials. The elastic scattering analysis of Ref. 6 is sen-
sitive mostly to the isoscalar potential. To describe charge
exchange, we find that corresponding isospin-dependent
additions to the original potential are required by the data.

The higher-order s-wave term hg, is treated in the
MSU potential as a second-order isoscalar term, i.e.,

We write the absorption-dispersive part of
this isoscalar term as,

~g", =~i( ~ (')
(2.11)

po

dence is modeled after the considerations given in Ref. 15.
By extending the arguments of Refs. 5 and 4, the isovec-
tor s-wave Pauli correlation term corresponding to the
isoscalar form given in Eq. (2.12) can easily be obtained as

3k
X,i(+)= — kg[2K,"'A,"'——'(I,'") ]

where the density and isospin dependences are taken from
the work of Ref. 15. In this expression, the To(2TO —1)
factor results from including all (nonanalog and analog}
intermediate nuclear states. As for the isotensor Pauh
correlation term (X,z}, the model of Refs. 3—5 does not
easily extend into the isotensor channel. For the purposes
of this paper, we will not speculate on the form of this
term, and we will take X,2

——0.
In summary, the total contribution to the higher-order

s-wave term appearing in Eq. (2.9}is

hg, =lg, o+(p T)hg, i+($ T) bg, z, (2.16}

where each isospin component bg„(i=0,1,2) is divided
into a part associated with ir-2N absorption-dispersive ef-
fects and a part associated with correlations, i.e.,

+X„. The density and isospin dependences of
these separate contributions are given in Eqs.
(2.11)—(2.15). In the present model, s-wave correlations
are assumed to result from Pauli effects only, and these
terms are determined by a theoretical calculation. The
remaining unknown absorption-dispersive terms are
characterized by three complex numbers (A,,'~z') that govern
the strengths of their isospin components. The isoscalar
parameter A,,' J is taken from the elastic analysis of Ref. 6.
The isovector and isotensor parameters (I,,', ' and A,,'z') are
not known; however, we find that these pieces are not re-

quired by the data at 50 MeV.
Next we consider the higher-order p-wave term, hgz.

For this term, the contributions included in the MSU po-
tential are also divided into parts arising from
absorption-dispersive effects and those arising from corre-
lations. In analogy with the treatment of the s-wave term,
the p-wave absorption-dispersive part is considered to be a
second-order isoscalar term of the form

2

(2.17)
Po

l.

%'e determine the isoscalar parameter A&o from the pa-
rameter Co= 0(36+015i).fm, w. hich comes from Table

(2.14)

Unlike the situation in the isoscalar s-wave channel, this
term does not significantly increase the isovector s-wave

repulsion.
In principle, s-wave absorption-dispersive effects and

Pauli correlations will also contribute to an isotensor s-
wave term, hg, z. These isotensor contributions may be
expected to enter in a form analogous to their isoscalar
and isovector counterparts. That is, for the isotensor s-

wave absorption-dispersive term, we write

(2.15}
po To(2T0 —1)
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IV, set C of Stricker, Carr, and McManus.
As in the case for the s-wave terms, we also include

corresponding isovector and isotensor second-order p-
wave absorption-dispersive terms,

Zizz p(r)
Po

hp(r)
2TQ

and

bp2 p2
Po

b,p(r)
To(2 To —1)

(2.19)

respectively. The density and isospin dependences of
these terms are modeled (as for s waves) after the con-
siderations of Ref. 15. The total contribution of the p-
wave absorption-dispersive terms is then

Agre '=bg~o'+(P T)hgq i'+((I) T) bg~i2' . (2.20)

Unlike the situation for the s-wave absorption-dispersive
terms, we do find a need for an imaginary isovector p-
wave term (Imp~i') and a real isotensor p-wave term
(Rek~z') in order to describe the SCX and DCX data near
50 MeV. The values for these coefficients are given and
discussed later, in Sec. IV.

We close this section by mentioning the isospin com-
ponents of the p-wave correlation effects (X~ ). As for the
corresponding s-wave terms, we take the p-wave correla-
tion effects from a theoretical calculation. These effects
are incorporated in the MSU potential as a density-
dependent renormalization of the lowest-order potential.
The renormalization factor takes the familiar form of the
Lorentz-Lorenz Ericson-Ericson effect. Because there
has been some controversy about this particular formula-
tion of p-wave correlations, and because we find the iso-
spin components of this term significantly affect our
charge-exchange calculations, we devote the next section
to a discussion of low-energy p-wave correlations.

III. CORRELATIONS IN LOW-ENERGY
PION SCATTERING

Our objective in this section is to present the isospin
decomposition of the p-wave correlation term Xz. We ap-
proach this objective in two steps. First, we examine the
standard Lorentz-Lorenz Ericson-Ericson term as incor-
porated in the MSU potentials and as discussed by Fried-
man and Gal. Next, we make contact with microscopic
theory to calculate the corresponding isoscalar, isovector,
and isotensor correlation strength parameters based on a
specific model.

Nuclear correlations and their effects on n.-A scattering
have had a long and somewhat confusing history. The
importance of short-range repulsive nucleon-nucleon
correlations to m-A elastic scattering and pionic atoms
was demonstrated long ago and has become known as the
Lorentz-Lorenz Ericson-Ericson (LLEE) effect. Subse-
quent calculations by Eisenberg, Hufner, and Moniz indi-
cated that these correlation effects could disappear when
finite range m.-N form factors are taken into account, but
Barshay, Brown, and Rho argued that the m-N form fac-
tors of Ref. 7 were too severe. Later work indicated that

rho-meson exchange and Pauli correlations should be
considered along with the original short-range LLEE ef-
fect. Careful attempts to find correlation effects
phenomenologically from n-A elastic scattering and pion-
ic atoms were inconclusive; the studies in this section lay
the foundation for looking in Sec. IV at the evidence for
correlations in ~-A charge-exchange scattering.

In this paper we associate the term "correlations" with
the combined LLEE, p-wave Pauli, and rho-meson effects
and lump them together into a separate term of the opti-
cal potential. In order that this term not be confused with
the LLEE effect alone, we refer to this term as the extend
ed Lorentz-Lorenz (EL) effect.

Let us begin with the standard LLEE form as used in
the MSU potential. We expand in powers of bp to obtain
the appropriate isospin components necessary for our
charge-exchange calculations. In this formulation of the
optical potential [Eq. (2.9)j, the EL effect appears as a
higher-order term,

X=——(g)' 1+—gP 3 P 3 P (3.1)

where a is the dimensionless EL correlation parameter.
This term is added to the p-wave absorption-dispersive
term in Eq. (2.20} to give the total higher-order p-wave
contribution to the optical potential. To recover the form
of the p-wave potential used in Ref. 3 the single-scattering
term must be added to the Xp term given here.

From the isospin dependence of the first-order p-wave
term (g&) given in Eq. (2.10), we see that in addition to an
extended Lorentz-Lorenz isoscalar (ELIS) term in Eq.
(3.1), there are implied isovector (ELIV) and isotensor
(ELIT) correlation terms. In this simple model, the value
of the EL correlation parameter a given by any set of
elastic scattering parameters from Ref. 6 completely
specifies these isospin dependent correlation terms. The
more microscopic approach to p-wave correlation effects
discussed below indicates that the different correlation pa-
rameters for the various isospin components are approxi-
mately equal to a model used in Ref. 6.

To display the implied isospin dependence of the EL
term explicitly, we rewrite Eq. (3.1) in the form

Xq Xpo+(f T)Xpi——+($.T}Xp2, (3.2)

X~i ——Li(p) c~a
0

(3.3b)

Xq2 1.2(p)—— (3.3c)

where the ELIS, ELIV, and ELIT terms can be obtained
by taking the appropriate linear combinations of elastic
matrix elements as mentioned in Sec. II. A brief outline
of the algebraic manipulations along with the exact results
is given in Appendix C. In this paper, we use the relative-

ly simple form of the isospin components of Xr, which
are obtained by neglecting terms of order (hp) and
higher. The results are

(3.3a)
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where

Lo(p) = — L(&"o')',
3

L i(p) =— (3.3d)

L ( )=— L (A,",')

Xo ——(2)

Po Po

1

2TQ 1
(3.4a)

2
c~&

p1
2Topo 2TO(2TO —1)po

]+ (3.4b)

Qp2

Po

1
~

1

To(2 TO —1)
r

(3.4c)

where the A, 's appearing here are the results of the micro-
scopic second-order calculations associated with the dia-

in terms of the complete isoscalar EL term
L ' =[1+(ao/3)A&'Op]. We have added subscripts to the
EL correlation parameters so that we may distinguish
them from each other. We note that these expressions in-
clude all powers of p, and because of the smallness of hp,
they should be excellent approximations to the exact re-
sults. A similar (but not identical) isospin decomposition
of the LLEE factor has been obtained by Friedman and
Gal.

To choose values for ao, ai, and a2 we make contact
with a microscopic calculation which explicitly includes
short-range correlations, Pauli correlations, and rho-
meson exchange. This microscopic approach follows the
work of Ref. 15, where the second-order diagrams shown
in Fig. 1 are evaluated within a fixed-source field theory
for 50-MeV p-wave m-N amplitudes. The following in-
gredients are included in this calculation: Short-range
correlations are described with a cutoff radial distribution
function that prevents the relative N-N coordinate from
being less than 0.5 fm. The nuclear density matrices are
treated in a surface-corrected local-density approximation,
which incorporates the exponential falloff of the nuclear
wave functions. Intermediate m-A interactions are ac-
counted for by using a renormalized local-density form
for the intermediate pion propagator. Finite-range
meson-nucleon form factors of the form U (k)
=(1+ k /A )

' are used, and for the rho-meson cou-
plings we assume

fpNa/f +Nb fpNN/f ~NN =~&rnid/in.

(Ref. 29). Finally, kinematic approximations made in
Ref. 15 that were applicable only at resonance energies are
corrected for low-energies.

To obtain the EL correlation parameters from the mi-
croscopic approach of Ref. 15, we equate the correspond-
ing isospin components from Eq. (3.2) of this paper to
those of Eq. (5.35} of Ref. 15. By so doing, we find the
following results:

r

(a) (b)

77.

FIG. 1. Two-nucleon processes evaluated to determine the
EL correlation factors. Pauli correlations enter through (b).
Short range repulsive correlations keep nucleons apart in (a} and
(b}.

grams in Fig. l. Because these calculations are for m.-2N
processes, the Xz's appearing in Eqs. (3 4) have the ap-
propriate superscript. These second-order X~'s are found
by using the p=0 values of the L 's in Eqs. (3.3d), i.e.,
Lp= —a~(~go) /3, L i = —2ai(~&0~& i )/3, and
= —az(Az'i')2/3. Now, by using the second-order X 's in
Eqs. '(3.3a)—(3.3c) that result from these values of the
L s, we can use Eqs. (3.4) to obtain expressions for the
a's in terms of the calculated I,'s. The resulting expres-
sions are

ao=—
2

3 ~ N —Z
(g(1))2

A3—
1

2TQ 1

(3.5a)

3 ~ E —Z 1
7

2TQ —1

12 ~o
(i] 2 A2+ A4

p,(g",')' 2TO —1

(3.5b)

(3.5c)

The (lV —Z)/A factors in the expressions for ao and a,
result from bp/p factors in the model, and numerically
the contributions from the terms including these
(N —Z}/A factors turn out to be insignificant. The
Tp/(2 To —1 ) factor in the expression for a3 results (in the
model of Ref. 15) from including al/ intermediate nuclear
states (analog and nonanalog), and the A,4 term subtracts
the analog route component so that no double counting
takes place.

The theory of Ref. 15 yields complex values for the A, 's,
and thus, via Eqs. (3.5), gives rise to complex a parame-
ters. The imaginary parts arise mostly from the Pauli ex-
change diagram [Fig. 1(b)]. In the following discussion of
our calculations for the o. s, we omit the imaginary parts
in order to stay as close as possible to the MSU procedure
for Pauli blocking. In the MSU approach the imaginary
parts of the single-scattering terms are calculated accord-
ing to the prescription of Landau and McMillan.

In Table I we show our microscopic results for the EL
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TABLE I. Effects of short-range correlations, Pauli correlations, and rho-meson exchange at 50
MeV on the calculation of the EL correlation parameters ao, a~, and a~. The top three roars are for pi-
meson exchange only. The bottom three rows include both the pi and rho meson.

A (fm ') 1(a) + 1(b) 1(a) 1(a) + 1(b) 1(a)
A2

1(a) + 1(b)

(m )20
{m)10
(m)6
(m+p)20
(++p)10
(m+p)6

1.09
0.79
0.46
3.05
2.60
1.61

1.34
1.22
1.09
2.14
1.99
1.69

1.06
0.78
0.45
2.98
2.55
1.58

0.99
0.89
0.77
1.68
1.56
1.29

1.01
0.69
0.32
3.20
2.72
1.61

1.21
1.05
0.86
2.38
2.18
1.71

correlation parameters obtained through the use of Eqs.
(3.5). The first-order quantities (the A,"'s) in this calcula-
tion are determined from the 50-MeV m-N phase shifts, 2

and the constant central density is taken as po
——0.16

fm . The columns of this table labeled 1(a) result from
using the direct diagram only, as depicted in Fig. 1(a}.
The columns labeled 1(a) + 1(b) result from calculating
both the direct and exchange diagrams, Figs. 1(a) and 1(b).
Short-range correlations between the two nucleons are in-
cluded in all the results given here. The top three rows re-
sult from evaluating intermediate pion exchange only,
with the m-N form factor range set to values of A =20,
10, and 6 fm '. By reading down the top three rows of
the columns labeled 1(a), we see that the short-range
correlation contribution to the a's falls off as A de-
creases. By reading down the columns labeled l(a) + l(b),
we see, however, that the Pauli effect tends to compensate
and leaves the magnitudes of the a's rather insensitive to
the n.-N range.

In the bottom three rows of Table I, we give our results
of including both pi- and rho-meson exchange with
A =A&——20, 10, and 6 fm '. We see that as Az in-
creases, the a's resulting from the direct diagram 1(a) be-
come large. By including the exchange diagram 1(b), the
corresponding a's tend to be reduced in size (as contrasted
to the pion-exchange-only results which show the Pauli
effect to increase the values of the a' s). Having an ao
close to unity is important. It is pointed out in Ref. 30
that if dispersive effects contained in Co of the MSU po-
tential are included with ao, giving ao, then aors ao- l.
One can understand the transparency of the nucleus to
pions at low energy in terms of ao being close to unity:
ao ——1 is just the value needed to cancel the double-
scattering term of the multiple scattering expansion. ' As
we will see, experiment indicates that m-A SCX is also
similar to m-N SCX, and thus we might expect a similar
role for correlations plus dispersion in the isovector chan-
nel.

For the realistic values ' A =A~=6.0 fm ', our com-
plete calculation, including rho-meson exchange, short-
range, and Pauli correlations [sixth row results labeled
1(a) + 1(b)], we find a0-1.7, ai 1.3, and az-1.7. These
values are comparable to each other and close to those
used in the MSU potential. We also found these values of
the a's to be relatively insensitive to other variations in
our calculations. However, if the rho-meson and inter-

IV. NUMERICAL RESULTS OF
THE ISOSPIN-INVARIANT MODEL

In this section we display and discuss calculations near
the 50-MeV region that result from the IICC formulation
and the optical potential specified in the previous sections.
The main points observed from these calculations are the
following: (1) Elastic scattering is well described, and the
ELIV and ELIT terms do not significantly affect these
calculations. (2} The ELIV term significantly affects the
SCX and analog route DCX calculations. (3} The ELIT
term does not significantly affect SCX, but for forward
direction DCX it causes a destructive interference with
the analog route. (4} Comparison to SCX data tends to
support the ELIV effects, whereas the DCX data indi-
cates the need for some additional process to interfere
constructively with the analog route.

Before we discuss our results, we briefly review and
specify the parameters that characterize the potential. We
have expressed the MSU form of the low-energy optical
potential given by Eq. (2.9) in terms of its isospin com-
ponents

U= Uo+(p T)Ui+(p. T) U2,

where for each component (i=0,1,2)

(4.1)

mediate m-A interactions are omitted, we find that the
value of a2 can be significantly altered in magnitude and

sign, depending on the exact treatment of the short-range
correlations and nuclear densities.

From Eqs. (3.3) we note that the resulting X~'s will be
negative definite. This implies that both the Xzz and X~ i

terms, when added to the first-order potential, will respec-
tively decrease the isoscalar and isovector p-wave attrac-
tion. There is no first-order isotensor potential for the

X~2 term to decrease, but, as shown below, the X~2 term
destructively interferes with the analog route amplitude.
The numerical influence of the X~0 term on elastic
scattering has been thoroughly investigated (see Ref. 6).
In the next section, we numerically demonstrate that the
corresponding influences of the X~i and X~2 terms on
SCX and DCX are significant. This suggests that these
effects must be included in all serious calculations of
low-energy SCX and DCX.
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U, =V (f„+b,g,'2i+X„}V k—'((„+b,gP+X„)
p2—
2

[(pi —1)kp, +(pi —1)~Op"] . (4.2}

The g„and g&, terms in this expression are the first-order
(or single-scattering) terms and contribute to the isoscalar
(i =0) and isovector (i =1} potentials only, i.e.,
$,2=(~i=—0. The quantities that specify the strengths of
these terms are designated }i,,'P and A&,", and are theoreti-
cally determined as discussed in Sec. II B.

The X„and Xz,. terms in Eq. .(4.2) are the correlation
terms, and are also theoretically determined. The s-wave
X„'s are calculated in terms of the A,,' 's and the Fermi
wave number (kf) according to Eqs. (2.12) and (2.14).
The p-wave Xz, 's are fixed by Eqs. (3.3) in terms of the
A~,"s and the EL correlation parameters ao, ai, and az.
We take, for simplicity, ao ——a, =ai ——1.6, which corre-
sponds roughly to our A =A&—6 fm ' calculations in
Table I. This value of a has also been used by Stricker,
Carr, and McManus (Table IV, set C) in the analysis of 50
MeV elastic scatterin .

The b,g,';' and hgz' terms in Eq. (4.2) characterize the
absorption-dispersive effects, and are defined by Eqs.
(2.11)—(2.19). The strengths of these terms are governed
by the A,,';' and AzP parameters. As mentioned in Sec.
II 8, we take the isoscalar parameters (A,,'J and A&0') from
the 50-MeV elastic scattering analysis of Stricker, Carr,
and McManus. Although there is some uncertainty in
these values of the isoscalar parameters (depending, for
example, on the procedure for extrapolating from zero en-

ergy), we feel that this choice is representative. The
remaining isovector and isotensor absorption-dispersive
parameters are relatively unknown at this time; thus, un-

less stated otherwise, we set them to zero.
For ease of future reference, we list the values of all the

50-MeV optical-potential parameters in Table II. Unless

stated otherwise, we use the N/Z scaling model for the
nuclear densities, where p& is determined from electron
scattering and p„=(N /Z)p~ T. he point proton-density
parameters we use in this model are corrected for the fi-
nite size of the proton and are given in Table III.

To perform IICC calculations, we have extended the
coordinate-space computer code PIESDEX (Ref. 16) so that
the full density-dependence of the ELIS, ELIV, and ELIT
terms can be incorporated. %ith PIESDEx, the Klein-
Gordon equation is solved numerically for scattering am-
phtudes on channels of total isospin, and the appropriate
linear combinations of these total isospin amplitudes are
used to obtain the charge-exchange amplitudes. For elas-
tic scattering, the Coulomb potential is added to the full
optical potential, and the elastic amplitudes are calculated
directly (without going to the total isospin representation).
The infiuence of the Coulomb interaction is not included
in the IICC results for charge exchange shown in this sec-
tion, but it is included in the 0%'BA results in Sec. V,

To demonstrate that our choice of parameters provides
a reasonable qualitative description of elastic scattering,
we compare some of our results to 50 MeV n.+ data in
Fig. 2. The solid curves result from including the ELIV
term [Eq. (3.3b)], whereas the short-dashed curves result
from omitting it. For the To ——0 nuclei there is, of course,
no difference. But even for the To&0 nuclei, the influ-
ence of the ELIV term is relatively minor: it slightly
deepens the cross-section minima for these nuclei. The ef-
fect of the ELIT term [Eq. (3.3c)] upon elastic scattering
is insignificant and the elastic scattering calculations that
result from including both the ELIV and ELIT terms
cannot be distinguished from the solid curves. Although
these calculations agree reasonably well with the data, the
agreement can easily be improved by slightly adjusting the
isoscalar absorption-dispersive parameters.

For the corresponding 50-MeV SCX calculations, the

TABLE II. Optical potential parameters for 50 MeV. The A, 's depend upon A through the frame transformation factors p~ and

p~, but the variation is at most 1%. The values given here are for ' C. Also, the listed Im(k"')'s are multiplied by a Pauli blocking
factor of 0.3.

Parameter

First-order isoscalar

First-order isovector

Second-order isoscalar

Second-order isovector

Second-order isotensor

EL correlation strength

Fermi wave number
used in s-wave
correlation term

Origin

m-N phase shifts
Ref. 24

m-N phase shifts
Ref. 24

Pionic atoms and
elastic scattering
analysis, Ref. 6

Phenomenological
analysis of SCX

Phenomenological
analysis of DCX

Sec. III and
Ref. 6

Ref. 6

Values

A,,'o' ——( —2.39+0.22i) fm', A~0 ——(8.40+0.32i) fm'

k&~ =( —9.12+0.15i) fm '
k&~ =(10.91+0.30i) fm

A,,'0' ——( —0.11+0.74i) fm', A,~g ——(0.67+1.09i) fm

X,",) =X,(2,}=zero'

A. 2 =A,pp =zero

o.; =o.=1.6

kg ——1.4 fm

'Except for Figs. 5 and 11, where the effects of Imi&I' ———1.0 fm on SCX are shown, and for Fig. 6, where the effects of
Reive& ——+ 1.7 fm' on DCX are shown.
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TABLE III. Point proton-density shapes and parameters. l l I /
I

I I I I I F I
I

I I I I
I

I I

p=po[1+up(r ja)']exp( —r'/a')
14C 15N 160 18'

a (fm) 1.66
1.80

1.69
1.67

1.75
1.54

1.80
1.79

IO
-I

lo 90
Z

p =pa[1+m (r Ic)'][1+exp[(r—c)la] I

a I'fm)

c (fm)
0.586
3.74

—0.201

Ca

0.520
3.52
0.0

48Ca

0.525
3.77

—0.03

0.528
4.86
0.0

208Pb

0.505
6.62
0.0
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IO

IO
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FIG. 2. Comparison of IICC calculations with the data (Ref.
33) for 50-MeV m+ elastic scattering on several nuclei. The
solid curves include the ELIV term and the dashed curves do
not.

influence of the ELIV term is quite pronounced because
of the near cancellation between the s- and p-wave first-
order terms in the forward direction. We display some of
these results in Fig. 3. The short-dashed curves result
from omitting the ELIV and ELIT terms. This amounts
to using only the lowest-order isovector potential to calcu-
late SCX. The long-dashed curves result from including
the ELIV terms, and the solid curves result from includ-
ing both the ELIV and ELIT terms. From these results
we see that the inclusion of the ELIV term has the effect
of systematically decreasing and shifting the calculated
cross sections. The most dramatic effect can be seen in
the forward direction of the lighter nuclei, where the
ELIV effect changes the maxima at 8=0' into minima.
We also note from Fig. 3 that the effect of the ELIT term
upon SCX is minuscule: it causes an additional small

I
I

I

l
(

i/

-2
IO

I

1

l

i

(

( (
(g

I i s i i I

50 IOO 0
8 (deg)

l I I j I I I I I I j I I

50 IOO

FIG. 3. IICC calculations of 50-MeV m+ SCX to the IAS on
several nuclei. The solid curves include both ELIV and ELIT
terms, the long-dashed curves have only the ELIV term, and the
short-dashed curves have neither.

reduction beyond that of the ELIV effect in the forward
direction.

In Fig. 4, we show the corresponding DCX calcula-
tions. As in Fig. 3, the solid, long-dashed, and short-
dashed curves correspond to including both the ELIV and
ELIT terms, only the ELIV term, and neither the ELIV
nor ELIT terms, respectively. Although the ELIT term
does influenc the calculations, we see that the largest ef-
fect upon DCX apparently results from including the
ELIV term (comparing the short-dashed to the long-
dashed curves). We further note that both of the dashed
curves result from analog route calculations of DCX, i.e.,
Uz ——0. The difference between them, of course, results
from the different models of U&. It is interesting to ob-
serve that the inclusion of the ELIV systematically lowers
the SCX cross sections, whereas for DCX it increases the
cross section for the lightest nucleus and decreases the
cross sections for the others.

To see if there is any experimental evidence in support
of the isoveetor and isotensor correlative effects demon-
strated above, we now compare our calculations to some
of the recent charge-exchange data taken for incident pion
energies near 50 MeV. In Fig. 5, we compare our SCX
calculations to some of the (m.+,m ) IAS data. Because
the ELIT term has a negligible effect on SCX calcula-
tions, we have omitted it from the potential used to obtain
the curves shown in this figure. The solid curves result
from including the ELIV term only. (These results corre-
sponding to those of Fig. 3 shown by the long-dashed
curves. )

As mentioned above in the discussion of Fig. 3, the in-
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FIG. 4. IICC calculations of 50-MeV a+ DCX to the DIAS
on several nuclei. The solid curves include both the ELIV and
ELIT terms, the long-dashed curves have only the ELIV, and
the short-dashed curves have neither.
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FIG. 5. Comparison of 50-MeV m+ SCX data (Refs. 12, 1,
and 11) to IICC calculations for several nuclei. The solid curves
include the ELIV term with no ELIT term and the dashed
curves contain in addition an imaginary second-order p-wave
isovector term [A~2,'={0—1 Oi) fm ]. .

elusion of the ELIV term produces forward-angle minima
in the calculations. By comparing the data to the solid
curves in Fig. 5, we see that within our calculational
framework the data tend to support the need for the
ELIV term. In fact, the data on ' C and ' N show much
deeper forward minima than those given by the solid
curves, whereas the forward-angle calculated cross sec-
tions for K and Ca are in reasonable agreement with
the data. In an attempt to phenomenologically alleviate
this discrepancy, we explored the influence of the s-wave
and p-wave second-order isovector absorption-dispersive
terms [given in Eqs. (2.13) and (2.18)] by arbitrarily set-
ting the real and imaginary parts of the strength parame-
ters A,,'i' and A&i' to values of +1.0 fm . We found the
imaginary part of the p-wave term to have the desired ef-
fect on the SCX cross sections. The dashed curves in Fig.
5 show the results when an isovector p-wave absorption of
strength ImIA~ii'I = —1.0 fm (which corresponds to an
MSU strength of ImI C, )

= —0.54 fm ) is added to the
potential, in addition to the ELIV term. It is interesting
to note that this additional term affects the forward cross
sections of the light nuclei only moderately (and those of
the heavy nuclei even less), and is relatively insignificant
as compared to the effects of the ELIV term (see Fig. 3).
The discrepancy between our calculation and the large-
angle K data presumably results from the omission in
our optical potential of nonzero multipole terms for J&0
nuclei, in this case a quadrupole term for a J=—', nu-

cleus. "
As for comparing our DCX calculations to data, the

only low-energy angular distribution published at this
time is for ' C. There are preliminary data from TRI-
UMF (Ref. 35) on 'sO which are essentially the same as
the ' C data. (Our DCX calculations of ' 0 are also
essentially the same as the ' C results. ) In Fig. 6 we com-
pare our calculations to the ' C data. The solid and
short-dashed curves are analog route calculations and cor-
respond to the SCX curves in Fig. 5. For both of these
calculations, the ELIV term is included in the isovector
potential, but there is is no isotensor potential. The iso-
vector potential that yields the short-dashed curve differs
from the one that yields the solid curve by the inclusion of
the phenomenological i.sovector absorption-dispersive
term A&i' mentioned above. Although this term signifi-
cantly altered the forward-angle ' C SCX results, it has a
relatively mild effect on the corresponding DCX calcula-
tions. This indicates that variations in the magnitude of
the analog route DCX cross sections are related to varia-
tions in the SCX cross sections over a relatively narrow
angular region around 40—80 deg, which is understand-
able in lowest order ( UiGUi) from the available phase
space for the intermediate nangular integ. ration. The
1ong-dashed and dot-dashed curves are nananalog route
calculations which result from including the different iso-
tensor potentials in addition to the isovector potential
used to obtain the short-dashed curve. Inclusion of the
ELIT term for the isotensor potential results in the long-
dash curve. By comparing this curve to the analog route
(short-dashed curve), we see that the ELIT term destruc-
tively interferes with the analog route amplitude. Howev-
er, as noted in Sec. III, whether the correction is construc-
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tive or destructive depends sensitively on short range
correlations and intermediate distortions.

The DCX data shown in Fig. 6 indicates the need for a
constructiue interference between the isotensor potential
and the analog route amplitude. Because all the p-wave
correlation terms resulting from the EL effect are essen-

tially real and negative [see Eqs. (3.3)], we can produce a
constructive interference by including a positive real iso-
tensor potential through the use of the p-wave isotensor
absorption-dispersive term lgzz' given in Eq. (2.19). To
accomplish this, we set the strength parameter in Eq.
(2.19) to ReA&q' ——l.7 fm . The results of such an isotensor
potential are shown by the dot-dashed curve, and indeed
we see a constructive interference. From this calculation-
al exercise, it appears that the ELIT term is an important
correction for DCX, but the fact that the effect suppresses
the cross section means that there are additional pieces af-
fecting the DCX. Other effects that have been considered
include sequential scattering via an intermediate nonana-

log 2+ state, ' coupled-channel effects from including this
nonanalog 2+ state, 36 and six-quark cluster effects in the
description of short-range N-N correlations. ' It remains
to be seen whether a theoretical description that includes
all of the above effects is consistent with the data.

V. DISTORTED WAVE APPROXIMATION
TO CHARGE EXCHANGE

The striking results obtained in Sec. IV are analyzed
further here, where we use a distorted wave Born approxi-
mation (DWBA} to the isospin-invariant coupled-channel
(IICC) method of calculating charge exchange. Because

i a I s

0 50 IOO

8c.m. (deg}

FIG. 6. Comparison of 50 MeV ' C(m+, m )' O(DIAS) data

{Ref. 2) to IICC calculations. Analog route calculations are

shown with the ELIV term only (solid curve) and with, in addi-

tion, an imaginary second-order isovector p-wave term

[A~~' ——(0—1 Oi) fm. ') (short-dashed curve). Also shown are

calculations with both of the above higher-order isovector terms

and the ELIT term (long-dashed curve) and with the ELIT term

plus a real second-order isotensor p-wave term [A~2 ——(1 7+Oi.)

fm i] (dot-dashed curve).

our calculational results indicated important sensitivities
to the pion dynamics at low energy, we denote a substan-
tial part of the discussion at the end of this section to
show how this sensitivity arises. %'ithin the 0%BA, the
physical origin of the effects is more easily visualized.
Unlike the work of Ref. 6, in which a plane wave Born
approximation (PWBA) was employed successfully to
qualitatively describe low-energy elastic calculations, a
P%BA does not resemble the IICC charge-exchange cal-
culations on the data. The fact that the isoscalar potential
is much larger than the isovector potential might lead one
to suspect that higher-order terms in the Born series in-
volving iterations of Uc must be included. Through the
use of elastic distorted waves, the DWBA is a convenient
way of understanding the effects of Uc on the IICC cal-
culations of charge exchange.

The main points observed from the calculations dis-
cussed in this section are the following:

(1) The DWBA is an accurate approximation to the
IICC calculations, and the DWBA enables Coulomb ef-
fects to be included. We find for SCX that Coulomb dis-
tortion effects are important at 50 MeV for Z & 20.

(2) By considering pion probability densities, we display
the ability of pions to penetrate into the nucleus, and we
see the increased penetration of 50-MeV pions relative to
165 MeV pions.

(3) Although 50-MeV distortions are weaker than those
near the (3,3} resonance, they have a major influence in
our model for SCX, and enhance the p-wave m-N transi-
tion amplitude relative to the s-wave part. The increased
pion penetration of the nucleus at low energies allows
medium modification to the reaction mechanism to con-
tribute significantly. This leads to an energy- and A-

dependent modification of the interference betwtx:n the
isovector s- and p-wave m-N amplitudes.

(4) Reasonable variations of the nuclear transition den-
sities do not significantly alter the shape of the calculated
SCX angular distributions, in contrast to the effect of
changes in the second-order optical potential parameters.
This implies that low-energy SCX may be a powerful tool
for studying density-dependent medium modifications to
the m-N interaction in nuclei.

The general matrix element for charge-exchange transi-
tions from the nuclear ground state

~ g ) to the nuclear fi-
nal state

~ f ) can be written for a zero-range n Ncou--
pling as

= Jdr+' '"(k', r)(f
~

t(r) )g)4'++'(k, r), (5.1)

where 4'++' (%~ ') is the initial (final) distorted wave for
the ir+ (m ) of momentum k (k'}, and (f

~

t ~g) is the
nuclear matrix element of the appropriate charge-
exchange transition operator. Because, for example, the
difference between tr+ elastic scattering from different
isotopes is relatively small, the different isospin com-
ponents of the optical potential are expceted to satisfy the
inequality Uo»Ui »Uz. In view of this we assuine
that the charge-exchange transition matrix may be ob-
tained to a good approximation by using the lowest-order
Born terms for the expression given in Eqs. (2.5). That is,
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for SCX we assume

4m&f
~

t(r) Ig) "=V'~o(Fi ~—oI'z)=V &0U1,

and for DCX we assume

4m(f
~
t(r)

~
g) =+To(2To 1)—F2

(5.2)

=+To(2To 1)(—UiGUi+U2) . (5.3)

For the purposes of this paper, we shall perform
DWBA calculations for SCX only. By using the expres-
sions given in Eqs. (2.10)—(3.3), we can factor out the iso-
vector transition density and rewrite Eq. (5.2) in a form
suitable for a distorted wave calculation:

e'

E

be
48

-I-0

50 Km O
Hc.ra (dog)

Zf

50 100

QToUi ———(k Vi+V~ V2V + —,''tl' Vi)
20

V~ V
=——k' (V, —V, )+( V, + V3) k2

(5.4a)

FIG. 7. Comparison of IICC and D%'BA calculations at 50
MeV for several nuclei. The solid curve is a DWBA calculation
with no Coulomb and with T +

——T 0. It is nearly identical to

the IICC calculation (long-dashed curve). The short-dashed
curve is the DWBA calculation with Coulomb included.

2~To
(5.4b)

where V~ (V~) operates on the initial (final) pion distort-
ed wave, k =[(k') +k ]/2. The detailed expressions for
the density dependent V coefficients are

T

V, =X,,",'+X,",' ~ (5.5a)"po
T

V, =X,",'+X,i2,' +L, , (q)p,
po

(5.5b)

V3 =(s'i —1)~p'i'+(P2 —1)~p'i'
po

with

(5.5c)

and I.i(p) given in Eq. (3.3d). In our DWBA calculations
we use Eq. (5.4a). The approximate Eq. (5.4b) is used in
our pedagogical discussion at the end of the section.

In what follows we show DWBA calculations that re-
sult from using the above SCX transition matrix element.
These calculations are performed with an extensively
modified version of the computer code Dwpt, which nu-
merically solves the Klein-Gordon equation to obtain the
distorted waves for the complete elastic optical potential.

For our first study, we show in Fig. 7 a comparison be-
tween the DWBA and IICC calculations of SCX at 50
MeV. The only higher-order isovector term included in
these calculations is the ELIV term. To make this corn-
parison valid the Coulomb potential is not included in the
calculation of the incident ir+ distorted wave, and the en-

ergy of the final ~ is taken as the same as the ir+ energy.
The solid curves in this figure are the resulting D%'BA
calculations. The long-dashed curves are the same IICC
results as in Fig. 3. By comparing the solid curves to the

Pi,(r)=
~

4'++'(k, r)
~

(5.6)

This function is easy to visualize, and it qualitatively indi-
cates the regions of the nucleus where reactions are most
likely to occur. It also provides a useful means for com-
paring calculations that result from different theoretical
models. In Fig. 8, we plot the 50-MeV ~+ probability
density surfaces for ' C and Ca. These surfaces result

long-dashed curves, we see that for SCX the DWBA is an
extremely accurate approximation to the IICC approach.
This agreement also tells us something about the physics.
The IICC approach differs from the DWBA in that the
former proceeds through multiple transitions in and out
of the IAS and DIAS. The latter, as we are using it, does
not. The difference between the IICC and DWBA calcu-
lations is, presumably, a measure of the importance of
such additional charge™exchange processes, and they are
apparently negligible.

Because the DWBA does such a good job of describing
the IICC calculations, we can use it to study the role of
various effects which could not easily be isolated or in-
cluded in the IICC framework. For example, one concern
at low energies is the importance of Coulomb isospin-
symmetry-breaking effects on SCX.' Within our
DWBA, the importance of such effects can be easily as-
sessed. The short-dashed curves in Fig. 7 are D%BA cal-
culations which include Coulomb distortions on the in-
cident n+ wave, but have no difference between the n+
and m kinetic energies. By comparing the solid curves to
the short-dashed curves, we see that Coulotnb distortion
effects are negligible only for light nuclei, and these ef-
fects result in a general increase in the IICC calculated
SCX cross sections. Calculations that include the ap-
propriate IAS Q-value shifts give increases larger than
those shown here. It is interesting to note from Fig. 5
that such effects will tend to iinprove the agreement be-
tween the Ca calculations and the data.

A useful quantity that can be calculated from the dis-
torted waves, and that will help to display the degree of
pion penetration, is the pion probability density,
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FIG. 8. 50-MeV m'+ probability density surfaces for ' C and 'Ca resulting from the same optical potential used for the D%BA
calculations shown in Fig. 7 {including Coulomb). The z axis is along the beam direction and the b axis represents impact parameter.

from the same optical potential that leads to the short-
dashed curves (including Coulomb) in Fig. 7. The z axis
is taken along the beam direction (k), with the origin at
the center of the nucleus. The b axis is the impact param-
eter and corresponds to

~

r
~

when k r=O. The distorted
waves are normalized to unity, and in the plane wave limit
P(r) =1. From this figure we see that although the pion
has some probability of penetrating into the center of light
nuclei, the extent of this penetration decreases as the tar-
get size increases. %'e also see that there are interesting
probability enhancements taking place in different regions
of the nuclear surface. For example, in the z ~0 region a
bunching effect appears in front of the nucleus, and for

z&0 a focusing effect appears behind the nucleus. Be-
cause these enhancements occur well within the nuclear
half-way radius, one could speculate that specific inelastic
transitions whose densities occupy the same regions of the
nuclear surface may lead to inelastic cross sections that
would be enhanced over their plane-wave values.

In Fig. 9 we show b=O probability slices for ' C and
4'Ca. The curves in the top of Fig. 9 show the influence
of various terms of the optical potential at 50 MeV. The
solid curves at the top of Fig. 9 are identical to the b=0
slices of the surfaces shown in Fig. 8, and result from the
complete potential. The dotted curves at the top of Fig. 9
result from omitting the isoscalar and isovector
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absorption-dispersive terms (i.e., A,,';'=A» =0). In this
case a significant probability enhancement appears near
the center of the nucleus. From our complete calculations
we find that the essential factor determining this enhance-
ment, and thus the pion's ability to penetrate into the nu-

cleus, is the isoscalar absorption-dispersive term. The
dashed curves result froin omitting the isoscalar and iso-
vector EL terms (a =0) as well as the absorption-
dispersive terms. These calculations are essentially first-
order calculations. The singular points followed by the
rapid decrease of probability in the nuclear interior results
from the well-known Kisslinger catastrophe, where the ef-
fective in-medium wave number becomes imaginary. For
some perspective, in the bottom of Fig. 9 we contrast the
b=O probability slices for first-order optical potentials at
165 MeV (solid curves) and 100 MeV (dotted curves) to
the 50-MeV dashed curves shown in the top of this figure.
Of course near the (3,3) resonance, the first-order poten-
tial is dominated by the imaginary parts [e.g. , at 165
MeV, A&'0) ——(3.22+9.55i) fm and Az'()-A&'0] and the
strong attenuation of the pion flux is expected. However,
at 100 MeV, where the real parts become appreciable
[Az'0' ——(8.67+ 3.96) fm and A&i' (9 ——SO+.3 94i) .fm ], we
can already see from the curves in the bottom of Fig. 9
the onset of the Kisslinger catastrophe. Furthermore, the
first-order 165 MeV probability slices shown here are not
appreciably different from those obtained with a potential
that includes second-order terms adjusted to fit the data. '

Thus, by comparing the solid curves in the top half of
Fig. 9 to those in the bottom half, we can see how much
further 50 MeV pions penetrate into the nuclear interior

where D, and D~ are the s-wave and p-wave distortion
functions,

D, (k', k;r) =ql( )"(k', r)4((+)(k,r), (5.8a)

D~(k', k;r) =(k ')V)P' "(k', r) V)P(+'(k, r), (5.8b)

and 8', = V& —V3, 8'~ = Vz+ V3 are the appropriate
linear combinations of the density dependent V coeffi-
cients given in Eqs. (5.5). In these expressions we assume
k =k (i.e.,

~

k'
~

=
~

k
~

). Now because bp in our calcu-
lations is a function of

~

r ~, Eq. (5.7) can be rewritten as

(F} = — fdr[r'bp(r)][W, d, (k', k;r)
2 To

+ Rqdp(k', k', r)],

than 165 MeV pions.
From the 50-MeV probability densities shown in Fig. 8,

it is apparent that within our model, distorted waves are
far froin being plane waves. To understand in detail the
quantitative effects of these distortions, we need to
separate explicitly the distortion functions in the DWBA
integrand. We accomplish this by performing the follow-
ing manipulations. By inserting Eq. (5.4b) into (5.1), we
write the distorted wave matrix element as

k(F&D"=— fdr ~p(r)[W, D, (k', k;r)
Sn To

+ WpDp(k', k;r)],
(5.7)

I ( I
( I )

I

l4C

I ( I
/

I

"Ca

where the radial distortion functions are defined as

d;(k', k;r) =(4m') ' fdQ„D;(k', k;r) .

(5.9)

(5.10)
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In the plane wave limit, i.e., %(k, r)~exp(ik r), the ra-
dial distortion functions are proportional to spherical
Bessel functions of order /=0,

d, (k', k;r) =j 0(qr) (5.11)
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and

dp (k', k;r) =k'.kjo(qr),

for the three-momentum transfer q=k' —k. For the case
of no distortions, Eq. (5.9) then gives the plane-wave am-
plitude

2

(F) = — f'dr[r bp(r)][W, +k'.kW&]jo(qr) .
2 To

FIG. 9. Probability slices at b=0 for m+ scattering on ' C
and Ca from the same optical potential as in Fig. 8. The z
axis is along the beam direction. In the top of this figure (a) SO-

MeV slices are shown: the solid curves are b=O slices of the
surfaces in Fig. 8 and result from the complete potential; the
dotted curves result from omitting all absorption terms; and the
dashed curves result from omitting the ELIS and ELIV terms as
well (essentially first order). In the bottom (b), first-order slices
are shown for 164 MeV (solid curves) and 100 MeV (dotted
curves), along with those for 50 MeV (same as above —dashed
curves).

( P}PwDi gq ) I [g (()
(p 1)g(1)]

Sm T()

+(p(),",))k' k~, (5.13)

(5.12)

If we make the additional restriction of omitting the
density-dependent pieces from the 8' coefficients
[A,' '=0, I.(

——0 in Eqs. (5.5)], Eq. (5.12) gives the plane-
wave amplitude for a density-independent (PWDI) reac-
tion mechanism,
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where hp(q) is the Fourier transform of bp(r). At q=O,
this formula gives the very simple result for the 8=0'
plane-eave density-independent cross section,

(5.14)

which, because of normalization, is independent of bp.
In Fig. 10 we show the real and imaginary parts of the

8=0' radial distortion functions [d, and d~ of Eq. (5.10)]
for 50-MeV m+ scattering from ' C and Ca. These
curves are generated from the same optical potential used
to obtain the solid curves in Fig. 7. We also show in the
bottom of Fig. 10 the corres onding weighted transition
densities, 5(r) =r hp(r)/ To. The 5(r)'s are important
because they help to select the regions of the nuclear radii
that contribute to the radial integrals. Note that in the re-
gions selected by the 5(r)'s, d, and dz differ from each
other and from the plane-wave values (d =1 0+0. Oi).
These differences, particularly in the imaginary parts,
play an important role in understanding the effects of dis-
tortions and their influence upon the cancellation between
components of the transition operator. We use Eqs.
(5.9)—(5.14), along with the curves in Fig. 10, to discuss
the following results.

We now demonstrate the influence of the distorted
waves by contrasting, in Figs. 11(a) and (b), The DWBA
results (solid curves) to the PWBA results (dashed curves)
for ' C and Ca. The potential that determines the dis-
torted waves in this figure is the complete potential used
to calculate the solid curve DWBA results shown in Fig.

I

l4
I s s ~

/
I ~ s E

$
~ ~ 1

7. The inelastic transition operator for the calculations in
Fig. 11(a) does not include any isovector absorption-
dispersive terms or the ELIV term [i.e., in Eqs. (5.5)
A,

' '=0, Lt =0] and is, therefore, density independent.
However in Fig. 11(b), the inelastic transition operator
does include the p-wave isovector absorption-dispersive
term (A.pt

———1.0i fm ) and the ELIV term (a=1.6, so
that LI&0). From the curves shown in Fig. 11, we ob-
serve the following features.

In Fig. 11(a), the forward-direction PWBA results
strongly resemble the nonspin fiip part of the free m-N

cross section (depicted in Fig. 12 as the solid curve). This
indicates that the effects of the s-wave correlation term
[the kF term in Eq. (5.5a}] and the Pauli blocking of the
imaginary parts of the lt,"'s do not appreciably alter the
cancellation taking place between the s- and p-wave iso-
vector nonspin flip term around 30'. In this angular re-
gion, the free rr-N process is dominated by the spin flip
contribution as shown by the dashed curve in Fig. 12,
which includes both the spin flip and nonspin flip ampli-
tudes. Of course, for J=O nuclei, the IAS transition pre-
cludes any spin flip contribution in lowest order. The ex-
act position in angle (and in energy) of the s-p interference
for the n.-N charge-exchange process depends on the
model used to obtain the rr-N phase shifts. In this low-
energy region, the phase shifts are not extremely well
known at this time. The model we are using [Ref. 24}]
does a reasonably good job of describing the new
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FIG. 11. 0%'BA (solid curves) and PWBA (dashed curves)
calculations for 50 MeV SCX to the IAS on ' C and Ca. In (a)
no ELIV and no isovector absorption terms are included
(density-independent reaction mechanism) while in (b) both an
isovector p-wave absorption term [A~I' ——(0—I Oi) fm '] .and
the ELIV term are included (density-dependent reaction mecha-
nism).
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IO

obtained by finding the zero of the reaction mechanism
part of Eq. (5.13), i.e.,

cos8;„=[(p,—1)A~i' —%~i'] .

For the average value of pi ——1.19 and for the approxi-
mate values of the A,"'s given above, 8;„=30.The addi-
tional minima in these plane wave curves result from the
nuclear form factors +(q).

The striking feature of the distorted-wave results (solid
curves) in Fig. 11(a) is the large increase over the plane-
wave results in the forward direction. To understand this
behavior, we use Eq. (5.9) to approximate the ratio of
zero-degree distorted wave to plane-wave cross sections as

1 I I I I I I l I I I I l

50 IOO

8, (deg)
FIG. 12. The free m p~m n angular distribution at 50 MeV

from the phase-shift solution "C5" of Amdt (Ref. 24). The
solid curve is without the spin-Aip part and the dashed curve is
with it.

forward-angle data at 50 MeV, but it does not accurately
describe the energy dependence.

%e also note, by comparing the PWBA results
(dashed-curves) of Fig. 11(b) to those of Fig. 11(a), that
the decrease of the isovector p-wave attraction resulting
from the inclusion of the ELIV term greatly reduces the
destructive s-p interference. Additional PWBA calcula-
tions resulting from the omission of Iml~ i' cannot be dis-
tinguished from the plotted dashed curves which include
Imi&~'. As we show below, this cancellation takes place in
the real parts of the amplitudes.

Finally we note that the role of distortion effects
changes between Figs. 11(a) and (b). In Fig. 11(a) distor-
tions significantly increase the forward cross sections,
whereas in Fig. 11(b) they significantly decrease the for-
ward cross sections.

The calculations shown in Fig. 11(a) result froin a
density-independent reaction mechanism. To understand
the plane-wave results (dashed curves) in this figure we
use the PWDI formulas given by Eqs. (5.13) and (5.14).
%e first note that the zero-degree cross sections for Ca
and ' C differ by a factor of 4, reflecting the S-Z depen-
dence of Eq. (5.14). To a good approximation, the aver-
age A,"'s for Ca and ' C may be taken as purely real,
k,"~'-—9.08 fm and k&'&'-10.84 fm . By using these
values in Eq. (5.14), the absolute magnitudes of the zero-
degree cross sections are well reproduced. The first
minimum in the plane-wave curves of Fig. 11(a) can be

f
Wgd, + Wpdp [

(5.15)
/

W, +W~
/

where in this expression the d's are the average values of
the radial distortion functions. In general (and particular-
ly at higher energies), the point that determines these
average distortion functions does not coincide with the
point at which the 5(r)'s peak. However, for the purpose
of this discussion, and because of the increased penetra-
tion at low energies, we find it useful to determine the
average distortion functions over the region of nuclear ra-
dius for which the 5(r)'s peak. From Fig. 10, we see that
for ' C this region is around r=2.2 fm and for Ca it is
around 3.4 fm. These radii correspond to approximately
the 80% density point in ' C and the 60% density point
in Ca. The vertical arrows in this figure indicate these
positions, were we find for ' C, 1,=0 9+0 6.i and.

d~-1. 1+1.0i; and for C, d, =0.2+0.8i and
dp-0. 3+1.0/. With the valu~ of the ~(i)'s given above,
the density independent 8 s have the values 8', =—11.1
fm and 8'&- + 12.9 fm . Inserting these values into Eq.
(5.15) we obtain R(' C)=18 and R( Ca)=6, which are
qualitatively the same as the observed calculational re-
sults. Thus, we see how the differences between the s-
wave and p-wave distortion functions alter the s-p in-
terference of the plane-wave reaction mechanism and
yield large forward-angle cross sections. Note that such
large ratios result even though d, and dz are close to be-
ing the same. This is a demonstration of the sensitivity of
cross sections to details of the theory. One may therefore
regard the existence of the interference as a tool to be ex-
ploited for the purpose of probing the density dependence
of the n Ainteraction mec-hanism.

The calculations shown in Fig. 11(b) result from a
density-dependent reaction mechanism that includes the
p-wave isovector absorption-dispersive term (Az i' ———1 Oi.
fm ) and the ELIV term (L»0) in Eq. (5.5b). The effect
of these terms is to decrease W~ from its density-
independent value: the ELIV term is essentially real and
therefore decreases the p-wave attraction, whereas the k& &'

term adds a sinall negative imaginary term. If we let

W~ be the average value of the density dependent Wz, we
find at the 80%%uo and 60%%uo density points [corresponding to
the radii at which the 5(r)'s peak] the effective values of
W~=(7. 1 0 72i) fm and —W~.=(8 6 0 45i) fm, re.sp—ec-.
tively. By comparing these values to the W, =—11.1 fm,
we see from Eq. (5.13) that the real part of W, +cosHW&
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can never vanish, and therefore the inclusion of the ELIV
eliminates the dramatic forward-angle s-p cancellation.

To understand the distortion effects in Fig. 11(b), where
the DWBA calculations (solid curves) for the density-
dependent reaction mechanism are significantly smaller
than the PWBA results (dashed curves), we again use the
approximate ratio given by Eq. (5.15). For the values of
d„dr, W„and Wz given above, we find R (' C)-0.14
and R ( Ca)=0.13, which qualitatively describe the
forward-angle reductions seen in the calculations. In this
case, where there is no s-p cancellation between W, and

Wz in the reaction mechanism, the differences between
the distortion functions d, and dr tend to cause a cancel-
lation, i.e.,

~
W,d, +TI're

~
&

~
W, +Wz ~. These results

are interesting because they demonstrate that the signifi-
cant influence of distortion effects on low-energy SCX
calculations results from the difference between the s-
wave and p-wave distortion functions.

Because the relative weighting of the s- and p-wave dis-
tortion functions is essentially determined by the transi-
tion density through the function 5(r), we expect our cal-
culations to be sensitive to variations in the transition den-
sities. We quantitatively demonstrate the degree of sensi-
tivity in Fig. 13, where we show 50-MeV l3%BA calcula-
tions of SCX for ' C and Ca that result from using two
different models for the transition densities [dy in Eq.
(5.4}]. The solid curves in Fig. 13(a) are the same as those
of Fig. 11 and result from the N/Z scaling model for bp.

The dashed curves result from using excess neutron densi-
ties obtained from Hartree-Fock (HF) calculations with a
Skyrme III force. The corresponding 5(r)'s are shown in
Fig. 13(b): the solid curves are the N/Z model (also
shown in Fig. 10}, and the dashed curves are the HF re-
sults.

As in Fig. 11, the cross sections in the top (bottom) half
of Fig. 13(a) are calculated by using a density-independent
(-dependent) reaction mechanism that results from omit-
ting (including) the isovector absorption-dispersive and
ELIV terms. We see that for the density inde-pendent re-
action mechanism, the use of the HF model lowers the
forward angle cross sections. In contrast, the density-
dependent reaction mechanism calculations show very lit-
tle forward-angle sensitivity for ' C, while for Ca the
use of the HF model increases the cross section. We note
that the overall effect of using HF densities does not sig-
nificantly alter the qualitative shape of the calculations,
and we conclude that density-dependent reaction mecha-
nism effects are required to reproduce the forward-angle
interference.

%e can explain the above SCX cross-section depen-
dences on the nuclear wave functions by considering the
shift in position for which the HF 5(r) s reach their maxi-
ma. From Fig. 13(b), we see that for '~C the HF model
moves the position of the 5(r)'s peak from r(N/Z)=2. 2
fm to r(HF)=2. 5 fm, whereas for Ca the peak position
moves from r(N/Z)=3. 4 fm to r(HF)=4.0 fm. These
HF values of radii corresponds to approximately the 60%
density point in ' C and the 40% density point in Ca.
Now by using Fig. 10 to obtain the new average distortion
functions evaluated at these new geak positions, we find
for ' C, d, "=10+0 6. i and. dr"=1.1+0 8i; an. d for

Ca, d, =0.50+0.70i and d rH"-0 55+0 85. i Fr.om.
the values of the N/Z average distortion functions (d's)
and the reaction mechanism W's given above we can form
a ratio analogous to Eq. (5.15), i.e.,

~

Wd "+IV d

/
W, d, + Wpdq /

(5.16)
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FIG. 13. 50-MeV 0%'BA calculations of SCX for ' C and
Ca, where the solid curves use X/Z densities and the dashed

curves are with Hartree-Fock densities. The top pair of curves
in (a) result from the density-independent reaction mechanism
and the lower curves result from the density-dependent one (as
in Fig. 11}. In (b) the corresponding X/Z (solid} and Hartree-
Fock (dashed} weighted transition densities are shown.

in order to estimate the effects of the HF densities on the
zero-degree cross sections.

For the density independ-ent values of W, =—11.1 fmi
and %~=12.9 fm, Eq. (5.16) gives us R'(' C)=0.4 and
R'( Ca)=0.7, which qualitatively describes the calculated
ratios in the top half of Fig. 13(a). We can also estimate
the ratio of cross sections for the density dependent reac--
tion mechanism by replacing the 8&'s evaluated at the
appropriate density points. In addition to the 8~ values
quoted above for the 80% and 60% density points, we
now also need the effective value at the 40% density
point, Sp 10 5 fm . We note that the HF values of W&
are to be taken at values different from those for the N/Z
case: For ' C, the density-dependent ratio is calculated
with the numerator evaluated at the 60% HF value of 8&
and the denominator at the 80% (N/Z) value. For Ca,
the numerator is evaluated at the 40% (HF} value of TI'r
and the denominator at the 60% (N/Z) value. By using
the appropriate values of II~r, the density-dependent ratios
become R'(' C)=0.8 and R'( Ca)=1.7, which describes
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the calculated forward-angle ratios shown in the bottom
half of Fig. 13(b). This analysis underscores the fact that
distortion effects play a very important role in our model
of SCX, with the mean density of interaction being rough-

ly 50%%uo of the central density.

VI. SUMMARY AND CONCLUSIONS

The purpose of this paper is to determine the implica-
tions of nuclear correlations on low-energy pion charge
exchange; such correlations were previously found to be
necessary to describe elastic scattering at these energies.
To attain this goal, we assume an isospin-invariant
optical-potential framework that explicitly couples the nu-
clear ground state to the isobaric analog states, and that
provides a unified approach to pion-nucleus isoelastic
scattering. We refer to this framework as the isospin-
invariant coupled-channel (IICC) framework. Within this
framework, theories of elastic scattering can be used to
calculate charge exchange, provided that the isospin com-
ponents of the potential are given.

The particular form of the potential we adopted was
motivated by two main considerations: it was shown to be
successful at higher energies, and it is similar in form to a
successful potential for low-energy elastic scattering (the
MSU potential). In constructing the isospin components
of this potential, we explicitly separated the first-order
terms (those linear in the density) from the higher-order
terms. Effects contributing to these higher-order terms
were divided into two pieces: one associated with m-2N
absorption and dispersive effects, and the other with
correlations. The quantities governing the strength of the
first-order terms were determined from the m-N phase
shifts. The form of the correlation terms and the quanti-
ties governing their strength were also theoretically deter-
mined. The absorption-dispersive terms were considered
as phenomenological, with the isoscalar strengths fixed
from the analysis of elastic scattering and pionic atoms,
and the isovector and isotensor strengths to be determined
from SCX and DCX data. In the calculations reported
here, we show that only two real parameters (of reason-
able strength) are needed to give a good description of the
SCX and DCX data at 50 MeV. The details of the poten-
tial are summarized at the beginning of Sec. IV, and the
parameters for 50 MeV are given in Table II.

One of the most significant effects observed in the IICC
calculations (shown in Sec. IV) is the infiuence of the p-
wave isovector correlation (ELIV) term on SCX. Without
this term, the calculated cross sections are strongly for-
ward peaked, in contrast to the deep forward dip of the
elementary ir-N cross section. The inclusion of this corre-
lation term dramatically reduced the differential cross sec-
tions, particularly for light nuclei, where forward maxima
became forward minima. Comparison of these calcula-
tions to the available SCX data near 50 MeV clearly sup-
ports the need for such an isovector correlation term in
the optical potential.

Because the potential used in our calculations was based
upon the well-established MSU elastic scattering model,
our findings lend further weight to the conclusion that
short-range correlations, rho-meson exchange, and Pauli

correlations consistently play a necessary role in the
description of low-energy pion-nucleus scattering. One
should therefore be skeptical of calculations that achieve
agreement with the data without including these correla-
tion effects.

The inclusion of p-wave correlations also significantly
affected the IICC calculations of DCX cross sections.
For analog route calculations (i.e., no isotensor potential),
we found large differences between predicted DCX cross
sections that included isovector correlations and those
that omitted this term. The infiuence of the correspond-
ing isotensor correlation (ELIT) term on DCX was small-
er, and interfered destructively with the analog route am-
plitude. Comparison of these calculations to the limited
available DCX data supports the existence of the isovector
correlated analog route to DCX, but indicates that anoth-
er process is required to yield a constructive interference
between the isotensor term and this analog route ampli-
tude.

To gain insight into the IICC calculations, we also for-
mulated a distorted-wave Born approximation that accu-
rately reproduced the IICC results for SCX. The DWBA
allowed us to study separately the effects of elastic distor-
tion and nuclear-medium modifications to the isovector
transition operator. The DWBA also enabled us to study
Coulomb distortions and other isospin-symmetry-breaking
effects that may be significant for low-energy charge ex-
change on medium to heavy nuclei. Because of these
findings, we conclude that our DWBA approach (at least
for low-energy SCX) is more fiexible, and therefore may
be more desirable for future calculations than the IICC
approach. We stress that the transition operator used has
been renormalized by medium effects, which is essential.
Encouraged by these results, we are currently investigat-
ing the replacement of IICC calculations of DCX by a
similar DWBA for DCX.

Our DWBA studies (presented in Sec. V) reveal that
elastic distortion effects on low-energy SCX calculations
are substantial for the MSU potential model. This stems
from the fact that the scalar and gradient distortion func-
tions associated with the s- and p-wave parts of the transi-
tion operator differ from each other, and thereby alter the
free-space s-p interference in the isovector channel. When
the free-space m-N transition operator (i.e., the impulse
approximation) is used, the alteration of the s-p interfer-
ence caused by the distortions give forward-peaked angu-
lar distributions. Including the density-dependent modifi-
cations to the isovector transition operator that resulted
from p-wave correlations causes the DWBA calculations
to decrease, and to come in line with the data. The signi-
ficant differences between DWBA and plane wave calcu-
lations (shown in Sec. V) also indicate that plane-wave ar-
guments may not be very reliable for the discussion of
low-energy charge exchange. We find from these studies
that the mean density of interaction is roughly 50% of the
central density.

There are many interesting future directions that may
be used to test the relatively simple model proposed in this
paper. We have shown that this inodel can successfully
describe the A dependence of isoelastic scattering near 50
MeV. The next step is to study its ability to describe the
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energy dependence of the isoelastic cross sections
throughout the low-energy regime. For example, after ad-

justing the absorption-dispersive parameters to fit a few

targets, or calculating them from theory, it would be in-

teresting to see if the model can successfully predict the
m+ and m elastic scattering from various isotopes as well

as SCX and DCX. From such energy-dependent studies,
one would be able to investigate the role of the s-p in-

terference in SCX and its movenmnt away from forward
angles. Additional tests can be made by studying the iso-
spin dependence of pion absorption data and pionic
atoms. Inelastic scattering to various selected states also
offers us the opportunity to selectively test various com-
ponents of the correlation-induced density-dependent
transition operator. We look forward to testing this
model against future planned experiments, and, perhaps,
to establish a relatively simple characteristization of the
low-energy pion-nucleus interaction.

1 0
0 1

1 0
—1 0
0 —1

1 0

1 0 0
0 0 0
0 0 —1

From this representation one can show that these opera-
tors satisfy the usual angular momentum commutation
rule

Pj's'k 4k0j—=iejkiNI

as well as the rule
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For more discussion about this representation, see, for ex-
ample, Ref. 40.

The identity given in Eq. (Al) is important because it
enables us to show that powers of the pion isospin opera-
tor greater than two are reducible. For example, by multi-
plying Eq. (Al} by P T we obtain

(f T)'=(P T)'[(T)'+3]

+(Q T)t(T) [—,(f) —2]+2]—(P) (T) . (A2)

This multiplicative procedure can be continued, yielding
the general result

(P T)"=(P T) a„+(P+T}b„+c„, (A3)

APPENDIX A: ISOSPIN-INVARIANT
COUPLED EQUATIONS

To obtain the coupled equations for the isoscalar, iso-
vector, and isotensor components (F;, i=0,1,2} of the
transition operator in terms of the optical potential iso-
spin components (U~), we first introduce the isospin
operator identity

(f T)'= —2(P T)'+(P T)[(T)'—1]+—,'(P)'(T)', (Al)

where P (T) is the pion (nuclear) isospin operator. This
identity follows from the fact that the components of P
are 3 X 3 Hermitian matrices that form the three-
dimensional representation of the SU(2) rotation group,
0i.e.,

F; = U;+ g W(~GFj,
j=0, 1,2

~here the coupling matrix is given by

(A4)

where a0 ——b0=0 c0=1 Q~ =c~ =0 6~ =1, 02=1,
b2 ——cz ——0; and by using the eigenvalues of (P) and (T),
a3 ———2, b3 To(To+1)———1, c3 ——To(To+ 1)
ficients for np3 can be obtained through the recur-
rence relations a„=a„ ia3+b„,, b„=a ib3+c ],
c„=a„—&e

Now by using Eqs. (Al} and (A2), we can obtain the
desired equations for the F s in terms of the U s. By in-

serting the isospin decompositions for U and F given by
Eqs. (2.1) and (2.4) into Eq. (2.3), and by using the identi-
ties in Eqs. (Al) and (A2) with (P)~ and (T) replaced by
their eigenvalues, we find

]

Up Tp( Tp+ 1)U2 Tp( Tp+ 1)(Ui —2U2)

W= Ui Up+(Tp+Tp l)U2 (Tp+Tp ——1)Ui+(2 —To —Tp)U2

U2 U) —2U2 Uo —2Ui + ( Tp+ Tp+ 3)Ug

A transformation from the above basis of scalar, vector,
and tensor components (indicated by the indices i=0,1,2)
to the basis of total isospin (indicated by the indices
I = Tp + 1, Tp, To 1) can be made thro—ugh the use of

I

the projection operators

(1+/ T)(1+To+/. T)
( Tp+ 1)(2Tp+ 1)
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( Tp —P.T)(1+Tp+P.T)
Tp(Tp+1)

(1+)T.)(f T T—p)

Tp(2Tp+ 1)

(A5}
CO

—
Amp 0 4m.

)

P1
C1 =Ap1

8m

which can be shown to satisfy the usual idempotent prop-

erty QIQI ——5II QI. With these projection operators, U

and I' can be resolved onto total isospin components UI
and Ez, as indicated by the expressions in Eq. (2.8). By
inserting these expressions for U and Pinto Eq. (2.3), and
by using the fact that 6 commutes with the QI's, we find
the relation between the F, 's and the UI's to be diagonal
in the channel indices, i.e., Ill ——UI(1+ GI'I ). The specific
transformation matrix that relates the two bases is

t

1 To To

M= 1 —1 1

1 —( Tll+ 1) ( Tp+ 1)

(A6)

where, for example,

Ul= g MrU.
i=0, 1,2

The inverse transformation is obtained, of course, by in-
verting M.

~1 ~s 1
(2)

8mP2P0

P2
Cp —App

0

(B3)

(2) P2
Ci —Ap 1

empp

These relations involve the frame transformation factor
pz and the constant nuclear matter density pp.

APPENDIX C: ISOSPIN COMPONENTS
OF THE EL TERM

In these expressions k is the pion wave number in the m-A
center-of-momentum frame. The following expressions
relate the second-order MSV Parameters Bp, 81, Cp, and
Cl to the A,

' 's:
r

~p =~sp
k

4ny2PO

APPENDIX 8: RELATIONS OF PARAMETERS
TO PHASE SHIi-z S AND THE MSU NOTATION

As given by Eq. (3.1), the EL correlation term has iso-
spin operators in the numerator and denominator, i.e.,

The first-order coupling coefficients (the A,"'s) are ob-
tained from the m-N phase shifts 5(sr }by means of the fol-
lowing relations:

X=——(g)' 1+—gP 3 P 3 P

where

(C 1)

4~(2y3+ y 1 )P 1

Asp
(3srk )

8ir( Y3 y 1 )P 1

(3srk 2)

11) 4ir(43 33+23 31+23 13+Yll}

(3pi~ )

gp
——App'p(r}+ (P T)A,p 1'

0

Our goal here is to express the complete isospin depen-
dence of Xp in the form given by Eq. (3.2), and thereby
identity the coefficients X p, Xpl, and Xp2 that multiply
the corresponding zeroth, i~irst, and second powers of P T.

To accomplish this goal, we first rewrite the denomina-
tor of Eq. (Cl) as

8m (2y33 —2y31+ 3 13
—y 1 1 )

3(3P la3) 1+—g3 P
=L (1+PAL T) (C2)

where for s waves (yir) and for p waves (y~, ir),
y(a) =exp[i5(sr)]sin5(a), and a is the wave number in the
m-N center-of-momentum frame. Note that the frame
transformation parameter pi is included in the definitions
of the A,"'s. These first-order quantities are related to the
MSV first-order terms bp, b„cp, and c, as follows:

where

L '= 1+—
A,'"p

PO

b =X,''
A@1

k
b, =X,",'

SmP1

P= Lip'i'(dy/2Tp) . —
3

Next, we use the binomial expansion

(1+Pf.T) '= g ( Pf.T)". — (C3)
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In this form, we can use the results of Appendix A to ex-
press (P.T)" as powers of order two and lower. That is,
by using Eq. (A3) for (P.T)" in Eq. (C3), we can write

(1+P).T) '=A($ T) +B(Q.T)+C,

I'

X», ——— L—(A»p){)) rl;+ A»pA») )M;
{1) 2 {1) {i)P P

3 Tp

g(&)+ (C6)

p2+ g ( p)llu
8=3

8= —P+ g ( 13)"b-„,
7l =3

C = 1+ g ( —P)"c„.

(C5)

where in terms of the coefficients A, 8, and C,

imp ——C, )L{,p ——T{)(T{)+1)A,

vp ——Tp( T{)+ 1 )(8 —2A ),
rl{ 8, ——p, i ——[T{)(T{)+1)—1]A +C,
vi = Tp( Tp+ 1)(B—A)+2A —8,

p~ ——8 —2A,

v2 ——[Tp(Tp+1)+3]A —28+C .

Now by using Eqs. (C4) and (C2) to rewrite (Cl), we ob-
tain powers of P.T to order four and lower. Again using
Eq. (A3) to reduce the third and fourth powers, we finally
obtain the fully reduced form of X». The resulting coeffi-
cients X»; that multiply the operators ({I) T)' for i=0,1,2
are the following:

From the expressions given in Eqs. (C5), we see that if we
consider X»; to order (hp), the i), p, and v coefficients
become i)p ——1, rl) ———P, rt2 ——P; )Mp=O {M)=1, {{{,2 ———P;2.

Vp=O, Vi =0, v2 ——1. Inserting these values into Eq. (C6),
we obtain the expressions for the isospin components of
X» given by Eqs. (3.3).
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