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The qualitative ideas put forward by Geyer and Lee are given quantitative content by construct-

ing a similarity transformation which reexpresses the Dyson boson images of the single-j shell fer-
mion operators in terms of seniority bosons. It is shown that the results of Otsuka, Arima, and

Iachello, or generalizations thereof which include g bosons or even bosons with J & 4, can be ob-
tained in an economic and transparent way without resorting to any comparison of matrix ele-
ments.

Any program which aims at the construction of a micro-
scopically founded interacting boson model of nuclei has to
address the two questions of transcribing the fermion
problem to a boson space and of identifying the physically
relevant bosons which facilitate a truncated description.

Of course, the ensuing boson model need not be restrict-
ed to the structure of any presently existing version of the
successful phenomenological interacting boson model
(IBM).' 3 In fact, from microscopic considerations one
hopes to identify the situations for which the existing IBM
is applicable as well as those for which modifications
should and could be made.

As far as the mapping between fermion and boson
spaces is concerned, the Dyson boson mapping (DBM),
characterized by finite boson images, has been demonstrat-
ed ' to be a very efficient tool for formal investigations
as well as ideally suited for the construction of boson
models directly linked to fermion microscopy. Because of
the nonunitarity of the DBM, the equivalent boson picture
obtained from a direct application of this mapping is
characterized by a Hamiltonian which is non-Hermitian
when represented in an ideal boson basis. This, however, is
no reason for concern4s since one is dealing with an exact
boson realization of some Lie algebra. In fact, the very
nature of this pair boson Dyson Hamiltonian has served as
the basis for economic and elegant further developments.
Li (Ref. 9) exploited its structure to rederive the results of
Otsuka, Arima, and Iachello (OAI)" without having to
establish any correspondence between fermion and boson
states; Kim and Vincent' used it to construct a Hermitian
one-plus two-body boson Hamiltonian for Ginocchio's
SQ(8) model; and Geyer' utilized the non-Hermiticity of
the Hamiltonian to construct seniority boson realizations
for the Sp(4) algebra. In this paper it is shown that the
ideas of Ref. 13 can be generahzed to the case of a single-j
shell model resulting in a description in terms of seniority
boson s.

Direct application of the Dyson mapping leads to a
description in terms of pair bosons, as of course does any
boson mapping based on the preservation of the complete
bifermion operator algebra. In general, however, this situ-
ation presents an unfavorable point of departure when con-
sidering a truncated description in terms of the physically
relevant bosons, such as s and d bosons in the IBM. This

point was emphasized by Geyer and Lee and illustrated
by numerical examples in a single- j shell model.

For this model Otsuka, Arima, and Iachello" had previ-
ously shown that, at least in the SU(5) vibrational limit of
IBM, the physical s and d bosons are to be associated with
a seniority description. In the OAI scheme, boson opera-
tors are accordingly constructed by requiring equality be-
tween boson matrix elements and the corresponding fer-
mion matrix elements calculated in a seniority basis. In
Ref. 8 it was indicated that the boson operators could also
be constructed by requiring equality between pair boson
matrix elements, obtained directly from the Dyson map-
ping, and seniority boson matrix elements. It was shown

by Li (Ref. 9) that this procedure is indeed not only viable,
but that it can elegantly exploit the nonunitarity of the
Dyson mapping to achieve the OAI results while avoiding
all complications due to the nonorthogonality of fermion
states.

Perhaps a conceptually more satisfactory picture, which
was also formulated in Ref. 8, envisages the OAI results,
and generalizations thereof, as resulting from a similarity
transformation on the mapped pair boson images. of bifer-
mion operators. Only a qualitative description of this
transformation could be achieved at the time, its main
characteristic being that it restores the physical require-
ment of a seniority mapping, namely, that twice the num-
ber of non-s bosons should be associated with seniority.

I now show that this requirement indeed produces the
required transformation and that seniority boson images of
bifermion operators can be obtained without having to
resort, at any level, to the cumbersome process of equating
matrix elements.

The generalized DBM is defined by the mapping

b p~ R'p=—8'p —8' 8+8N, ,

~up Rap=8ap

bp Rp =—8 Bpg,

between bifermion operators b and ideal boson operators
8. (See, e.g. , Ref. 10 for the notation used. ) For a single-j
shell it is convenient to introduce spherical boson operators

g &jrrjtm'I JItrI)8J J 8 -(8'~)t . (4)l
JM
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From the basic mapping [(1)-(3)]and standard angu-
lar momentuin coupling it is now straightforward to obtain
the Dyson images of the spherical fermion operators

If we now operate on the equation

(Ho+ W)z 'Z
I y& ~EZ 'Z

I y& (i 3)

A JM — [&jx&j]Q A, (A JM) t'
2

from the left by Z, the resulting expression can be written
(5)

(6) z(H, + w)z '
I
y&-E I y&-H, I y&, (i4)

in terms of the spherical boson pair operators (4), namely,

J J1j
(A~~) ~BJ -2+J J J3L» j J j»[[8 'xB ']~XB ]g

J3L J
(7)
(s)(AJM )D 8JN

0 —1

HD -G Qn, —n, (n, —1)—2n, g n2J +Gg'BJ BJss
J 1

-Gi'2ng'J, JzJ3'. . . '[[a"~8"]"~8,]fsj j j
(io)

The boson number operators n„n2J-z=ng, etc. appear
above, while g' denotes a summation over J values other
than zero. [Note the corrections to Eqs. (3.6) and (3.10)
of Ref. S introduced above. ]

The strategy for obtaining seniority boson images, as op-
posed to the pair boson images [(7)-(9)]is similar to that
of Ref. 13 and again based on the special structure of the
Dyson image (10) of the pairing interaction. We note that
HD, when represented in an ideal boson basis, such as the
one defined by the SU(5) DO(5) DSO(3) chain, is of tri-
angular form. (In Ref. 10 it has been proved that the use
of an ideal boson basis in conjunction with a mapped
operator, such as HD, is always permissible. ) This means
that HD Ho+% has the same spectrum as its diagonal
part,

0 —1

Ho —G Qn, n, (n, —1—) 2n, g —nzf
J 1

while eigenstates I yr& and I p& of HD and Ho, respectively,
are related by

(i2)

for a specific energy E. (The range of k in the sum above
can be extended to infinity since an automatic cutoff is as-
sociated with the annihilation part of W.)

r

Ji J2 J
(Ug, )D- —2+J,J,'. . . '[8"XB,,]g, .

, J J j, (9)

Note that the pair boson image (A )D contains terms
such as dt dts, which change the number of non-s bosons,
in contrast to the fermion operator A~ which does not
change the seniority. (Here s =Boa, d"-=dt —=8 ",etc.)

Of particular importance for further developments is the
structure of the Dyson image for the pairing Hamiltonian
H -G QA~AOO, where 2Q 2j+1. From expressions
(7)- (S) one finds

which explicitly shows that the similarity transformation Z
transforms away the term W in HD. If Z also commutes
with (A00)D s, it is clear that the same Z also transforms
away those terms in (A~)D which change the number of
non-s bosons. One then gets the structure envisaged previ-
ously, namely,

(A~)„„-=z(A~),z-'-st 1 — '
0 g'n2J, (15)2

(i6)

Z ve ,(~, „,„(Q—1 ng ng)!-!—
(Q —1 —2ng)!!

z (Q+ 1 —2ng)!!
e "A.

(Q+ 1 —ng ng)!!—

(i7a)

(i7b)

Construction of seniority boson images of the spherical
fermion operators [(5),(6)] can now be carried out. In
general one has, for any 8 from expressions (7)- (9),

~~a-zDZ (is)

For 8 A~ one confirms that (A )~, is given by the ex-
pression (15). Furthermore (Aoo)~, s, since Z indeed
commutes with s. The other seniority images are more
complicated and one finds, e.g. ,

(Q+ i N n&—)—
(Q+ i 2n,)-
Q+3 —2nd

where N ng+n, is the total boson number. In fact, the
seniority images we obtain are given as Eq. (15) of Ref.
14, except for (Az„) „which is incorrectly given there. In
Ref. 14, ho~ever, these images ~ere obtained in OAI
fashion from a comparison of matrix elements. '5

Returning to the single-j shell model for general values

and it becomes possible to directly associate seniority and
boson number through v 2g'n2J.

Restricting ourselves for the moment to the case j
we note that this choice allows only s and d bosons in the
expression for (A )D. In particular, the term W in HD
consists of onl one contribution which contains the com-
bination dt d ss. Because of this simplification a closed
form for the transformation Z ' can be obtained. This is
accomplished by using the idea of Kim and Vincent'2 who
define a positional operator through

«k 'k
Z'-=g 8 —= g . W n, .

k 0, 0 , k 0 00 00
The position of the wedge (or inverted wedge, below) indi-
cates where in an expression a number dependent caret (or
inverted caret) operator is to be evaluated. In this nota-
tion Z ' and Z can be rewritten as
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of j & —', , we note that in the nondiagonal part 8'of HD in

Eq. (13), there now appear two classes of terms with the
structure 8~ 8 ss and [8 '8 '8q, ]fs. While a closed form
for the corresponding transformation Z now seems unat-
tainable, we can still find approximate seniority boson im-

ages by truncating the sum over k in Eq. (12). It is clear
from the structure of Z ' that the inclusion of higher

values of k will only introduce higher order multiboson
contributions (characterized by having more and more s-
boson annihilation operators) to these seniority images,
without changing the structure of lower order contribu-
tions. To be more concrete we adopt the lowest order ap-
proximation to Z ' which retains only the k 0 and k 1

terms, namely,

Z ' = 1+ [(n, —n, )(0+1—21V +Pi, +n, )] '[Ftss+Kts] A,

Ft —=g'8'8',
J

1

L) L2 L3 L) L2 L3
~ g~lI 1+~212+

,Pj P2 P3, , J J J, (21)

On simplification, expression (20) becomes

F~ss—
2 0+3—2%+2ng 0+2 —2%+2n,

(Z differs from this expression by having positive signs for the last two terms. )
In this approximation the seniority image of, e.g., the fermion quadrupole operator can now be calculated as

IP

0 —N —nq

0 —1 —2' ,J J J, 0 —2nd

(22)

where only one-body operators with possible boson number
dependent coefficients, and just those involving only s and
d bosons, have been retained.

Expression (23) is not the OAI result yet, since std„and
d"s have different coefficients. One has to bear in mind,
however, that for a given fermion operator 8 the Dyson
scheme prescribes the association

&~l el ~&-[.(~l 8.1~)-(~ I «». I
&)a]'~' (24)

between the fermion matrix element and its boson
equivalent, a direct result of the nonunitarity of the Dyson
mapping. This relationship can be rewritten as

&yl &I y'&-[(yl 8 .[y')(y')(8') .I
y)'V", (25)

&v tel v'&-(v
I el y') . (26)

The Hermitian equivalent U„of (U„)~, is given by

I

where (y~ r, (y~Z ' and [ y') Z j y')~. No distinc-
tion between left and right eigenstates is required any-
more, since the Hamiltonian HD in Eq. (10) is trans-
formed to a Hermitian form Ho by the transformation Z.

For any seniority boson image, such as (U„)~„ in Eq.
(23), of which the different boson terms connect different
pairs of boson states of good seniority (good nd) one can
write a Hermitian equivalent boson operator 8 for which
the boson matrix element is calculated in the usual way,
namely,

&/2
.

U„
0 —X —ngd"s 0 —1 —2nd

' 1/2

+ 0 —N —ng

0 —1 —2'
0 —2Nstd„—10'. . . ' [dtxd]2,

,J J J, 0 —2ng

and is written by noticing that, since (U„) „(U„)~„,
one has the situation where if d"s connects (y~ and ( y')
in Eq. (25), then std„will connect (y'( and ( y). The re-
sult (27) is the same as that originally given in Ref. 16 and
differs from the OAI result, " rederived by Li, which is
only valid when nq 1.

Similarly one can find the Hermitian boson equivalent
for other operators in the approximation where only s and
d bosons are allowed, and only the lowest order term which
could connect boson states of good nd is kept. For A2", for
example, this means that only the boson terms d", ststd„
and st[dtxd]~z are considered. A term [dtdtd]~z can, of
course, always be accommodated if we stick to expression
(25) for calculating boson matrix elements and do not in-
sist on finding a Hermitian equivalent. In the present ex-

ample this latter option is ruled out, since both d" and
[dtdtd]~z can connect the same boson states. Such a situa-
tion prohibits a prescription that would reduce expression
(25) to one of the form (26).

The lowest order Hermitian seniority boson image we
obtain for A " is the same as Eq. (2.30) obtained by
Bonatsos et al. ' who have to fix a number of unknown
functions in order to satisfy the shell model algebra up to a
chosen order. Again, the corresponding OAI result" is
only valid for ng 1.

As in Ref. 17 we can now go beyond a seniority mapping
in terms of s and d bosons by including g bosons or even
bosons with J & 4 in the seniority boson images, as well as
retaining higher order many-body boson operators. For
(U„)~, this means that in expression (23) we also retain
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terms of the type [dtxg]„, [gtxd]„, [dtdtd]„s, and
st[dtdd]2, etc. As already stated, the inclusion of suchps At

terms does not change the structure of the terms s d„, d"s,
and [dtxd]~z already calculated. In contrast to the com-
mutator method of Ref. 17, where the inclusion of such
higher order terms requires increased effort to handle all
the unknown functions introduced, the calculation of bo-
son number dependent coefficients of terms like [dtxg]„
in expression {23) requires no more effort than that of,
e.g. , d"s.

For the terms [dtxg]~z and [gtxd]~z we again find the
same results as in Ref. 17. On the other hand, we find no
term of the type st[dodd]~z. This only means that we can-
not write down a Hermitian equivalent V„which contains
the conjugate pair st[dodd l~z and [dtdtd j~zs. However, as
long as we observe the proper prescription {25) to calcu-
late seniority boson matrix elements, these matrix ele-
ments will contain all information that can be carried by a
seniority boson image of a chosen order.

In terms of the OAI prescription we have succeeded
through the similarity transformation to obtain the seniori-
ty boson images of operators valid for states with an arbi-
trary number of d bosons, g bosons, or higher J bosons.
This clearly goes beyond what is normally considered in

the OAI framework; namely, to find matrix element
equivalence only for some low seniority states containing
one or two d or g bosons. In fact, the OAI method cannot
be used to determine seniority images for general numbers
of J~ 2 bosons as soon as these images contain more than
one term which connect the same set of basis states, since
one would then attempt to find the (number dependent)
coefficients of all these terms from one equation which
equates the fermion and boson matrix element.

Finally I would like to comment on the claim in Ref. 17
that "inclusion of the g boson can be viewed as a theoreti-
cal necessity. " In my formalism there is nothing special
about the inclusion of g bosons, e.g. , in Eq. (23). From
this point of view the above claim seems to be an artificial
consequence of the method of Ref. 17.

I believe that the treatment above provides the most
economic way of obtaining seniority boson images. Of
particular importance is the fact that higher order contri-
butions are easily treated. This is in contrast to methods
which either require matrix elements to be equated or a
commutator algebra to be satisfied.

I would like to thank Fritz Hahne for useful discussions
and comments about the final manuscript.
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