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The standard cloudy bag model description of n.N scattering is extended to include contributions
at the two-pion level. The mm scattering amplitudes are parametrized in phenomenological, separ-
able forms consistent with the known m S- and P-wave phase shifts. These amplitudes are embed-
ded in the mN description to account for scattering of the incident pion from the nucleon's virtual
pion cloud. A self-consistent analysis of the coupled nN, n4, and nN (1470) systems resu1ts in ex-
cellent reproduction of the phase shifts in the mN P33 channel to energies above the pion production
threshold. In the P&~ channel, without two-pion intermediate states, no acceptable fit to the data is
possible for any values of the bag parameters. It is shown that the additional attraction provided by
mm scattering is essential to reproduce the low-energy phase shifts and fix the sign change at the
correct energy.

I. INTRODUCTION

The rrN interactions form the foundation for the
description of NN and hard reactions. To account for the
absorption-production processes NN~~NN and NN~~d
the underlying mN model must contain vertex interactions
mB~8', where in general 8 and 8' can be N, 4„or higher
mass nucleon resonances. An accurate description of the

Pi& mN channel can be obtained easily' with a nN~4
vertex interaction, but a tractable Pii model with vertex
interactions is much more difficult to construct. The Pi i

channel phase shifts ' are very small ( ~5~ &1.5'), but

negative, from threshold to pion kinetic energies of
T —170 MeV, then rise gradually through the resonance
at T -530 MeV. Roughly the low energy repulsion re-

sults from the nucleon pole and the high energy attraction
from excitation of the N'(1470), but the precise behavior

of the low energy phase shifts requires nearly perfect can-

cellation between attractive and repulsive mechanisms.
Clearly, the Pii channel is sensitive to the details of mN

dynamics.
Probably the simplest Pii model comprises a nucleon

pole term and a phenomenological background interaction
parametrized as a low-rank separable interaction. The pa-
rameters of the model are fixed by fitting both the Pii
phases and the position of the nucleon pole. This pro-
cedure was proposed by Mitzutani and Koltun and used
in most subsequent n NN calculations. However, this sim-
ple approach is not satisfactory since it can be seen from
several existing calculations that the calculated NN and
md polarization cross sections, in particular, are sensitive
to the parametrization of the background term.

Additional dynamical input is therefore required to
reduce the uncertainties in constructing a P~ I model. Gne
possibility is to insist that the model reproduce the mN

phase shifts to a higher energy region where mN~mmN
production processes can occur. This idea has been ap-
plied by Blankleider and Walker, and also by McI.eod
and Afnan. Both of these approaches essentially extend-
ed the separable model to account for mN inelasticity but

without introducing explicit vertex mechanisms for N'
excitation and its associated pion production. It still
remains to be seen whether mNN calculations become in-
sensitive to the parametrization when higher energy mN

data are included to constrain the model.
Experimentally, the N' is known to have a large decay

width for the transition N'~ir4~mnN This 2m. mech-
anism is included in the isobar model for N* excitation
constructed by Lee9 in his study of NN scattering up to 2
GeV. This model was later extended by Bhalerao and
Liu' to include i) production, but neither model deals
with the important nucleon pole term and hence are ade-
quate only at energies high enough to be dominated by N'
excitation.

A more fundamental approach is to relate the mB~8'
vertex interactions to the underlying quark-pion dynam-
ics. This has been attempted via the cloudy bag model"
(CBM) in particular. In this approach the number of
model parameters is greatly constrained by fixing the rela-
tive coupling strengths at vertices through the quark
structure of the baryons. While it has been demonstrat-
ed' that the CBM is consistent with the m.N P33 phase
shifts below m production threshold, it has been less suc-
cessful in predictions about the Pi i channel. Rinat' tried
to fit the P» scattering data considering only N and N'
pole mechanisms, assuming the N'(1470) to be a
(Os) ( 1s)' quark configuration. The resultant interaction
was much too repulsive, producing phase shifts that
dropped as low as —20'~ —30'. Brown et al. ' assumed
the N resonance to be a breathing mode excitation of the
nucleon and they predicted even greater repulsion at low
energies. The difficulties encountered in these P» analy-
ses could be due, in part at least, to an incomplete descrip-
tion of the N excitation.

While the N and N' pole terms [Fig. 1(a)] are undoubt-
edly the dominant mechanisms in the P~i channel, to the
order of the n N coupling constant squared, processes like
Figs. 1(b) and (c) must also contribute. The crossed
graphs are suppressed through spin-isospin considerations
and large energy denominators, but nonetheless, in the P»
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simply add a mes.cattering driving term [Fig. 1(c)], called
V, to u(E).

Obviously, if we hope to distinguish the second-order
m.n. correlation effects, the number of model parameters
must be severely restricted. We therefore take guidance
from the CBM and interrelate all vertex strengths via
SU(6}. The general EBB' vertex functions are then as-
sumed to be of the form

h (k) =(2ir) f (S k)(T.Q)
m~(2cuk )'

(2.2)

FIG. 1. Generic contributions to mN scattering. Dashed lines
are pions and solid lines are nucleons. In general, the intermedi-
ate state baryons (solid bars) may be any of N, 5, or N . In (c)
the circle represents the nm interactions.

channel crossed terms with N, b„and N' intermediate
states can all contribute. These are attractive and tend to
counteract the N-pole repulsion. Interactions of the type
in Fig. 1(c), in which the incident pion scatters from the
virtual pion cloud, have not been considered previously
but they are expected to be significant because of the
S'(980) and p(760) resonances in the I =J=0 and
I =J=1 mm channels. Their inclusion could provide
another source of low energy attraction in P» to coun-
teract the N-pole repulsion.

Our primary interest in this paper is to examine the role
of the nninteracti. ons in mN scattering. To accomplish
this we consider a mN model in which the mN scattering
equation incorporates the three classes of driving terms
depicted in Fig. 1, and simultaneously makes contact with

the concepts of quark-pion physics. In the following sec-
tion we present the model for the mB~B' vertex interac-
tions and the explicit forms of the driving terms of Figs.
1(a) and (b) derived from these interactions. The nm.
scattering amplitudes are constructed phenomenologically
in Sec. III from the experimental prophase shifts. . The
mN scattering problem is then solved in the approxima-
tion that only intermediate states up to the 2m level are in-

cluded to account for mN inelasticities. The results of the
simultaneous fit to the mN Pii and P33 channels are
presented and discussed in Sec. IV.

II. m8~8' VERTEX INTERACTIONS
AND mN SCATTERING

%e start with the mN scattering equation deduced in a
perturbative expansion of the exact CBM n.N scattering
amplitude discussed in Ref. 11. The resulting scattering
equation is of the following familiar Lippmann-Schwinger
form:

t N(E)=u(E}+v(E) 1 t„N(E),E —Ho+i@
(2.1)

where v (E) is the sum of the first two driving terms illus-

trated in Fig. 1 and Ho is the sum of the free (relativistic)
pion and nucleon energies. To study the effect due to
pion scattering from the pion cloud of the nucleon we

with m and cok the pion's mass and energy, respectively,

P is the pion isovector field, and u (kR) is a cutoff func-
tion which is taken to be parametrized in the CBM form

u (kR) =3ji(kR)/kR (2.3)

with j,(x) being the / =1 spherical Bessel function, and R
the bag radius, assumed to be the same for all baryons.
The coupling constant f in Eq. (2.2) is the bare NNm

coupling constant [the experimental value of fNN is —1

with the choice of normalization in Eq. (2.2)]. All other
BB'n coupling strengths are related to fNN by SU(6)
symmetry. In units offNN we have

fNNs

and

faN =6v 2~5 (2.4)

f 4
bhm —

5

The spin and isospin transition operators, S and T, are
defined via their reduced matrix elements as

& su
l S,

l

s'u') =(—)'+" +'+'

l
x

with

(2.5a)

(2.5b)

1/2
toi(F00 —1)

( 1) fNN~=o 457ofNN
,

3t00(t'ai

—1)
(2.6)

where tvu
——2.043 and coi ——5.395 are the eigenfrequencies

of the Os and 1s quarks. Similarly, the other relevant
N' couplings are f,a 0.4570fNa, and ——fN+N,
=0.8755fNN .

The driving terms of Figs. 1(a) and (b) projected onto
the mN channel of isospin I, total angular momentum J,
and incident energy E are

The reduced matrix elements of T are identical to those of
Eq. (2.5b).

Assuming the bare N to have a (Os) (ls)' quark struc-
ture, and using the explicit quark wave functions, " the
N*~B~ coupling constants can also be determined. For
example
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fN~(k)kk'fiiN(k')
txNa 0E —Mii —Xii(E)

PNBf NB «')k 'kfaN( k )

8 E —
teak —k E—B[(k'+k ) ]—trii[E co—k co—k, (k'+k ) ]

(2.7)

(2.8)

where fNit(k) is related to the CBM form factor by

ii2fNa u (kR)
m~ (2uik }

(2.9)

The coefficients a and P giving the relative strengths of
the terms are constructed from the spin, isospin matrix
elements of the vertex functions. In the pole terms [Eq.
(2.7)] these have the value

+NB
4n &sNlls Ill &' &INIITllfa &'

(2J+1) (2T+1) 8J, ~ 8rl

and in the crossed diagrams [Eq. (2.8)]

4ir 1 SN J 1 IN T
3 1 SN Sii 1 IN Is

I

x &SNII~IIB & &INIITllla &'

(2.10)

(2.11)

In the above equations Sit I~ ———,', —,
'——, —,

' f«8 =N, b.,
and N', respectively. In the propagators of Eqs. (2.7) and
(2.8) Mii and E~ are the mass and energy of the bare
baryon, with 8 being any of N, 5, and N' consistent with
spin and isospin conservation. Following Ref. 9, the self-
energies of the isobars to the level of 2n. virtual states are
taken to be

dkk fsit(k)Xa«)= gtxaa f
R E+—cok Ea(k) re�—(E —cok', k—)

(2.12)

MN=MN+XN(MN) . (2.14)

Notice that XN(E), as defined in Eq. (2.12), is a function
of the bare nucleon mass MN through crN [Eq. (2.13)].
Therefore Eq. (2.14) is a highly nonlinear equation relat-
ing MN to the bare mass MN through the interaction
Hamiltonian. To simplify the calculation we use an ap-
proximation based on the observation that the self-
energies XN(E} and oN(E) vary slowly as E~MN. We
can therefore approximate

0 BXN(E')E —MN —XN(E)~(E —MN) 1—
aE E'=MN

(2.15)

function. This refinement is not significant for our pur-
pose and is neglected here.

As they stand, the propagators of the driving terms are
defined exclusively in terms of the bare particles. For the
6 and N' the "physical" particles are unstable, so there is
no obvious advantage to renormalizing the masses. The
nucleon on the other hand is stable and it is desirable to
express quantities in terms of the physical nucleon mass.
The nucleon pole is identified in the usual way by
demanding that at E =MN the denominator of the term
with nucleon intermediate state in Eq. (2.17) vanish. That
1s

du& 'fas(J»)
E+—cok —t[r0 +Es(p)] +k I'i

(2.13)

The sums in both equations extend over the combinations
of R, S =N, b„, and N' allowed by spin and isospin con-
servation. It is the second term above, Eq. (2.13},that de-
scribes the coupling to the +AN inelastic channel in our
model and hence is the source of n.N inelasticity above the
pion production threshold. The self-energy contributions
defined by Eqs. (2.12) and (2.13) are depicted graphically
in Fig. 2(a).

Strictly, the self-energy corrections due to crossed pro-
cesses, such as those illustrated in Fig. 2(b), should also be
included. These are suppressed through spin and isospin
constraints and large energy denominators and are found
to contribute about 10% of the terms of Fig. 2(a). It has
also been shown' that these terms can be absorbed into
the processes of Fig. 2(a) by using a renormalized vertex

FIG. 2. Definition of the propagators and self-energy correc-
tions used in Fig. 1, and in Eqs. (2.7) and (2.8). The solid circle
and )& in (a) represent self-energy corrections to the 2m level,
and lm in the presence of a spectator pion, respectively; {b)
shows an example of a 2m self-energy term which can be ab-
sorbed into those of (a) by renormalizing the vertex function.
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which is exact at the pole. The right-hand side of Eq.
(2.15) still depends on MN through the second-order self-

energy correction oN(E), so we extend the approximation

to write the energy dependence of Eq. (2.12) as

E —a)k —EN(k) —cr N(E —tok', k)0

90—

60—

Ocr N(to; kp )
[E—~k —EN«)), 1—

a~ a) =EN(ko)

(2.16)
0-I0-

with kp the mN on-shell momentum. This ensures that
the n-"dressed Np" has the correct physical trN elastic
cut. Equations (2.15}and (2.16) allow us to carry out cal-
culations without defining explicitly the bare nucleon

mass Mg.0

In the crossed terms of Eq. (2.8) notice that we go
beyond the 2m approximation by including the baryon
self-energy defined by Eq. (2.13) in the m@8 propagator.
This procedure essentially includes some, but not all, 3m

terms in our calculation. These higher order terms are
found to give additional attraction which improves the fit
to the low energy Pi i phase shifts.

To evaluate Eq. (2.8) we use an approximation similar

to Eq. (2.16) to eliminate the bare nucleon mass. The final

form for the nucleon propagator then becomes

IE —~k —~k —EN[«'+k ')'"ll

150-

120-

90—

0

300 500 700
E (MeV)

900

FIG. 3. Results of the fit to the mn. phase shifts (51J) in the
lower partial waves. The data are taken from Ref. 16.

/ON[~ (k~+k 2)i~2]
X', &-

Btu N=Eg[(k 2+k ) ]

III. mm SCATTERING DRIVING TERM

To simplify the calculation of the terms of Fig. 1(c), we

parametrize the nm amplitude in each isospin, angular

momentum channel I, I in separable form as

T (x,tr', E)= g ( le ln'
i
It )'Ytl(tr)

X Tt (z,a'', E)Yt~(tr ') (3.1a}

with

(2.17)

Equations (2.7)—(2.17) completely define the driving

terms of Figs. 1(a) and (b). Although the contributions to
n.N scattering from the vertex interactions of our model

are more sophisticated than in earlier CBM studies du«o
the inclusion of the 2m channels, it is not anticipated that

these will significantly alter the predictions of the loiu en-

ergy phase shifts from earlier studies.

Tt (lr, z', E)=utt(a)Df (E)utt(v') (3.1b)

and

d u
DI(E) E Mp I PP ll P

E+—2'(p)
(3.1c)

and where a,a' are the initial, final state mn relative mo-
menta, and the form factors utt(x ) are parametrized as

(~r)'
ll

[1 ( )2]t+1 (3.2)

It is trivial to fit the mm phase shifts with the above
resonance-form parametrization of the t matrix. The best
fits to the phase shifts 5tJ (Ref. 16) in the three lowest mn. .

partial waves are shown in Fig. 3, and the best fit parame-
ters are listed in Table I. The small, repulsive isospin =2,
S-wave channel was included for the sake of complete-
ness, and it will turn out to be significant in the descrip-
tion of the P33 m N channel, as will be discussed later.

The potential due to the processes of Fig. 1(c) is then
constructed to be

V (k,k', E)= dp~4(q)T, [~ ~' E —E~V»)~RN(q')

[toq+ER «p }—EN«p) )[~q +EH «p) —EN«p) l
(3.3)

with q=k —p, q'=k' —p, and kp is the mN on-shell momentum. T „is the fully off-shell mm t matrix defined in Eq.
(3.1) and the hwti(q) are the CBM vertex functions of Eq. (2.2). The intermediate state baryon R is N, 6, or N'.
V(k, k') is projected onto the ~N channel of isospin I, orbital and total angular momentum I. and J in the following



34 EFFECT OF ~ INTERACTIONS IN ~N SCATTERING 247

way. For a given ~~ channel of lsospln t and angular momentum /, V,(k,k ) is d~ompos~ by using the following
properties:

and

fNR( /»tt«) = y CL ( 'P)I L'M'(k)IL'M'(P)
Qlq +ER 0 N Q L'M'

' 1/2
4v(&»ls qlRr)=
3 „qI'l,„,(g)

(3.4a)

(3Ab)

with
' 1/2

F (~)= ~ 4lr kl ~ '4( —1)l ~ ~+Rl ~
i,v—rq =~

l,a b
Aab

„ l
I', „(k)I'„,(p) . (3.4c)

With some effort, the projection of V for intermediate state baryon R can be carried out to give

VLrr(k k' E)= g U4'r(k, k', E)
d

with

ULrr(k, k'„E)= f dpP /l'LJtL L (kP, k')cL (k:P)CL-(P:k')Dt'[co ER(P)]-

with the momentum dependent coefficients A, 'LrlL L -(k,p, k') given by
'2

(kp k )=(2I+1) l
~ ( I ll llR)

(3.5a)

(3.5b)

g Lr/'L'w'a'F'(ir'2llsllR)'k'-'( —p)'"k' '( —)'"' ' '~ aacES

ltL / 2 lliA 1 —C L'~l iL' E Fl iF L" Ci iL' / Bi i8 1 —E L"ix
qo o o& l, o o o&ll, o o o&lgo o o&llano o o&ll o o o l

L I

1 A X L' C X L" E XX L' C I —C L" E F, 1 8 1 —E 8
X X 7 R

1

2 ~

(3.6)

Specifically, in the Pl l lrN channel the A, become

R =N, /=O, t =o: codokk' cldok'p —cod—lkp+cldlp

(3.7a)

kpR=N, /=l. t=l: 2 eodop' cldo
3

+c—ldlkk R =b, / =O, t =0: ,', (codokk' —cldok'P—

(3.8a)

and in the P33 channel:

36R =N, /=l, t =1: 2S (Codop2 49cldokp 49—eodik'p), —

TABLE I. Parameters of the best fit to the mn. phase shifts
with the separable potential model described in the text.

Channel
(I,J) —1/2

MIJ
(MeV)

(3.7b)

R =b„/=l, t =1: —,', (codop ——,'cldokp ——,codlk'p),

(3.7c)

—Codlkp +Cldlp ),
R =b„/ =O, t =2: ', (codokk' cldok'—P—

—Cod 1kp +C 1 dip ),

R =5~/ = 1~t = 1:
& 2cpdpp —c~dp

kp
3

—cpdi +cid)kk
k'p
3

(3.8b)

(3.8c)

(3.8d)

(0,0)
(l, l)
(2,0)

0.7550
0.6684
0.6318

0.522
0.428
0.231

896.8
811.7
228.9

All of the above amplitudes are measured in units offN~~. The abbreviations have been used that
tl

cL =cL (k,p) and dL-=CL-(p, k'). These two functions
are calculated numerically according to Eq. (3.4a). In
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each of P&i and P» there are also the terms with an N'
in the intermediate state. These are identical with the
ones given above for R =N, but there is an overall factor
of (0.4570) . Also the N" mass is much greater than that
of N so these N' terms do not contribute significantly,
and can safely be neglected. Notice that the 1=0, t =2
m.~ channel contributes to Pi& but not P». The signifi-
cance of this term is that it is repulsive, and so tends to
cancel against the other attractive ~m interactions. Be-
cause the mw t matrix has been constructed consistently
with the arm phase shifts the inclusion of the correlated en.
terms in describing mN scattering does not introduce any
additional parameters beyond those already contained in
the NRm vertex functions.

IV. RESULTS AND DISCUSSIONS

The mN scattering defined in Sec. III can be calculated
as follows. For each mN partial wave one solves Eq. (2.1)

with the driving term taken to be the sum of Eqs. (2.7),
(2.8), and (3.5). The model has four free parameters; the
NNn coupling constant fNN, the bag radius R, and the
bare masses of the 6 and N'. Our task is therefore to
determine these parameters by carrying out a X fit to the
mN phase shifts up to about 2 GeV (total n.N c.m. energy).
At the 2m level the same parameters enter the Pi i and P33
channel descriptions. For the model to be sensible it must
therefore reproduce both partial waves simultaneously. In
addition, the resulting bag parameters should not be very
different from those determined in the original cloudy-bag
model study, since in our approximation the 2m effect is
considered to be a perturbative correction in describing
the static properties of baryons.

To illustrate the necessity of including a re scattering
mechanism, we first carry out a I fit neglecting the m.n.

scattering term V in the calculation. In this search, we
find that it is not possible to obtain a good description of
both the Pi& and P33 phase shifts. The best joint fits to
these two channels are shown as the dashed curves in Fig.
4. The resulting parameters are shown in the first row of

TABLE II. Bag model parameters giving the best fit to the
mN P) i and P33 phase shifts. The first row neglects the mm in-

teractions and the second rom includes the ~~ terms.

V =0
~0

0.850
0.865

1.125
1.080

Mg

(MeV)

1551
1558

M

(MeV)

1704
1737

Table II. The main difficulty in this fit is to reproduce
the energy dependence of the P&~ phase. The sign change
in this channel is due to the cancellation between the
repulsive nucleon pole term and the attraction coming
from the N' pole and all crossed terms [Fig. 1(b)j. The
magnitudes of these two cancelling terms are mainly
determined by the bag radius R. As R is decreased, both
terms are increased at about the same rate and hence the
sharp, rising energy dependence at E-1.3 GeV cannot be
removed for any value of R. This result is similar to that
reported by Rinat. ' Another important finding in our
search is that a large part of the attraction comes from
the crossed terms. As shown in Fig. 5, when the crossed
terms are also set to zero, the P» phase shifts become
more repulsive at low energy and the energy dependence is
steeper in the sign-change region.

Without including the nmscatteri. ng term, the fit to the
P33 channel (dashed curves in Fig. 4) is also unsatisfacto-
ry. The dependence of 5 on energy is not correct and the
resulting inelasticity q is too large. Note that the fit to
the low energy P33 phase shift can be easily obtained in a
fit without considering the inelasticity and the related Pi i

phase shift. But as we stressed before, at the 2nlevel the.

P» and P» are determined by the same set of parame-
ters. Such a low energy one-channel fit cannot be used to
relate the mN data to the underlying pion-quark physics.

The results of including the arm. scattering term V«
[Fig. 1(c)) are shown as the solid curves in Fig. 4. The ef-
fect of V not only allows the model to give an excellent
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FIG. 4. Results of the fit to the P33 and P&1 phase shifts.
The dashed curves are the best joint fit to Pll and P33 neglect-
ing mm contributions. The solid curves show the improvement
obtained by including diagrams like Fig. 1(c). The data are
representative points from Refs. 2 and 3.

FIG. 5. Contributions to the P» amplitude from the driving
terms of Figs. 1(a) and (b). The dashed curve shows the phase
shifts resulting from only the N and N* pole terms. The solid
curve is obtained by adding the crossed terms with N, 6, and
N intermediate states.
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reproduction of the P33 phase shift in the entire energy re-

gion up to 2 GeV, but it also yields a correct description
of the delicate sign change in the P&~ channel. This
dramatic improvement is probably due to the fact that the
~m scattering term V in the P~& channel is attractive
and depends only weakly on the collision energy in the
low energy region. This background attraction is needed
to smooth away the sharp energy variation due to the can-
cellation involved in ihe pole and the crossed terms. The
fit to this important P» property is not accidental since
the same V also plays a key role in obtaining an excel-
lent flt in the P33 channel. While the inelasticity in P33 ls
well reproduced, there is still not enough inelasticity in

P». This is not surprising since the P&~ at high energy is
also influenced by other open channels, such as the rl par-
ticle production which is beyond the present cloudy-bag
model description.

The best flt parameters are shown in the second row of
Table II. It is seen that the bag radius and n NN coupling
constant obtained are not very different from the values
determined in Ref. 12. Hence, we expect that the corre-
sponding 2n effects on the static properties of the nucleon

are small, following the arguments given by Thomas. "
On this ground, we believe that our model is not a pure
phenomenological construction such as the models
developed in Refs. 4—10. It makes contact with the
essential features of the quark-pion physics.

In conclusion, we have shown that the effect due to
pion scattering from the virtual pion cloud of a nucleon
plays an important role in describing the mN scattering.
It is an essential component in a dynamical interpretation
of the P» phase shift which involves a delicate sign
change in the low energy region. Since the present model
makes contact with the pion-quark dynamics, its off-shell
behavior is much more realistic than in the existing separ-
able mN models. " It will be interesting to explore in the
future how our model can be used in a unitary mNN cal-
culation of NN and md reactions, such as that formulated
in Refs. 4, 5, and 17.
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